|
Record |
Links |
|
Author |
Peelaers, H.; Durgun, E.; Partoens, B.; Bilc, D.I.; Ghosez, P.; Van de Walle, C.G.; Peeters, F.M. |
|
|
Title |
Ab initio study of hydrogenic effective mass impurities in Si nanowires |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Journal of physics : condensed matter |
Abbreviated Journal |
J Phys-Condens Mat |
|
|
Volume |
29 |
Issue |
29 |
Pages |
095303 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
The effect of B and P dopants on the band structure of Si nanowires is studied using electronic structure calculations based on density functional theory. At low concentrations a dispersionless band is formed, clearly distinguishable from the valence and conduction bands. Although this band is evidently induced by the dopant impurity, it turns out to have purely Si character. These results can be rigorously analyzed in the framework of effective mass theory. In the process we resolve some common misconceptions about the physics of hydrogenic shallow impurities, which can be more clearly elucidated in the case of nanowires than would be possible for bulk Si. We also show the importance of correctly describing the effect of dielectric confinement, which is not included in traditional electronic structure calculations, by comparing the obtained results with those of G(0)W(0) calculations. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
London |
Editor |
|
|
|
Language |
|
Wos |
000395103900002 |
Publication Date |
2017-01-06 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0953-8984 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.649 |
Times cited |
1 |
Open Access |
|
|
|
Notes |
; This work was supported by the Flemish Science Foundation (FWO-Vl), the NSF MRSEC Program under award No. DMR11-21053, and the Army Research Office (W911NF-13-1-0380). DIB acknowledges financial support from the grant of the Romanian National Authority for Scientific Research, CNCS UEFISCDI, project No. PN-II-RU-TE-2011-3-0085. Ph G acknowledges a research professorship of the Francqui foundation and financial support of the ARC project AIMED and FNRS project HiT4FiT. This research used resources of the Ceci HPC Center funded by F R S-FNRS (Grant No. 2.5020.1) and of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. ; |
Approved |
Most recent IF: 2.649 |
|
|
Call Number |
UA @ lucian @ c:irua:142447 |
Serial |
4584 |
|
Permanent link to this record |