|
Record |
Links |
|
Author |
Kundys, D.; Van Duppen, B.; Marshall, O.P.; Rodriguez, F.; Torre, I.; Tomadin, A.; Polini, M.; Grigorenko, A.N. |
|
|
Title |
Nonlinear light mixing by graphene plasmons |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Nano letters |
Abbreviated Journal |
Nano Lett |
|
|
Volume |
18 |
Issue |
1 |
Pages |
282-287 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT) |
|
|
Abstract |
<script type='text/javascript'>document.write(unpmarked('Graphene is known to possess strong optical nonlinearity which turned out to be suitable for creation of efficient saturable absorbers in mode locked fiber lasers. Nonlinear response of graphene can be further enhanced by the presence of graphene plasmons. Here, we report a novel nonlinear effect observed in nanostructured graphene which comes about due to excitation of graphene plasmons. We experimentally detect and theoretically explain enhanced mixing of near-infrared and mid-infrared light in arrays of graphene nanoribbons. Strong compression of light by graphene plasmons implies that the described effect of light mixing is nonlocal in nature and orders of magnitude larger than the conventional local graphene nonlinearity. Both second and third order nonlinear effects were observed in our experiments with the recalculated third-order nonlinearity coefficient reaching values of 4.5 x 10(-6) esu. The suggested effect could be used in variety of applications including nonlinear light modulators, light multiplexers, light logic, and sensing devices.')); |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Washington |
Editor |
|
|
|
Language |
|
Wos |
000420000000039 |
Publication Date |
2017-12-11 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1530-6984 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
12.712 |
Times cited |
12 |
Open Access |
|
|
|
Notes |
; This work was supported by the European Union's Horizon 2020 research and innovation programme under Grant Agreement 696656 “GrapheneCorel”, Bluestone Global Technology, and Fondazione Istituto Italiano di Tecnologia. B.V.D. is supported by a postdoctoral fellowship granted by FWO-Vl and wishes to thank Scuola Normale Superiore (Pisa, Italy) for their hospitality during the final stages of preparation of this work. ; |
Approved |
Most recent IF: 12.712 |
|
|
Call Number |
UA @ lucian @ c:irua:148457UA @ admin @ c:irua:148457 |
Serial |
4887 |
|
Permanent link to this record |