toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mukhopadhyay, S.; Peeters, F.M. pdf  doi
openurl 
  Title The pinning effect in a parabolic quantum dot Type A1 Journal article
  Year 2002 Publication (down) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 14 Issue 34 Pages 8005-8010  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using improved Wigner-Brillouin perturbation theory we study resonant electron-phonon interaction in a semiconductor quantum dot. We predict pinning of the excited energy levels to the ground state level plus one optical phonon as a function of the strength of the confinement potential. This effect should be observable through optical spectroscopic measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000178051800022 Publication Date 2002-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 4 Open Access  
  Notes Approved Most recent IF: 2.649; 2002 IF: 1.775  
  Call Number UA @ lucian @ c:irua:102824 Serial 3591  
Permanent link to this record
 

 
Author Lajevardipour, A.; Neek-Amal, M.; Peeters, F.M. pdf  doi
openurl 
  Title Thermomechanical properties of graphene : valence force field model approach Type A1 Journal article
  Year 2012 Publication (down) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 24 Issue 17 Pages 175303-175303,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the valence force field model of Perebeinos and Tersoff (2009 Phys. Rev. B 79 241409(R)), different energy modes of suspended graphene subjected to tensile or compressive strain are studied. By carrying out Monte Carlo simulations it is found that: (i) only for small strains (vertical bar epsilon vertical bar (sic) 0.02) is the total energy symmetrical in the strain, while it behaves completely differently beyond this threshold; (ii) the important energy contributions in stretching experiments are stretching, angle bending, an out-of-plane term, and a term that provides repulsion against pi-pi misalignment; (iii) in compressing experiments the two latter terms increase rapidly, and beyond the buckling transition stretching and bending energies are found to be constant; (iv) from stretching-compressing simulations we calculated the Young's modulus at room temperature 350 +/- 3.15 N m(-1), which is in good agreement with experimental results (340 +/- 50 N m(-1)) and with ab initio results (322-353) N m(-1); (v) molar heat capacity is estimated to be 24.64 J mol(-1) K-1 which is comparable with the Dulong-Petit value, i. e. 24.94 J mol(-1) K-1, and is almost independent of the strain; (vi) nonlinear scaling properties are obtained from height-height correlations at finite temperature; (vii) the used valence force field model results in a temperature independent bending modulus for graphene, and (viii) the Gruneisen parameter is estimated to be 0.64.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000303499700012 Publication Date 2012-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 29 Open Access  
  Notes ; We acknowledge helpful comments by V Perebeinos, S Costamagna, A Fasolino and J H Los. This work was supported by the Flemish science foundation (FWO-Vl) and the Belgium Science Policy (IAP). ; Approved Most recent IF: 2.649; 2012 IF: 2.355  
  Call Number UA @ lucian @ c:irua:99123 Serial 3639  
Permanent link to this record
 

 
Author Schweigert, V.A.; Peeters, F.M. doi  openurl
  Title Time dependent properties of classical artificial atoms Type A1 Journal article
  Year 1998 Publication (down) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 10 Issue Pages 2417-2435  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000072951000006 Publication Date 2002-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 18 Open Access  
  Notes Approved Most recent IF: 2.649; 1998 IF: 1.645  
  Call Number UA @ lucian @ c:irua:24175 Serial 3665  
Permanent link to this record
 

 
Author Ferreira, W.P.; Farias, G.A.; Peeters, F.M. doi  openurl
  Title A two-component mixture of charged particles confined in a channel: melting Type A1 Journal article
  Year 2010 Publication (down) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 22 Issue 28 Pages 11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The melting of a binary system of charged particles confined in a quasi-one-dimensional parabolic channel is studied through Monte Carlo simulations. At zero temperature the particles are ordered in parallel chains. The melting is anisotropic and different melting temperatures are obtained according to the spatial direction, and the different kinds of particles present in the system. Melting is very different for the single-, two- and four-chain configurations. A temperature induced structural phase transition is found between two different four-chain ordered states which is absent in the mono-disperse system. In the mixed regime, where the two kinds of particles are only slightly different, melting is almost isotropic and a thermally induced homogeneous distribution of the distinct kinds of charges is observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000279257300023 Publication Date 2010-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 10 Open Access  
  Notes ; This work was supported by CNPq, the Flemish Science Foundation (FWO-V1) and the bilateral program between Flanders and Brazil. ; Approved Most recent IF: 2.649; 2010 IF: 2.332  
  Call Number UA @ lucian @ c:irua:83862 Serial 3771  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Kaun, C.C.; Peeters, F.M. pdf  doi
openurl 
  Title Ultra-small metallic grains : effect of statistical fluctuations of the chemical potential on superconducting correlations and vice versa Type A1 Journal article
  Year 2012 Publication (down) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 24 Issue 27 Pages 275701  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Superconducting correlations in an isolated metallic grain are governed by the interplay between two energy scales: the mean level spacing delta and the bulk pairing gap Delta(0), which are strongly influenced by the position of the chemical potential with respect to the closest single-electron level. In turn superconducting correlations affect the position of the chemical potential. Within the parity projected BCS model we investigate the probability distribution of the chemical potential in a superconducting grain with randomly distributed single-electron levels. Taking into account statistical fluctuations of the chemical potential due to the pairing interaction, we find that such fluctuations have a significant impact on the critical level spacing delta(c) at which the superconducting correlations cease: the critical ratio delta(c)/Delta(0) at which superconductivity disappears is found to be increased.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000305653100012 Publication Date 2012-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 9 Open Access  
  Notes ; This work was supported by the European Community under the Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR), the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF network INSTANS. MDC and AAS are grateful to A Vagov for stimulating discussions. ; Approved Most recent IF: 2.649; 2012 IF: 2.355  
  Call Number UA @ lucian @ c:irua:100280 Serial 3793  
Permanent link to this record
 

 
Author Pereira, J.M.; Peeters, F.M.; Costa Filho, R.N.; Farias, G.A. doi  openurl
  Title Valley polarization due to trigonal warping on tunneling electrons in graphene Type A1 Journal article
  Year 2009 Publication (down) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 21 Issue 4 Pages 045301,1-045301,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of trigonal warping on the transmission of electrons tunneling through potential barriers in graphene is investigated. We present calculations of the transmission coefficient for single and double barriers as a function of energy, incidence angle and barrier heights. The results show remarkable valley-dependent directional effects for barriers oriented parallel to the armchair or parallel to the zigzag direction. These results indicate that electrostatic gates can be used as valley filters in graphene-based devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000262354700004 Publication Date 2008-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 78 Open Access  
  Notes Approved Most recent IF: 2.649; 2009 IF: 1.964  
  Call Number UA @ lucian @ c:irua:75736 Serial 3834  
Permanent link to this record
 

 
Author Rakhimov, K.Y.; Chaves, A.; Farias, G.A.; Peeters, F.M. pdf  doi
openurl 
  Title Wavepacket scattering of Dirac and Schrödinger particles on potential and magnetic barriers Type A1 Journal article
  Year 2011 Publication (down) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 23 Issue 27 Pages 275801,1-275801,16  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the dynamics of a charged particle moving in a graphene layer and in a two-dimensional electron gas, where it obeys the Dirac and the Schrödinger equations, respectively. The charge carriers are described as Gaussian wavepackets. The dynamics of the wavepackets is studied numerically by solving both quantum-mechanical and relativistic equations of motion. The scattering of such wavepackets by step-like magnetic and potential barriers is analysed for different values of wavepacket energy and width. We find: (1) that the average position of the wavepacket does not coincide with the classical trajectory, and (2) that, for slanted incidence, the path of the centre of mass of the wavepacket does not have to penetrate the barrier during the scattering process. Trembling motion of the charged particle in graphene is observed in the absence of an external magnetic field and can be enhanced by a substrate-induced mass term.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000291993600009 Publication Date 2011-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 32 Open Access  
  Notes ; Discussions with A Matulis are gratefully acknowledged. KR is beneficiary of a mobility grant from the Belgian Federal Science Policy Office, co-funded by the European Commission and was supported in part by a grant of the Third World Academy of Sciences (ref. 09-188 RG/PHYS/AS-I). In addition, this work was financially supported by CNPq, under contract NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES, the Bilateral programme between Flanders and Brazil, the joint project CNPq-FWO, the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 2.649; 2011 IF: 2.546  
  Call Number UA @ lucian @ c:irua:90880 Serial 3908  
Permanent link to this record
 

 
Author Sivek, J.; Sahin, H.; Partoens, B.; Peeters, F.M. pdf  doi
openurl 
  Title Giant magnetic anisotropy in doped single layer molybdenum disulfide and fluorographene Type A1 Journal article
  Year 2016 Publication (down) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 28 Issue 28 Pages 195301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Stable monolayer materials based on existing, well known and stable two-dimensional crystal fluorographene and molybdenum disulfide are predicted to exhibit a huge magnetocrystalline anisotropy when functionalized with adsorbed transition metal atoms at vacant sides. Ab initio calculations within the density-functional theory formalism were performed to investigate the adsorption of the transitional metals in a single S (or F) vacancy of monolayer molybdenum disulfide (or fluorographene). We found strong bonding of the transitional metal atoms to the vacant sites with binding energies ranging from 2.5 to 5.2 eV. Our calculations revealed that these systems with adsorbed metal atoms exhibit a magnetic anisotropy, specifically the structures including Os and Ir show a giant magnetocrystalline anisotropy energy of 31-101 meV. Our results demonstrate the possibility of obtaining stable monolayer materials with huge magnetocrystalline anisotropy based on preexisting, well known and stable two-dimensional crystals: fluorographene and molybdenum disulfide. We believe that the results obtained here are useful not only for deeper understanding of the origin of magnetocrystalline anisotropy but also for the design of monolayer optoelectronic devices with novel functionalities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000374394700007 Publication Date 2016-04-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 7 Open Access  
  Notes Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:133611 Serial 4185  
Permanent link to this record
 

 
Author Cukaric, N.A.; Partoens, B.; Tadic, M.Z.; Arsoski, V.V.; Peeters, F.M. pdf  doi
openurl 
  Title The 30-band k . p theory of valley splitting in silicon thin layers Type A1 Journal article
  Year 2016 Publication (down) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 28 Issue 28 Pages 195303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The valley splitting of the conduction-band states in a thin silicon-on-insulator layer is investigated using the 30-band k . p theory. The system composed of a few nm thick Si layer embedded within thick SiO2 layers is analyzed. The valley split states are found to cross periodically with increasing quantum well width, and therefore the energy splitting is an oscillatory function of the quantum well width, with period determined by the wave vector K-0 of the conduction band minimum. Because the valley split states are classified by parity, the optical transition between the ground hole state and one of those valley split conduction band states is forbidden. The oscillations in the valley splitting energy decrease with electric field and with smoothing of the composition profile between the well and the barrier by diffusion of oxygen from the SiO2 layers to the Si quantum well. Such a smoothing also leads to a decrease of the interband transition matrix elements. The obtained results are well parametrized by the effective two-valley model, but are found to disagree from previous 30-band calculations. This discrepancy could be traced back to the fact that the basis for the numerical solution of the eigenproblem must be restricted to the first Brillouin zone in order to obtain quantitatively correct results for the valley splitting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000374394700009 Publication Date 2016-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.649 Times cited Open Access  
  Notes ; This work was supported by the Ministry of Education, Science, and Technological Development of Serbia, the Flemish fund for Scientific Research (FWO-Vl), and the Methusalem programme of the Flemish government. ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:133610 Serial 4261  
Permanent link to this record
 

 
Author Milovanovic, S.P.; Peeters, F.M. doi  openurl
  Title Strained graphene Hall bar Type A1 Journal article
  Year 2017 Publication (down) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 29 Issue 29 Pages 075601  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effects of strain, induced by a Gaussian bump, on the magnetic field dependent transport properties of a graphene Hall bar are investigated. The numerical simulations are performed using both classical and quantum mechanical transport theory and we found that both approaches exhibit similar characteristic features. The effects of the Gaussian bump are manifested by a decrease of the bend resistance, RB, around zero-magnetic field and the occurrence of side-peaks in RB. These features are explained as a consequence of bump-assisted scattering of electrons towards different terminals of the Hall bar. Using these features we are able to give an estimate of the size of the bump. Additional oscillations in RB are found in the quantum description that are due to the population/depopulation of Landau levels. The bump has a minor influence on the Hall resistance even for very high values of the pseudo-magnetic field. When the bump is placed outside the center of the Hall bar valley polarized electrons can be collected in the leads.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000391584900001 Publication Date 2016-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 12 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN. ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:140381 Serial 4464  
Permanent link to this record
 

 
Author Peelaers, H.; Durgun, E.; Partoens, B.; Bilc, D.I.; Ghosez, P.; Van de Walle, C.G.; Peeters, F.M. pdf  doi
openurl 
  Title Ab initio study of hydrogenic effective mass impurities in Si nanowires Type A1 Journal article
  Year 2017 Publication (down) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 29 Issue 29 Pages 095303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of B and P dopants on the band structure of Si nanowires is studied using electronic structure calculations based on density functional theory. At low concentrations a dispersionless band is formed, clearly distinguishable from the valence and conduction bands. Although this band is evidently induced by the dopant impurity, it turns out to have purely Si character. These results can be rigorously analyzed in the framework of effective mass theory. In the process we resolve some common misconceptions about the physics of hydrogenic shallow impurities, which can be more clearly elucidated in the case of nanowires than would be possible for bulk Si. We also show the importance of correctly describing the effect of dielectric confinement, which is not included in traditional electronic structure calculations, by comparing the obtained results with those of G(0)W(0) calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000395103900002 Publication Date 2017-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 1 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the NSF MRSEC Program under award No. DMR11-21053, and the Army Research Office (W911NF-13-1-0380). DIB acknowledges financial support from the grant of the Romanian National Authority for Scientific Research, CNCS UEFISCDI, project No. PN-II-RU-TE-2011-3-0085. Ph G acknowledges a research professorship of the Francqui foundation and financial support of the ARC project AIMED and FNRS project HiT4FiT. This research used resources of the Ceci HPC Center funded by F R S-FNRS (Grant No. 2.5020.1) and of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:142447 Serial 4584  
Permanent link to this record
 

 
Author Abdullah, H.M.; Van Duppen, B.; Zarenia, M.; Bahlouli, H.; Peeters, F.M. pdf  doi
openurl 
  Title Quantum transport across van der Waals domain walls in bilayer graphene Type A1 Journal article
  Year 2017 Publication (down) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 29 Issue 42 Pages 425303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Bilayer graphene can exhibit deformations such that the two graphene sheets are locally detached from each other resulting in a structure consisting of domains with different van der Waals inter-layer coupling. Here we investigate how the presence of these domains affects the transport properties of bilayer graphene. We derive analytical expressions for the transmission probability, and the corresponding conductance, across walls separating different inter-layer coupling domains. We find that the transmission can exhibit a valley-dependent layer asymmetry and that the domain walls have a considerable effect on the chiral tunnelling properties of the charge carriers. We show that transport measurements allow one to obtain the strength with which the two layers are coupled. We perform numerical calculations for systems with two domain walls and find that the availability of multiple transport channels in bilayer graphene significantly modifies the conductance dependence on inter-layer potential asymmetry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000410958400001 Publication Date 2017-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 15 Open Access  
  Notes ; HMA and HB acknowledge the Saudi Center for Theoretical Physics (SCTP) for their generous support and the support of KFUPM under physics research group projects RG1502-1 and RG1502-2. This work is supported by the Flemish Science Foundation (FWO-VI) by a post-doctoral fellowship (BVD). ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:146664 Serial 4793  
Permanent link to this record
 

 
Author Jakovljevic, D.Z.; Grujic, M.M.; Tadic, M.Z.; Peeters, F.M. pdf  url
doi  openurl
  Title Helical edge states in silicene and germanene nanorings in perpendicular magnetic field Type A1 Journal article
  Year 2018 Publication (down) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 30 Issue 3 Pages 035301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Due to nonzero intrinsic spin-orbit interaction in buckled honeycomb crystal structures, silicene and germanene exhibit interesting topological properties, and are therefore candidates for the realization of the quantum spin Hall effect. We employ the Kane-Mele model to investigate the electron states in hexagonal silicene and germanene nanorings having either zigzag or armchair edges in the presence of a perpendicular magnetic field. We present results for the energy spectra as function of magnetic field, the electron density of the spin-up and spin-down states in the ring plane, and the calculation of the probability current density. The quantum spin Hall phase is found at the edges between the nontrivial topological phase in silicene and germanene and vacuum. We demonstrate that the helical edge states in zigzag silicene and germanene nanorings can be qualitatively well understood by means of classical magnetic moments. However, this is not the case for comparable-sized armchair nanorings, where the eigenfunctions spread throughout the ring. Finally, we note that the energy spectra of silicene and germanene nanorings are similar and that the differences between the two are mainly related to the difference in magnitude of the spin-orbit coupling.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000418354400001 Publication Date 2017-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 4 Open Access  
  Notes ; This work was supported by Erasmus+ and the Serbian Ministry of Education, Science and Technological Development (Project No. III45003). ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:148426UA @ admin @ c:irua:148426 Serial 4878  
Permanent link to this record
 

 
Author Mei, H.; Xu, W.; Wang, C.; Yuan, H.; Zhang, C.; Ding, L.; Zhang, J.; Deng, C.; Wang, Y.; Peeters, F.M. pdf  url
doi  openurl
  Title Terahertz magneto-optical properties of bi- and tri-layer graphene Type A1 Journal article
  Year 2018 Publication (down) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 30 Issue 17 Pages 175701  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magneto-optical (MO) properties of bi- and tri-layer graphene are investigated utilizing terahertz time-domain spectroscopy (THz TDS) in the presence of a strong magnetic field at room-temperature. In the Faraday configuration and applying optical polarization measurements, we measure the real and imaginary parts of the longitudinal and transverse MO conductivities of different graphene samples. The obtained experimental data fits very well with the classical MO Drude formula. Thus, we are able to obtain the key sample and material parameters of bi- and tri-layer graphene, such as the electron effective mass, the electronic relaxation time and the electron density. It is found that in high magnetic fields the electronic relaxation time tau for bi- and tri-layer graphene increases with magnetic field B roughly in a form tau similar to B-2. Most importantly, we obtain the electron effective mass for bi- and tri-layer graphene at room-temperature under non-resonant conditions. This work shows how the advanced THz MO techniques can be applied for the investigation into fundamental physics properties of atomically thin 2D electronic systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000429329500001 Publication Date 2018-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 11 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (11574319, 11304317, 11304272), the Ministry of Science and Technology of China (2011YQ130018), the Center of Science and Technology of Hefei Academy of Science, the Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:150715UA @ admin @ c:irua:150715 Serial 4983  
Permanent link to this record
 

 
Author Simchi, H.; Simchi, M.; Fardmanesh, M.; Peeters, F.M. pdf  url
doi  openurl
  Title Phase transition and field effect topological quantum transistor made of monolayer MoS2 Type A1 Journal article
  Year 2018 Publication (down) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 30 Issue 23 Pages 235303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study topological phase transitions and topological quantum field effect transistor in monolayer molybdenum disulfide (MoS2) using a two-band Hamiltonian model. Without considering the quadratic (q(2)) diagonal term in the Hamiltonian, we show that the phase diagram includes quantum anomalous Hall effect, quantum spin Hall effect, and spin quantum anomalous Hall effect regions such that the topological Kirchhoff law is satisfied in the plane. By considering the q(2) diagonal term and including one valley, it is shown that MoS2 has a non-trivial topology, and the valley Chern number is non-zero for each spin. We show that the wave function is (is not) localized at the edges when the q(2) diagonal term is added (deleted) to (from) the spin-valley Dirac mass equation. We calculate the quantum conductance of zigzag MoS2 nanoribbons by using the nonequilibrium Green function method and show how this device works as a field effect topological quantum transistor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000432821600001 Publication Date 2018-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:151457UA @ admin @ c:irua:151457 Serial 5035  
Permanent link to this record
 

 
Author Abdullah, H.M.; Bahlouli, H.; Peeters, F.M.; Van Duppen, B. pdf  doi
openurl 
  Title Confined states in graphene quantum blisters Type A1 Journal article
  Year 2018 Publication (down) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 30 Issue 38 Pages 385301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Bilayer graphene samples may exhibit regions where the two layers are locally delaminated forming a so-called quanttun blister in the graphene sheet. Electron and hole states can be confined in this graphene quantum blisters (GQB) by applying a global electrostatic bias. We scrutinize the electronic properties of these confined states under the variation of interlayer bias, coupling, and blister's size. The spectra display strong anti-crossings due to the coupling of the confined states on upper and lower layers inside the blister. These spectra are layer localized where the respective confined states reside on either layer or equally distributed. For finite angular momentum, this layer localization can be at the edge of the blister and corresponds to degenerate modes of opposite momenta. Furthermore, the energy levels in GQB exhibit electron-hole symmetry that is sensitive to the electrostatic bias. Finally, we demonstrate that confinement in GQB persists even in the presence of a variation in the interlayer coupling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000443135000001 Publication Date 2018-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 6 Open Access  
  Notes ; HMA and HB acknowledge the Saudi Center for Theoretical Physics (SCTP) for their generous support and the support of KFUPM under physics research group projects RG1502-1 and RG1502-2. This work is supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (BVD). ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:153620UA @ admin @ c:irua:153620 Serial 5086  
Permanent link to this record
 

 
Author Kong, X.; Li, L.; Peeters, F.M. pdf  doi
openurl 
  Title Graphene-based heterostructures with moire superlattice that preserve the Dirac cone: a first-principles study Type A1 Journal article
  Year 2019 Publication (down) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 31 Issue 25 Pages 255302  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In van der Waals heterostructures consisting of graphene and a substrate, lattice mismatch often leads to a moire pattern with a huge supercell, preventing its treatment within first- principles calculations. Previous theoretical works considered mostly simple stacking models such as AB, AA with straining the lattice of graphene to match that of the substrate. Here, we propose a moire superlattice build from graphene and porous graphene or graphyne like monolayers, having a lower interlayer binding energy, needing little strain in order to match the lattices. In contrast to the results from the simple stacking models, the present ab initio calculations for the moire superlattices show different properties in lattice structure, energy, and band structures. For example, the Dirac cone at the K point is preserved and a linear energy dispersion near the Fermi level is obtained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000464184300001 Publication Date 2019-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 5 Open Access  
  Notes ; This work is supported by the Collaborative Innovation Center of Quantum Matter, the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl) and the FLAG-ERA project TRANS-2D-TMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government-department EWI, and the National Supercomputing Center in Tianjin, funded by the Collaborative Innovation Center of Quantum Matter. ; Approved Most recent IF: 2.649  
  Call Number UA @ admin @ c:irua:159314 Serial 5215  
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Lopez-Perez, W.; Gonzalez-Hernandez, R.; Rodriguez, J.A.; Milošević, M.V.; Peeters, F.M. pdf  url
doi  openurl
  Title Tunable 2D-gallium arsenide and graphene bandgaps in a graphene/GaAs heterostructure : an ab initio study Type A1 Journal article
  Year 2019 Publication (down) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 31 Issue 26 Pages 265502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The bandgap behavior of 2D-GaAs and graphene have been investigated with van der Waals heterostructured into a yet unexplored graphene/GaAs bilayer, under both uniaxial stress along c axis and different planar strain distributions. The 2D-GaAs bandgap nature changes from Gamma-K indirect in isolated monolayer to Gamma-Gamma direct in graphene/GaAs bilayer. In the latter, graphene exhibits a bandgap of 5 meV. The uniaxial stress strongly affects the graphene electronic bandgap, while symmetric in-plane strain does not open the bandgap in graphene. Nevertheless, it induces remarkable changes on the GaAs bandgap-width around the Fermi level. However, when applying asymmetric in-plane strain to graphene/GaAs, the graphene sublattice symmetry is broken, and the graphene bandgap is open at the Fermi level to a maximum width of 814 meV. This value is much higher than that reported for just graphene under asymmetric strain. The Gamma-Gamma direct bandgap of GaAs remains unchanged in graphene/ GaAs under different types of applied strain. The analyses of phonon dispersion and the elastic constants yield the dynamical and mechanical stability of the graphene/GaAs system, respectively. The calculated mechanical properties for bilayer heterostructure are better than those of their constituent monolayers. This finding, together with the tunable graphene bandgap not only by the strength but also by the direction of the strain, enhance the potential for strain engineering of ultrathin group-III-V electronic devices hybridized by graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465887100001 Publication Date 2019-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 10 Open Access  
  Notes ; This work has been carried out with the financial support of Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under Convocatoria 712-Convocatoria para proyectos de investigacion en Ciencias Basicas, ano 2015, Cod: 121571250192, Contrato 110-216; and the partial support of DGAPA-UNAM project IN114817-3. The authors gratefully acknowledge the support from the High Performance Computing core facility CalcUA and the TOPBOF project at the University of Antwerp, Belgium; DGTIC-UNAM under project LANCAD-UNAM-DGTIC-150, and the computing time granted on the supercomputer Mogon at Johannes Gutenberg University Mainz (hpc.uni-mainz.de). ; Approved Most recent IF: 2.649  
  Call Number UA @ admin @ c:irua:160216 Serial 5236  
Permanent link to this record
 

 
Author Rivera-Julio, J.; Gonzalez-Garcia, A.; Gonzalez-Hernandez, R.; Lopez-Perez, W.; Peeters, F.M.; Hernandez-Nieves, A.D. pdf  doi
openurl 
  Title Vibrational properties of germanane and fluorinated germanene in the chair, boat, and zigzag-line configurations Type A1 Journal article
  Year 2019 Publication (down) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 31 Issue 7 Pages 075301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic and vibrational properties of germanane and fluorinated germanene are studied within density functional theory (DFT) and density functional perturbation theory frameworks. Different structural configurations of germanane and fluorinated germanene are investigated. The energy difference between the different configurations are consistently smaller than the energy of thermal fluctuations for all the analyzed DFT functionals LDA, GGA, and hybrid functionals, which implies that, in principle, it is possible to find these different configurations in different regions of the sample as minority phases or local defects. We calculate the Raman and infrared spectra for these configurations by using ab initio calculations and compare it with available experimental spectra for germanane. Our results show the presence of minority phases compatible with the configurations analyzed in this work. As these low energy configurations are metastable the present work shows that the synthesis of these energy competing phases is feasible by selectively changing the synthesis conditions, which is an opportunity to expand in this way the availability of new two-dimensional compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000454925400001 Publication Date 2018-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 9 Open Access  
  Notes ; We acknowledge financial support from PICT-2016-1087 from ANPCyT, PIP 2014-2016 00402 from CONICET and the Argentina-Belgium colaboration program SECYT-FWO FW/ 14/04. This work was also supported by Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under Convocatoria 712-Convocatoria para proyectos de investigacion en ciencias basicas ano 2015, Cod: 121571250192, Contrato 110-216. ; Approved Most recent IF: 2.649  
  Call Number UA @ admin @ c:irua:156708 Serial 5238  
Permanent link to this record
 

 
Author da Costa, D.R.; Chaves, A.; Farias, G.A.; Peeters, F.M. pdf  doi
openurl 
  Title Valley filtering in graphene due to substrate-induced mass potential Type A1 Journal article
  Year 2017 Publication (down) Journal of physics : condensed matter Abbreviated Journal  
  Volume 29 Issue 21 Pages 215502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The interaction of monolayer graphene with specific substrates may break its sublattice symmetry and results in unidirectional chiral states with opposite group velocities in the different Dirac cones (Zarenia et al 2012 Phys. Rev. B 86 085451). Taking advantage of this feature, we propose a valley filter based on a transversal mass kink for low energy electrons in graphene, which is obtained by assuming a defect region in the substrate that provides a change in the sign of the substrate-induced mass and thus creates a non-biased channel, perpendicular to the kink, for electron motion. By solving the time-dependent Schrodinger equation for the tight-binding Hamiltonian, we investigate the time evolution of a Gaussian wave packet propagating through such a system and obtain the transport properties of this graphene-based substrate-induced quantum point contact. Our results demonstrate that efficient valley filtering can be obtained, provided: (i) the electron energy is sufficiently low, i.e. with electrons belonging mostly to the lowest sub-band of the channel, and (ii) the channel length (width) is sufficiently long (narrow). Moreover, even though the transmission probabilities for each valley are significantly affected by impurities and defects in the channel region, the valley polarization in this system is shown to be robust against their presence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000400092700002 Publication Date 2017-04-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 15 Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152636 Serial 8730  
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M.; Volodin, A.; van Haesendonck, C. pdf  doi
openurl 
  Title The work function of few-layer graphene Type A1 Journal article
  Year 2017 Publication (down) Journal of physics : condensed matter Abbreviated Journal  
  Volume 29 Issue 3 Pages 035003  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A theoretical and experimental study of the work function of few-layer graphene is reported. The influence of the number of layers on the work function is investigated in the presence of a substrate, a molecular dipole layer, and combinations of the two. The work function of few-layer graphene is almost independent of the number of layers with only a difference between monolayer and multilayer graphene of about 60 meV. In the presence of a charge-donating substrate the charge distribution is found to decay exponentially away from the substrate and this is directly reflected in the work function of few-layer graphene. A dipole layer changes the work function only when placed in between the substrate and few-layer graphene through a change of the charge transfer between the two.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000425250600002 Publication Date 2016-11-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 61 Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:164938 Serial 8760  
Permanent link to this record
 

 
Author Ghorbanfekr, H.; Behler, J.; Peeters, F.M. pdf  doi
openurl 
  Title Insights into water permeation through hBN nanocapillaries by ab initio machine learning molecular dynamics simulations Type A1 Journal article
  Year 2020 Publication (down) Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett  
  Volume 11 Issue 17 Pages 7363-7370  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Water permeation between stacked layers of hBN sheets forming 2D nanochannels is investigated using large-scale ab initio-quality molecular dynamics simulations. A high-dimensional neural network potential trained on density-functional theory calculations is employed. We simulate water in van der Waals nanocapillaries and study the impact of nanometric confinement on the structure and dynamics of water using both equilibrium and nonequilibrium methods. At an interlayer distance of 10.2 A confinement induces a first-order phase transition resulting in a well-defined AA-stacked bilayer of hexagonal ice. In contrast, for h < 9 A, the 2D water monolayer consists of a mixture of different locally ordered patterns of squares, pentagons, and hexagons. We found a significant change in the transport properties of confined water, particularly for monolayer water where the water-solid friction coefficient decreases to half and the diffusion coefficient increases by a factor of 4 as compared to bulk water. Accordingly, the slip-velocity is found to increase under confinement and we found that the overall permeation is dominated by monolayer water adjacent to the hBN membranes at extreme confinements. We conclude that monolayer water in addition to bilayer ice has a major contribution to water transport through 2D nanochannels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000569375400061 Publication Date 2020-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited 35 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program (Grant Number: G099219N). The authors thank Arham Amouei for the helpful discussion regarding MD simulations. ; Approved Most recent IF: 5.7; 2020 IF: 9.353  
  Call Number UA @ admin @ c:irua:171996 Serial 6546  
Permanent link to this record
 

 
Author Siriwardane, E.M.D.; Demiroglu, I.; Sevik, C.; Peeters, F.M.; Çakir, D. pdf  url
doi  openurl
  Title Assessment of sulfur-functionalized MXenes for li-ion battery applications Type A1 Journal article
  Year 2020 Publication (down) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 39 Pages 21293-21304  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The surface termination of MXenes greatly determines the electrochemical properties and ion kinetics on their surfaces. So far, hydroxyl-, oxygen-, and fluorine-terminated MXenes have been widely studied for energy storage applications. Recently, sulfur-functionalized MXene structures, which possess low diffusion barriers, have been proposed as candidate materials to enhance battery performance. We performed first-principles calculations on the structural, stability, electrochemical, and ion dynamic properties of Li-adsorbed sulfur-functionalized groups 3B, 4B, 5B, and 6B transition-metal (M)-based MXenes (i.e., M2CS2 with M = Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W). We performed phonon calculations, which indicated that all of the above M2CS2 MXenes, except for Sc, are dynamically stable at T = 0 K. The ground-state structure of each M2CS2 monolayer depends on the type of M atom. For instance, while sulfur prefers to sit at the FCC site on Ti2CS2, it occupies the HCP site of Cr-based MXene. We determined the Li adsorption configurations at different concentrations using the cluster expansion method. The highest maximum open-circuit voltages were computed for the group 4B element (i.e., Ti, Zr, and Hf)-based M2CS2, which are larger than 2.1 V, while their average voltages are approximately 1 V. The maximum voltage for the group 6B element (i.e., Cr, Mo, W)-based M2CS2 is less than 1 V, and the average voltage is less than 0.71 V. We found that S functionalization is helpful for capacity improvements over the O-terminated MXenes. In this respect, the computed storage gravimetric capacity may reach up to 417.4 mAh/g for Ti2CS2 and 404.5 mAh/g for V2CS2. Ta-, Cr-, Mo-, and W-based M2CS2 MXenes show very low capacities, which are less than 100 mAh/g. The Li surface diffusion energy barriers for all of the considered MXenes are less than 0.22 eV, which is favorable for high charging and discharging rates. Finally, ab initio molecular dynamic simulations performed at 400 K and bond-length analysis with respect to Li concentration verify that selected promising systems are robust against thermally induced perturbations that may induce structural transformations or distortions and undesirable Li release.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000577151900008 Publication Date 2020-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 24 Open Access  
  Notes ; Computational resources were provided by the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. This work was supported, in part, by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract no. 118F512 and the Air Force Office of Scientific Research under award no. FA9550-19-1-7048. This work was performed in part at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. This work was supported, in part, by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract no. 118C026. ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number UA @ admin @ c:irua:172693 Serial 6452  
Permanent link to this record
 

 
Author Akbali, B.; Yagmurcukardes, M.; Peeters, F.M.; Lin, H.-Y.; Lin, T.-Y.; Chen, W.-H.; Maher, S.; Chen, T.-Y.; Huang, C.-H. pdf  doi
openurl 
  Title Determining the molecular orientation on the metal nanoparticle surface through surface-enhanced Raman spectroscopy and density functional theory simulations Type A1 Journal article
  Year 2021 Publication (down) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 29 Pages 16289-16295  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We report here the efficacy of surface-enhanced Raman spectroscopy (SERS) measurements as a probe for molecular orientation. 4-Aminobenzoic acid (PABA) on a surface consisting of silver (Ag) nanoparticles (NPs) is investigated. We find that the orientation of the PABA molecule on the SERS substrate is estimated based on the relative change in the magnitude of the C-H stretching bands on the SERS substrate, and it is found that the molecule assumes a horizontal orientation on the Ag-NP surface. The strong molecule-metal interaction is determined by an abnormal enhanced SERS band appearing at 980 cm(-1), and the peak is assigned to an out-of-plane amine vibrational mode, which is supported by our ab initio calculations. DFT-based Raman activity calculations corroborate the SERS results, revealing that (i) the PABA molecule attaches to the surface of Ag-NPs with its alpha dimers rather than single-molecule binding and (ii) the molecule preserves its alpha dimers in an aqueous environment. Our results demonstrate that SERS can be used to gain deeper insights into the molecular orientation on metal nanoparticle surfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000680445800055 Publication Date 2021-07-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 9 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:180455 Serial 6978  
Permanent link to this record
 

 
Author Ding, F.; Li, B.; Akopian, N.; Perinetti, U.; Chen, Y.H.; Peeters, F.M.; Rastelli, A.; Zwiller, V.; Schmidt, O.G. doi  openurl
  Title Single neutral excitons confined in AsBr3 in situ etched InGaAs quantum rings Type A1 Journal article
  Year 2011 Publication (down) Journal of nanoelectronics and optoelectronics Abbreviated Journal J Nanoelectron Optoe  
  Volume 6 Issue 1 Pages 51-57  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We observe the evolution of single self-assembled semiconductor quantum dots into quantum rings during AsBr3 in situ etching. The direct three-dimensional imaging of In(Ga)As nanostructures embedded in GaAs matrix is demonstrated by selective wet chemical etching combined with atomic force microscopy. Single neutral excitons confined in these quantum rings are studied by magneto-photoluminescence. Oscillations in the exciton radiative recombination energy and in the emission intensity are observed under an applied magnetic field. Further, we demonstrate that the period of the oscillations can be tuned by a gate potential that modifies the exciton confinement. The experimental results, combined with calculations, indicate that the exciton Aharonov-Bohm effect may account for the observed effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000290692200005 Publication Date 2011-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1555-130X;1555-1318; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.497 Times cited 3 Open Access  
  Notes ; We acknowledge L. P. Kouwenhoven and Z. G. Wang for support, C. C. Bof Bufon, C. Deneke, V. Fomin, A. Govorov, S. Kiravittaya, and Wen-Hao Chang for their help and discussions. We are grateful for the financial support of NWO (VIDI), the CAS-MPG programm, the DFG (FOR730), BMBF (No. 01BM459), NSFC China (60625402), and Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 0.497; 2011 IF: 0.556  
  Call Number UA @ lucian @ c:irua:90187 Serial 3025  
Permanent link to this record
 

 
Author Ludu, A.; Van Deun, J.; Milošević, M.V.; Cuyt, A.; Peeters, F.M. pdf  doi
openurl 
  Title Analytic treatment of vortex states in cylindrical superconductors in applied axial magnetic field Type A1 Journal article
  Year 2010 Publication (down) Journal of mathematical physics Abbreviated Journal J Math Phys  
  Volume 51 Issue 8 Pages 082903,1-082903,29  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We solve the linear GinzburgLandau (GL) equation in the presence of a uniform magnetic field with cylindrical symmetry and we find analytic expressions for the eigenfunctions in terms of the confluent hypergeometric functions. The discrete spectrum results from an implicit equation associated to the boundary conditions and it is resolved in analytic form using the continued fractions formalism. We study the dependence of the spectrum and the eigenfunctions on the sample size and the surface conditions for solid and hollow cylindrical superconductors. Finally, the solutions of the nonlinear GL formalism are constructed as expansions in the linear GL eigenfunction basis and selected by minimization of the free energy. We present examples of vortex states and their energies for different samples in enhancing/suppressing superconductivity surroundings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000281905000026 Publication Date 2010-08-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2488; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.077 Times cited 10 Open Access  
  Notes ; ; Approved Most recent IF: 1.077; 2010 IF: 1.291  
  Call Number UA @ lucian @ c:irua:84880 Serial 106  
Permanent link to this record
 

 
Author Goncalves, W.C.; Sardella, E.; Becerra, V.F.; Milošević, M.V.; Peeters, F.M. doi  openurl
  Title Numerical solution of the time dependent Ginzburg-Landau equations for mixed (d plus s)-wave superconductors Type A1 Journal article
  Year 2014 Publication (down) Journal of mathematical physics Abbreviated Journal J Math Phys  
  Volume 55 Issue 4 Pages 041501  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The time-dependent Ginzburg-Landau formalism for (d + s)-wave superconductors and their representation using auxiliary fields is investigated. By using the link variable method, we then develop suitable discretization of these equations. Numerical simulations are carried out for a mesoscopic superconductor in a homogeneous perpendicular magnetic field which revealed peculiar vortex states. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000336084100001 Publication Date 2014-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2488;1089-7658; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.077 Times cited 6 Open Access  
  Notes ; We thank the Brazilian Agency FAPESP and Flemish Science Foundation (FSF) (FWO-Vlaanderen) for financial support. M. V. M. acknowledges support from the CAPES-PVE program. ; Approved Most recent IF: 1.077; 2014 IF: 1.243  
  Call Number UA @ lucian @ c:irua:117728 Serial 2407  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Cabral, L.R.E.; Peeters, F.M. pdf  doi
openurl 
  Title Surface barrier for flux entry and exit in mesoscopic superconducting systems Type A1 Journal article
  Year 2005 Publication (down) Journal of mathematical physics Abbreviated Journal J Math Phys  
  Volume 46 Issue 9 Pages 095105  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The energy barrier which has to be overcome for a single vortex to enter or exit the sample is studied for thin superconducting disks, rings, and squares using the nonlinear Ginzburg-Landau theory. The shape and the height of the nucleation barrier is investigated for different sample radii and thicknesses and for different values of the Ginzburg-Landau parameter kappa. It is shown that the London theory considerably overestimates (underestimates) the energy barrier for vortex expulsion (penetration). (c) 2005 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000232206700005 Publication Date 2005-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2488; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.077 Times cited 18 Open Access  
  Notes Approved Most recent IF: 1.077; 2005 IF: 1.192  
  Call Number UA @ lucian @ c:irua:103142 Serial 3393  
Permanent link to this record
 

 
Author Çakir, D.; Sevik, C.; Peeters, F.M. doi  openurl
  Title Engineering electronic properties of metal-MoSe2 interfaces using self-assembled monolayers Type A1 Journal article
  Year 2014 Publication (down) Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 2 Issue 46 Pages 9842-9849  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Metallic contacts are critical components of electronic devices and the presence of a large Schottky barrier is detrimental for an optimal device operation. Here, we show by using first-principles calculations that a self-assembled monolayer (SAM) of polar molecules between the metal electrode and MoSe2 monolayer is able to convert the Schottky contact into an almost Ohmic contact. We choose -CH3 and -CF3 terminated short-chain alkylthiolate (i.e. SCH3 and fluorinated alkylthiolates (SCF3)) based SAMs to test our approach. We consider both high (Au) and low (Sc) work function metals in order to thoroughly elucidate the role of the metal work function. In the case of Sc, the Fermi level even moves into the conduction band of the MoSe2 monolayer upon SAM insertion between the metal surface and the MoSe2 monolayer, and hence possibly switches the contact type from Schottky to Ohmic. The usual Fermi level pinning at the metal-transition metal dichalcogenide (TMD) contact is shown to be completely removed upon the deposition of a SAM. Systematic analysis indicates that the work function of the metal surface and the energy level alignment between the metal electrode and the TMD monolayer can be tuned significantly by using SAMs as a buffer layer. These results clearly indicate the vast potential of the proposed interface engineering to modify the physical and chemical properties of MoSe2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344998700007 Publication Date 2014-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 22 Open Access  
  Notes ; Part of this work is supported by the Flemish Science Foundation (FWO-VI) and the Methusalem foundation of the Flemish Government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). D. C. is supported by a FWO Pegasus-short Marie Curie Fellowship. C. S. acknowledges the support from Scientific and Technological Research Council of Turkey (TUBITAK 113F096), Anadolu University (BAP-1306F281, -1404F158) and Turkish Academy of Science (TUBA). ; Approved Most recent IF: 5.256; 2014 IF: 4.696  
  Call Number UA @ lucian @ c:irua:122157 Serial 1046  
Permanent link to this record
 

 
Author Pandey, T.; Peeters, F.M.; Milošević, M.V. doi  openurl
  Title High thermoelectric figure of merit in p-type Mg₃Si₂Te₆: role of multi-valley bands and high anharmonicity Type A1 Journal article
  Year 2023 Publication (down) Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal  
  Volume 11 Issue 33 Pages 11185-11194  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Silicon-based materials are attractive for thermoelectric applications due to their thermal stability, chemical inertness, and natural abundance of silicon. Here, using a combination of first-principles and Boltzmann transport calculations we report the thermoelectric properties of the recently synthesized compound Mg3Si2Te6. Our analysis reveals that Mg3Si2Te6 is a direct bandgap semiconductor with a bandgap of 1.6 eV. The combination of heavy and light valence bands, along with a high valley degeneracy, results in a large power factor under p-type doping. We also find that Mg is weakly bonded both within and between the layers, leading to low phonon group velocities. The vibrations of the Mg atoms are localized and make a significant contribution to phonon-phonon scattering. This high anharmonicity, coupled with low phonon group velocity, results in a low lattice thermal conductivity of & kappa;(l) = 0.5 W m(-1) K-1 at room temperature, along the cross-plane direction. Combining excellent electronic transport properties and low & kappa;(l), p-type Mg3Si2Te6 achieves figure-of-merit (zT) values greater than 1 at temperatures above 600 K. Specifically, a zT of 2.0 is found at 900 K along the cross-plane direction. Our findings highlight the importance of structural complexity and chemical bonding in electronic and phonon transport, providing guiding insights for further design of Si-based thermoelectrics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001041124900001 Publication Date 2023-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.4 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.4; 2023 IF: 5.256  
  Call Number UA @ admin @ c:irua:198296 Serial 8821  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: