toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Moors, K.; Sorée, B.; Tokei, Z.; Magnus, W. url  doi
openurl 
  Title Resistivity scaling and electron relaxation times in metallic nanowires Type A1 Journal article
  Year 2014 Publication (down) Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 116 Issue 6 Pages 063714  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the resistivity scaling in nanometer-sized metallic wires due to surface roughness and grain-boundaries, currently the main cause of electron scattering in nanoscaled interconnects. The resistivity has been obtained with the Boltzmann transport equation, adopting the relaxation time approximation of the distribution function and the effective mass approximation for the conducting electrons. The relaxation times are calculated exactly, using Fermi's golden rule, resulting in a correct relaxation time for every sub-band state contributing to the transport. In general, the relaxation time strongly depends on the sub-band state, something that remained unclear with the methods of previous work. The resistivity scaling is obtained for different roughness and grain-boundary properties, showing large differences in scaling behavior and relaxation times. Our model clearly indicates that the resistivity is dominated by grain-boundary scattering, easily surpassing the surface roughness contribution by a factor of 10. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000341179400036 Publication Date 2014-08-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 17 Open Access  
  Notes ; ; Approved Most recent IF: 2.068; 2014 IF: 2.183  
  Call Number UA @ lucian @ c:irua:119260 Serial 2882  
Permanent link to this record
 

 
Author Kao, K.-H.; Verhulst, A.S.; Van de Put, M.; Vandenberghe, W.G.; Sorée, B.; Magnus, W.; De Meyer, K. doi  openurl
  Title Tensile strained Ge tunnel field-effect transistors: k\cdot p material modeling and numerical device simulation Type A1 Journal article
  Year 2014 Publication (down) Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 115 Issue 4 Pages 044505-44508  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Group IV based tunnel field-effect transistors generally show lower on-current than III-V based devices because of the weaker phonon-assisted tunneling transitions in the group IV indirect bandgap materials. Direct tunneling in Ge, however, can be enhanced by strain engineering. In this work, we use a 30-band k.p method to calculate the band structure of biaxial tensile strained Ge and then extract the bandgaps and effective masses at Gamma and L symmetry points in k-space, from which the parameters for the direct and indirect band-to-band tunneling (BTBT) models are determined. While transitions from the heavy and light hole valence bands to the conduction band edge at the L point are always bridged by phonon scattering, we highlight a new finding that only the light-holelike valence band is strongly coupling to the conduction band at the Gamma point even in the presence of strain based on the 30-band k.p analysis. By utilizing a Technology Computer Aided Design simulator equipped with the calculated band-to-band tunneling BTBT models, the electrical characteristics of tensile strained Ge point and line tunneling devices are self-consistently computed considering multiple dynamic nonlocal tunnel paths. The influence of field-induced quantum confinement on the tunneling onset is included. Our simulation predicts that an on-current up to 160 (260) mu A/mu m can be achieved along with on/off ratio > 10(6) for V-DD = 0.5V by the n-type (p-type) line tunneling device made of 2.5% biaxial tensile strained Ge. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000331210800113 Publication Date 2014-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 26 Open Access  
  Notes ; Authors would like to thank Dr. Mohammad Ali Pourghaderi for useful discussions on the nonparabolicity. Authors would also like to thank Professor Eddy Simoen and Dr. Yosuke Shimura for useful discussions about the validity of modeled bandgaps and effective masses. This work was also supported by IMEC's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2014 IF: 2.183  
  Call Number UA @ lucian @ c:irua:115800 Serial 3505  
Permanent link to this record
 

 
Author Vandenberghe, W.; Sorée, B.; Magnus, W.; Groeseneken, G. doi  openurl
  Title Zener tunneling in semiconductors under nonuniform electric fields Type A1 Journal article
  Year 2010 Publication (down) Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 107 Issue 5 Pages 054520,1-054520,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently, a renewed interest in Zener tunneling has arisen because of its increasing impact on semiconductor device performance at nanometer dimensions. In this paper we evaluate the tunnel probability under the action of a nonuniform electric field using a two-band model and arrive at significant deviations from the commonly used Kanes model, valid for weak uniform fields only. A threshold on the junction bias where Kanes model for Zener tunneling breaks down is determined. Comparison with Kanes model particularly shows that our calculation yields a higher tunnel probability for intermediate electric fields and a lower tunnel probability for high electric fields. When performing a current calculation comparing to the WKB approximation for the case of an abrupt p-n junction significant differences concerning the shape of the I-V curve are demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000275657500136 Publication Date 2010-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 22 Open Access  
  Notes ; William Vandenberghe gratefully acknowledges the support of a Ph. D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). These authors acknowledge the support from IMEC's Industrial Affiliation Program and the authors would like to thank Anne Verhulst for useful comments. ; Approved Most recent IF: 2.068; 2010 IF: 2.079  
  Call Number UA @ lucian @ c:irua:82450 Serial 3929  
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Van de Put, M.; Sorée, B.; Magnus, W.; Mocuta, A.; Collaert, N.; Thean, A.; Groeseneken, G. doi  openurl
  Title Full-zone spectral envelope function formalism for the optimization of line and point tunnel field-effect transistors Type A1 Journal article
  Year 2015 Publication (down) Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 118 Issue 118 Pages 134502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Efficient quantum mechanical simulation of tunnel field-effect transistors (TFETs) is indispensable to allow for an optimal configuration identification. We therefore present a full-zone 15-band quantum mechanical solver based on the envelope function formalism and employing a spectral method to reduce computational complexity and handle spurious solutions. We demonstrate the versatility of the solver by simulating a 40 nm wide In0.53Ga0.47As lineTFET and comparing it to p-n-i-n configurations with various pocket and body thicknesses. We find that the lineTFET performance is not degraded compared to semi-classical simulations. Furthermore, we show that a suitably optimized p-n-i-n TFET can obtain similar performance to the lineTFET. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000362668400025 Publication Date 2015-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 9 Open Access  
  Notes ; D. Verreck acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number UA @ lucian @ c:irua:128765 Serial 4183  
Permanent link to this record
 

 
Author Van de Put, M.L.; Vandenberghe, W.G.; Sorée, B.; Magnus, W.; Fischetti, M.V. url  doi
openurl 
  Title Inter-ribbon tunneling in graphene: An atomistic Bardeen approach Type A1 Journal article
  Year 2016 Publication (down) Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 119 Issue 119 Pages 214306  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A weakly coupled system of two crossed graphene nanoribbons exhibits direct tunneling due to the overlap of the wavefunctions of both ribbons. We apply the Bardeen transfer Hamiltonian formalism, using atomistic band structure calculations to account for the effect of the atomic structure on the tunneling process. The strong quantum-size confinement of the nanoribbons is mirrored by the one-dimensional character of the electronic structure, resulting in properties that differ significantly from the case of inter-layer tunneling, where tunneling occurs between bulk two-dimensional graphene sheets. The current-voltage characteristics of the inter-ribbon tunneling structures exhibit resonance, as well as stepwise increases in current. Both features are caused by the energetic alignment of one-dimensional peaks in the density-of-states of the ribbons. Resonant tunneling occurs if the sign of the curvature of the coupled energy bands is equal, whereas a step-like increase in the current occurs if the signs are opposite. Changing the doping modulates the onset-voltage of the effects as well as their magnitude. Doping through electrostatic gating makes these structures promising for application towards steep slope switching devices. Using the atomistic empirical pseudopotentials based Bardeen transfer Hamiltonian method, inter-ribbon tunneling can be studied for the whole range of two-dimensional materials, such as transition metal dichalcogenides. The effects of resonance and of step-like increases in the current we observe in graphene ribbons are also expected in ribbons made from these alternative two-dimensional materials, because these effects are manifestations of the one-dimensional character of the density-of-states. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000378923100022 Publication Date 2016-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:134652 Serial 4198  
Permanent link to this record
 

 
Author Moors, K.; Sorée, B.; Magnus, W. url  doi
openurl 
  Title Modeling surface roughness scattering in metallic nanowires Type A1 Journal article
  Year 2015 Publication (down) Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 118 Issue 118 Pages 124307  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ando's model provides a rigorous quantum-mechanical framework for electron-surface roughness scattering, based on the detailed roughness structure. We apply this method to metallic nanowires and improve the model introducing surface roughness distribution functions on a finite domain with analytical expressions for the average surface roughness matrix elements. This approach is valid for any roughness size and extends beyond the commonly used Prange-Nee approximation. The resistivity scaling is obtained from the self-consistent relaxation time solution of the Boltzmann transport equation and is compared to Prange-Nee's approach and other known methods. The results show that a substantial drop in resistivity can be obtained for certain diameters by achieving a large momentum gap between Fermi level states with positive and negative momentum in the transport direction. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000362565800032 Publication Date 2015-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 11 Open Access  
  Notes ; ; Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number UA @ lucian @ c:irua:129425 Serial 4207  
Permanent link to this record
 

 
Author Andrikopoulos, D.; Sorée, B.; De Boeck, J. url  doi
openurl 
  Title Skyrmion-induced bound states on the surface of three-dimensional topological insulators Type A1 Journal article
  Year 2016 Publication (down) Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 119 Issue 119 Pages 193903  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The interaction between the surface of a 3D topological insulator and a skyrmion/anti-skyrmion structure is studied in order to investigate the possibility of electron confinement due to the skyrmion presence. Both hedgehog (Neel) and vortex (Bloch) skyrmions are considered. For the hedgehog skyrmion, the in-plane components cannot be disregarded and their interaction with the surface state of the topological insulator (TI) has to be taken into account. A semi-classical description of the skyrmion chiral angle is obtained using the variational principle. It is shown that both the hedgehog and the vortex skyrmion can induce bound states on the surface of the TI. However, the number and the properties of these states depend strongly on the skyrmion type and the skyrmion topological number N-Sk. The probability densities of the bound electrons are also derived where it is shown that they are localized within the skyrmion region. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000377718100013 Publication Date 2016-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 8 Open Access  
  Notes ; ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:134607 Serial 4244  
Permanent link to this record
 

 
Author Mohammed, M.; Verhulst, A.S.; Verreck, D.; Van de Put, M.; Simoen, E.; Sorée, B.; Kaczer, B.; Degraeve, R.; Mocuta, A.; Collaert, N.; Thean, A.; Groeseneken, G. url  doi
openurl 
  Title Electric-field induced quantum broadening of the characteristic energy level of traps in semiconductors and oxides Type A1 Journal article
  Year 2016 Publication (down) Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 120 Issue 120 Pages 245704  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The trap-assisted tunneling (TAT) current in tunnel field-effect transistors (TFETs) is one of the crucial factors degrading the sub-60 mV/dec sub-threshold swing. To correctly predict the TAT currents, an accurate description of the trap is required. Since electric fields in TFETs typically reach beyond 10(6) V/cm, there is a need to quantify the impact of such high field on the traps. We use a quantum mechanical implementation based on the modified transfer matrix method to obtain the trap energy level. We present the qualitative impact of electric field on different trap configurations, locations, and host materials, including both semiconductors and oxides. We determine that there is an electric-field related trap level shift and level broadening. We find that these electric-field induced quantum effects can enhance the trap emission rates. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000392174000028 Publication Date 2016-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 6 Open Access  
  Notes ; This work was supported by imec's Industrial Affiliation Program. D. Verreck acknowledges the support of a PhD stipend from IWT-Vlaanderen. ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:141481 Serial 4593  
Permanent link to this record
 

 
Author Beckers, A.; Thewissen, M.; Sorée, B. pdf  doi
openurl 
  Title Energy filtering in silicon nanowires and nanosheets using a geometric superlattice and its use for steep-slope transistors Type A1 Journal article
  Year 2018 Publication (down) Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 124 Issue 14 Pages 144304  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract This paper investigates energy filtering in silicon nanowires and nanosheets by resonant electron tunneling through a geometric superlattice. A geometric superlattice is any kind of periodic geometric feature along the transport direction of the nanowire or nanosheet. Multivalley quantum-transport simulations are used to demonstrate the manifestation of minibands and minibandgaps in the transmission spectra of such a superlattice. We find that the presence of different valleys in the conduction band of silicon favors a nanowire with a rectangular cross section for effective energy filtering. The obtained energy filter can consequently be used in the source extension of a field-effect transistor to prevent high-energy electrons from contributing to the leakage current. Self-consistent Schrodinger-Poisson simulations in the ballistic limit show minimum subthreshold swings of 6 mV/decade for geometric superlattices with indentations. The obtained theoretical performance metrics for the simulated devices are compared with conventional III-V superlatticeFETs and TunnelFETs. The adaptation of the quantum transmitting boundary method to the finite-element simulation of 3-D structures with anisotropic effective mass is presented in Appendixes A and B. Our results bare relevance in the search for steep-slope transistor alternatives which are compatible with the silicon industry and can overcome the power-consumption bottleneck inherent to standard CMOS technologies. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000447148100011 Publication Date 2018-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 3 Open Access  
  Notes ; ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:154729UA @ admin @ c:irua:154729 Serial 5099  
Permanent link to this record
 

 
Author Mohammed, M.; Verhulst, A.S.; Verreck, D.; Van de Put, M.L.; Magnus, W.; Sorée, B.; Groeseneken, G. pdf  doi
openurl 
  Title Phonon-assisted tunneling in direct-bandgap semiconductors Type A1 Journal article
  Year 2019 Publication (down) Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 125 Issue 1 Pages 015701  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In tunnel field-effect transistors, trap-assisted tunneling (TAT) is one of the probable causes for degraded subthreshold swing. The accurate quantum-mechanical (QM) assessment of TAT currents also requires a QM treatment of phonon-assisted tunneling (PAT) currents. Therefore, we present a multi-band PAT current formalism within the framework of the quantum transmitting boundary method. An envelope function approximation is used to construct the electron-phonon coupling terms corresponding to local Frohlich-based phonon-assisted inter-band tunneling in direct-bandgap III-V semiconductors. The PAT current density is studied in up to 100 nm long and 20 nm wide p-n diodes with the 2- and 15-band material description of our formalism. We observe an inefficient electron-phonon coupling across the tunneling junction. We further demonstrate the dependence of PAT currents on the device length, for our non-self-consistent formalism which neglects changes in the electron distribution function caused by the electron-phonon coupling. Finally, we discuss the differences in doping dependence between direct band-to-band tunneling and PAT current. Published under license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000455350200021 Publication Date 2019-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 2 Open Access  
  Notes ; This work was supported by Imec's Industrial Affiliation Program. ; Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:156735 Serial 5224  
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Van de Put, M.L.; Sorée, B.; Magnus, W.; Collaert, N.; Mocuta, A.; Groeseneken, G. pdf  doi
openurl 
  Title Self-consistent procedure including envelope function normalization for full-zone Schrodinger-Poisson problems with transmitting boundary conditions Type A1 Journal article
  Year 2018 Publication (down) Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 124 Issue 20 Pages 204501  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In the quantum mechanical simulation of exploratory semiconductor devices, continuum methods based on a k.p/envelope function model have the potential to significantly reduce the computational burden compared to prevalent atomistic methods. However, full-zone k.p/envelope function simulation approaches are scarce and existing implementations are not self-consistent with the calculation of the electrostatic potential due to the lack of a stable procedure and a proper normalization of the multi-band envelope functions. Here, we therefore present a self-consistent procedure based on a full-zone spectral k.p/envelope function band structure model. First, we develop a proper normalization for the multi-band envelope functions in the presence of transmitting boundary conditions. This enables the calculation of the free carrier densities. Next, we construct a procedure to obtain self-consistency of the carrier densities with the electrostatic potential. This procedure is stabilized with an adaptive scheme that relies on the solution of Poisson's equation in the Gummel form, combined with successive underrelaxation. Finally, we apply our procedure to homostructure In0.53Ga0.47As tunnel field-effect transistors (TFETs) and staggered heterostructure GaAs0.5Sb0.5/In0.53Ga0.47As TFETs and show the importance of self-consistency on the device predictions for scaled dimensions. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451743900015 Publication Date 2018-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 1 Open Access  
  Notes ; This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:156291 Serial 5228  
Permanent link to this record
 

 
Author Osca, J.; Sorée, B. doi  openurl
  Title Torque field and skyrmion motion by spin transfer torque in a quasi-2D interface in presence of strong spin-orbit interaction Type A1 Journal article
  Year 2021 Publication (down) Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 130 Issue 13 Pages 133903  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the torque field and skyrmion motion at an interface between a ferromagnet hosting a skyrmion and a material with a strong spin-orbit interaction. We analyze both semiconductor materials and topological insulators using a Hamiltonian model that includes a linear term. The spin torque-inducing current is considered to flow in the single band limit; therefore, a quantum model of current is used. Skyrmion motion due to spin transfer torque proves to be more difficult in the presence of a spin-orbit interaction in the case where only interface in-plane currents are present. However, edge effects in narrow nanowires can be used to drive the skyrmion motion and to exert a limited control on its motion direction. We also show the differences and similarities between torque fields due to electric current in the many and single band limits. Published under an exclusive license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000755090400003 Publication Date 2021-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:186452 Serial 7034  
Permanent link to this record
 

 
Author Deylgat, E.; Chen, E.; Sorée, B.; Vandenberghe, W.G. pdf  doi
openurl 
  Title Quantum transport study of contact resistance of edge- and top-contacted two-dimensional materials Type P1 Proceeding
  Year 2023 Publication (down) International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 27-29, 2023, Kobe, Japan Abbreviated Journal  
  Volume Issue Pages 45-48  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract We calculate the contact resistance for an edge- and top-contacted 2D semiconductor. The contact region consists of a metal contacting a monolayer of MoS2 which is otherwise surrounded by SiO2. We use the quantum transmitting boundary method to compute the contact resistance as a function of the 2D semiconductor doping concentration. An effective mass Hamiltonian is used to describe the properties of the various materials. The electrostatic potentials are obtained by solving the Poisson equation numerically. We incorporate the effects of the image-force barrier lowering on the Schottky barrier and examine the impact on the contact resistance. At low doping concentrations, the contact resistance of the top contact is lower compared to edge contact, while at high doping concentrations, the edge contact exhibits lower resistance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001117703800012 Publication Date 2023-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-4-86348-803-8 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:202839 Serial 9079  
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. pdf  doi
openurl 
  Title Ab initio modeling of few-layer dilute magnetic semiconductors Type P1 Proceeding
  Year 2021 Publication (down) International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 27-29, 2021, Dallas, TX Abbreviated Journal  
  Volume Issue Pages 141-145  
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We present a computational model to model the magnetic structure of two-dimensional (2D) dilute-magnetic-semiconductors (DMS) both the monolayers and multilayers using first-principles density functional theory (DFT), as well as their magnetic phase transition as a function of temperature using Monte-Carlo simulations. Using our method, we model the magnetic structure of bulk, bilayer, and monolayer MoS2 substitutionally doped with Fe atoms. We find that the out-of-plane interaction in bilayer MoS2 is weakly ferromagnetic, whereas in bulk MoS2 it is strongly anti-ferromagnetic. Finally, we show that the magnetic order is more robust in bilayer Fe-doped MoS2 compared to the monolayer and results in a room-temperature FM at an atomic substitution of 14-16%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000766985400034 Publication Date 2021-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-6654-0685-7 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:187291 Serial 7401  
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. pdf  doi
openurl 
  Title Carrier transport in a two-dimensional topological insulator nanoribbon in the presence of vacancy defects Type P1 Proceeding
  Year 2018 Publication (down) International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 24-26, 2018, Austin, TX Abbreviated Journal  
  Volume Issue Pages 92-96  
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We model transport through two-dimensional topological insulator (TI) nanoribbons. To model the quantum transport, we employ the non-equilibrium Green's function approach. With the presented approach, we study the effect of lattice imperfections on the carrier transport. We observe that the topologically protected edge states of TIs are robust against a high percentage (2%) of vacancy defects. We also investigate tunneling of the edge states in two decoupled TI nanoribbons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000516619300024 Publication Date 2018-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-5386-6790-3; 1946-1577; 978-1-5386-6791-0 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:181281 Serial 7579  
Permanent link to this record
 

 
Author Reyntjens, P.D.; Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. pdf  doi
openurl 
  Title Ab-initio study of magnetically intercalated Tungsten diselenide Type P1 Proceeding
  Year 2020 Publication (down) International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 23-OCT 06, 2020 Abbreviated Journal  
  Volume Issue Pages 97-100  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the effect of intercalation of third row transition metals (Co, Cr, Fe, Mn, Ti and V) in the layers of WSe2. Using density functional theory (DFT), we investigate the structural stability. We also compute the DFT energies of various magnetic spin configurations. Using these energies, we construct a Heisenberg Hamiltonian and perform a Monte Carlo study on each WSe2 + intercalant system to estimate the Curie or Neel temperature. We find ferromagnetic ground states for Ti and Cr intercalation, with Curie temperatures of 31K and 225K, respectively. In Fe-intercalated WSe2, we predict that antiferromagnetic ordering is present up to 564K. For V intercalation, we find that the system exhibits a double phase transition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000636981000025 Publication Date 2020-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-4-86348-763-5 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178345 Serial 7402  
Permanent link to this record
 

 
Author Moors, K.; Sorée, B.; Magnus, W. url  openurl
  Title Modeling and tackling resistivity scaling in metal nanowires Type P1 Proceeding
  Year 2015 Publication (down) International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 09-11, 2015, Washington, DC Abbreviated Journal  
  Volume Issue Pages 222-225  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract A self-consistent analytical solution of the multi-subband Boltzmann transport equation with collision term describing grain boundary and surface roughness scattering is presented to study the resistivity scaling in metal nanowires. The different scattering mechanisms and the influence of their statistical parameters are analyzed. Instead of a simple power law relating the height or width of a nanowire to its resistivity, the picture appears to be more complicated due to quantum-mechanical scattering and quantization effects, especially for surface roughness scattering.  
  Address  
  Corporate Author Thesis  
  Publisher Ieee Place of Publication New york Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-4673-7860-4 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:135046 Serial 4205  
Permanent link to this record
 

 
Author Kao, K.-H.; Verhulst, A.S.; Vandenberghe, W.G.; Sorée, B.; Groeseneken, G.; De Meyer, K. doi  openurl
  Title Direct and indirect band-to-band tunneling in germanium-based TFETs Type A1 Journal article
  Year 2012 Publication (down) IEEE transactions on electron devices Abbreviated Journal Ieee T Electron Dev  
  Volume 59 Issue 2 Pages 292-301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Germanium is a widely used material for tunnel FETs because of its small band gap and compatibility with silicon. Typically, only the indirect band gap of Ge at 0.66 eV is considered. However, direct band-to-band tunneling (BTBT) in Ge should be included in tunnel FET modeling and simulations since the energy difference between the Ge conduction band edges at the L and G valleys is only 0.14 eV at room temperature. In this paper, we theoretically calculate the parameters A and B of Kane's direct and indirect BTBT models at different tunneling directions ([100], [110], and [111]) for Si, Ge and unstrained Si1-xGex. We highlight how the direct BTBT component becomes more important as the Ge mole fraction increases. The calculation of the band-to-band generation rate in the uniform electric field limit reveals that direct tunneling always dominates over indirect tunneling in Ge. The impact of the direct transition in Ge on the performance of two realistic tunnel field-effect transistor configurations is illustrated with TCAD simulations. The influence of field-induced quantum confinement is included in the analysis based on a back-of-the-envelope calculation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000299430200005 Publication Date 2011-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9383;1557-9646; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.605 Times cited 212 Open Access  
  Notes ; Manuscript received August 5, 2011; revised October 5, 2011 and October 28, 2011; accepted October 30, 2011. Date of publication December 7, 2011; date of current version January 25, 2012. This work was supported by the Interuniversity Microelectronics Center's (IMEC) Industrial Affiliation Program. The work of W. G. Vandenberghe was supported by a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). The review of this paper was arranged by Editor A. Schenk. ; Approved Most recent IF: 2.605; 2012 IF: 2.062  
  Call Number UA @ lucian @ c:irua:97215 Serial 708  
Permanent link to this record
 

 
Author Kao, K.-H.; Verhulst, A.S.; Vandenberghe, W.G.; Sorée, B.; Magnus, W.; Leonelli, D.; Groeseneken, G.; De Meyer, K. doi  openurl
  Title Optimization of gate-on-source-only tunnel FETs with counter-doped pockets Type A1 Journal article
  Year 2012 Publication (down) IEEE transactions on electron devices Abbreviated Journal Ieee T Electron Dev  
  Volume 59 Issue 8 Pages 2070-2077  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate a promising tunnel FET configuration having a gate on the source only, which is simultaneously exhibiting a steeper subthreshold slope and a higher ON-current than the lateral tunneling configuration with a gate on the channel. Our analysis is performed based on a recently developed 2-D quantum-mechanical simulator calculating band-to-band tunneling and including quantum confinement (QC). It is shown that the two disadvantages of the structure, namely, the sensitivity to gate alignment and the physical oxide thickness, are mitigated by placing a counter-doped parallel pocket underneath the gate-source overlap. The pocket also significantly reduces the field-induced QC. The findings are illustrated with all-Si and all-Ge gate-on-source-only tunnel field-effect transistor simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000306920200011 Publication Date 2012-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9383;1557-9646; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.605 Times cited 72 Open Access  
  Notes ; Manuscript received February 17, 2012; revised May 7, 2012; accepted May 11, 2012. Date of publication June 26, 2012; date of current version July 19, 2012. This work was supported by the Interuniversity Microelectronics Center's Industrial Affiliation Program. The work of W. G. Vandenberghe was supported by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) through a Ph.D. stipend. The review of this paper was arranged by Editor H. S. Momose. ; Approved Most recent IF: 2.605; 2012 IF: 2.062  
  Call Number UA @ lucian @ c:irua:100820 Serial 2487  
Permanent link to this record
 

 
Author Bizindavyi, J.; Verhulst, A.S.; Sorée, B.; Groeseneken, G. pdf  doi
openurl 
  Title Signature of ballistic band-tail tunneling current in tunnel FET Type A1 Journal article
  Year 2020 Publication (down) Ieee Transactions On Electron Devices Abbreviated Journal Ieee T Electron Dev  
  Volume 67 Issue 8 Pages 3486-3491  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract To improve the interpretation of the tunnel field-effect transistor (TFET) measurements, we theoretically identify the signatures of the ballistic band-tail (BT) tunneling (BTT) current in the transfer and output characteristics of the TFETs. In particular, we demonstrate that the temperature dependence of a BTT-dominated subthreshold swing (SS) is in agreement with the reported experimental results. We explain how the temperature dependence of the output characteristics can be used to distinguish between a current dominated by BTT and a current dominated by trap-assisted tunneling. Finally, we propose an expression that relates the energetic extension of the quasi-extended BT states in the bandgap to the onset voltage for tunneling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000552976100072 Publication Date 2020-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9383 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.1 Times cited Open Access  
  Notes ; This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 3.1; 2020 IF: 2.605  
  Call Number UA @ admin @ c:irua:171189 Serial 6601  
Permanent link to this record
 

 
Author Bizindavyi, J.; Verhulst, A.S.; Smets, Q.; Verreck, D.; Sorée, B.; Groeseneken, G. url  doi
openurl 
  Title Band-Tails Tunneling Resolving the Theory-Experiment Discrepancy in Esaki Diodes Type A1 Journal article
  Year 2018 Publication (down) IEEE journal of the Electron Devices Society Abbreviated Journal Ieee J Electron Devi  
  Volume 6 Issue 1 Pages 633-641  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Discrepancies exist between the theoretically predicted and experimentally measured performance of band-to-band tunneling devices, such as Esaki diodes and tunnel field-effect transistors (TFETs). We resolve this discrepancy for highly-doped, direct-bandgap Esaki diodes by successfully calibrating a semi-classical model for high-doping-induced ballistic band-tails tunneling currents at multiple temperatures with two In0.53Ga0.47As Esaki diodes using their SIMS doping profiles, C-V characteristics and their forward-bias current density in the negative differential resistance (NDR) regime. The current swing in the NDR regime is shown not to be linked to the band-tails Urbach energy. We further demonstrate theoretically that the calibrated band-tails contribution is also the dominant band-tails contribution to the subthreshold swing of the corresponding TFETs. Lastly, we verify that the presented procedure is applicable to all direct-bandgap semiconductors by successfully applying it to InAs Esaki diodes in literature.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE, Electron Devices Society Place of Publication New York, N.Y. Editor  
  Language Wos 000435505000013 Publication Date 2018-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-6734 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.141 Times cited 5 Open Access  
  Notes ; J. Bizindavyi gratefully acknowledges FWO-Vlaanderen for a Strategic Basic Research PhD fellowship. ; Approved Most recent IF: 3.141  
  Call Number UA @ lucian @ c:irua:152097UA @ admin @ c:irua:152097 Serial 5014  
Permanent link to this record
 

 
Author Toledano-Luque, M.; Matagne, P.; Sibaja-Hernandez, A.; Chiarella, T.; Ragnarsson, L.-A.; Sorée, B.; Cho, M.; Mocuta, A.; Thean, A. doi  openurl
  Title Superior reliability of junctionless pFinFETs by reduced oxide electric field Type A1 Journal article
  Year 2014 Publication (down) IEEE electron device letters Abbreviated Journal Ieee Electr Device L  
  Volume 35 Issue 12 Pages 1179-1181  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Superior reliability of junctionless (JL) compared with inversion-mode field-effect transistors (FETs) is experimentally demonstrated on bulk FinFET wafers. The reduced negative bias temperature instability (NBTI) of JL pFETs outperforms the previously reported best NBTI reliability data obtained with Si channel devices and guarantees 10-year lifetime at typical operating voltages and high temperature. This behavior is understood through the reduced oxide electric field and lessened interaction between charge carriers and oxide traps during device operation. These findings encourage the investigation of JL devices with alternative channels as a promising alternative for 7-nm technology nodes meeting reliability targets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000345575400006 Publication Date 2014-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0741-3106;1558-0563; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.048 Times cited 13 Open Access  
  Notes ; This work was supported by the imec's Core Partner Program. The review of this letter was arranged by Editor J. Schmitz. ; Approved Most recent IF: 3.048; 2014 IF: 2.754  
  Call Number UA @ lucian @ c:irua:122192 Serial 3378  
Permanent link to this record
 

 
Author Katti, G.; Stucchi, M.; Velenis, D.; Sorée, B.; de Meyer, K.; Dehaene, W. doi  openurl
  Title Temperature-dependent modeling and characterization of through-silicon via capacitance Type A1 Journal article
  Year 2011 Publication (down) IEEE electron device letters Abbreviated Journal Ieee Electr Device L  
  Volume 32 Issue 4 Pages 563-565  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A semianalytical model of the through-silicon via (TSV) capacitance for elevated operating temperatures is derived and verified with electrical measurements. The effect of temperature on the increase in TSV capacitance over different technology parameters is explored, and it is shown that higher oxide thickness reduces the impact of temperature rise on TSV capacitance, while with low doped substrates, which are instrumental for reducing the TSV capacitance, the sensitivity of TSV capacitance to temperature is large and cannot be ignored.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000288664800045 Publication Date 2011-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0741-3106;1558-0563; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.048 Times cited 27 Open Access  
  Notes ; ; Approved Most recent IF: 3.048; 2011 IF: 2.849  
  Call Number UA @ lucian @ c:irua:89402 Serial 3498  
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Van de Put, M.L.; Sorée, B.; Collaert, N.; Mocuta, A.; Thean, A.; Groeseneken, G. pdf  url
doi  openurl
  Title Uniform strain in heterostructure tunnel field-effect transistors Type A1 Journal article
  Year 2016 Publication (down) IEEE electron device letters Abbreviated Journal Ieee Electr Device L  
  Volume 37 Issue 37 Pages 337-340  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Strain can strongly impact the performance of III-V tunnel field-effect transistors (TFETs). However, previous studies on homostructure TFETs have found an increase in ON-current to be accompanied with a degradation of subthreshold swing. We perform 30-band quantum mechanical simulations of staggered heterostructure p-n-i-n TFETs submitted to uniaxial and biaxial uniform stress and find the origin of the subthreshold degradation to be a reduction of the density of states in the strained case. We apply an alternative configuration including a lowly doped pocket in the source, which allows to take full benefit of the strain-induced increase in ON-current.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372372100026 Publication Date 2016-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0741-3106 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.048 Times cited 17 Open Access  
  Notes ; This work was supported by the imec Industrial Affiliation Program. The work of D. Verreck was supported by the Agency for Innovation by Science and Technology in Flanders. The review of this letter was arranged by Editor Z. Chen. ; Approved Most recent IF: 3.048  
  Call Number UA @ lucian @ c:irua:133207 Serial 4271  
Permanent link to this record
 

 
Author Contino, A.; Ciofi, I.; Wu, X.; Asselberghs, I.; Celano, U.; Wilson, C.J.; Tokei, Z.; Groeseneken, G.; Sorée, B. pdf  doi
openurl 
  Title Modeling of edge scattering in graphene interconnects Type A1 Journal article
  Year 2018 Publication (down) IEEE electron device letters Abbreviated Journal Ieee Electr Device L  
  Volume 39 Issue 7 Pages 1085-1088  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Graphene interconnects are being considered as a promising candidate for beyond CMOS applications, thanks to the intrinsic higher carrier mobility, lower aspect ratio and better reliability with respect to conventional Cu damascene interconnects. However, similarly to Cu, line edge roughness can seriously affect graphene resistance, something which must be taken into account when evaluating the related performance benefits. In this letter, we present a model for assessing the impact of edge scattering on the resistance of graphene interconnects. Our model allows the evaluation of the total mean free path in graphene lines as a function of graphene width, diffusive scattering probability and edge roughness standard deviation and autocorrelation length. We compare our model with other models from literature by benchmarking them using the same set of experimental data. We show that, as opposed to the considered models from literature, our model is capable to describe the mobility drop with scaling caused by significantly rough edges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000437087400041 Publication Date 2018-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0741-3106 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.048 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 3.048  
  Call Number UA @ lucian @ c:irua:152465UA @ admin @ c:irua:152465 Serial 5114  
Permanent link to this record
 

 
Author Bizindavyi, J.; Verhulst, A.S.; Verreck, D.; Sorée, B.; Groeseneken, G. pdf  doi
openurl 
  Title Large variation in temperature dependence of band-to-band tunneling current in tunnel devices Type A1 Journal article
  Year 2019 Publication (down) IEEE electron device letters Abbreviated Journal Ieee Electr Device L  
  Volume 40 Issue 11 Pages 1864-1867  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The observation of a significant temperature-dependent variation in the ${I}$ – ${V}$ characteristics of tunneling devices is often interpreted as a signature of a trap-assisted-tunneling dominated current. In this letter, we use a ballistic 2D quantum-mechanical simulator, calibrated using the measured temperature-dependent ${I}$ – ${V}$ characteristics of Esaki diodes, to demonstrate that the temperature dependence of band-to-band tunneling (BTBT) current can vary significantly in both Esaki diodes and tunnel FETs. The variation of BTBT current with temperature is impacted by doping concentration, gate voltage, possible presence of a highly-doped pocket at the tunnel junction, and material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000496192600040 Publication Date 2019-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0741-3106 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.048 Times cited Open Access  
  Notes Approved Most recent IF: 3.048  
  Call Number UA @ admin @ c:irua:164636 Serial 6306  
Permanent link to this record
 

 
Author Cantoro, M.; Klekachev, A.V.; Nourbakhsh, A.; Sorée, B.; Heyns, M.M.; de Gendt, S. doi  openurl
  Title Long-wavelength, confined optical phonons in InAs nanowires probed by Raman spectroscopy Type A1 Journal article
  Year 2011 Publication (down) European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 79 Issue 4 Pages 423-428  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Strongly confined nano-systems, such as one-dimensional nanowires, feature deviations in their structural, electronic and optical properties from the corresponding bulk. In this work, we investigate the behavior of long-wavelength, optical phonons in vertical arrays of InAs nanowires by Raman spectroscopy. We attribute the main changes in the spectral features to thermal anharmonicity, due to temperature effects, and rule out the contribution of quantum confinement and Fano resonances. We also observe the appearance of surface optical modes, whose details allow for a quantitative, independent estimation of the nanowire diameter. The results shed light onto the mechanisms of lineshape change in low-dimensional InAs nanostructures, and are useful to help tailoring their electronic and vibrational properties for novel functionalities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000288120600005 Publication Date 2011-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 10 Open Access  
  Notes ; ; Approved Most recent IF: 1.461; 2011 IF: 1.534  
  Call Number UA @ lucian @ c:irua:89502 Serial 1841  
Permanent link to this record
 

 
Author Sorée, B.; Magnus, W.; Szepieniec, M.; Vandenbreghe, W.; Verhulst, A.; Pourtois, G.; Groeseneken, G.; de Gendt, S.; Heyns, M. openurl 
  Title Novel device concepts for nanotechnology : the nanowire pinch-off FET and graphene tunnelFET Type A2 Journal article
  Year 2010 Publication (down) ECS transactions Abbreviated Journal  
  Volume 28 Issue Pages 15-26  
  Keywords A2 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We explain the basic operation of a nanowire pinch-off FET and graphene nanoribbon tunnelFET. For the nanowire pinch-off FET we construct an analytical model to obtain the threshold voltage as a function of radius and doping density. We use the gradual channel approximation to calculate the current-voltage characteristics of this device and we show that the nanowire pinch-off FET has a subthreshold slope of 60 mV/dec and good ION and ION/IOFF ratios. For the graphene nanoribbon tunnelFET we show that an improved analytical model yields more realistic results for the transmission probability and hence the tunneling current. The first simulation results for the graphene nanoribbon tunnelFET show promising subthreshold slopes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1938-5862 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:89510 Serial 2375  
Permanent link to this record
 

 
Author Bizindavyi, J.; Verhulst, A.S.; Sorée, B.; Groeseneken, G. openurl 
  Title Impact of calibrated band-tails on the subthreshold swing of pocketed TFETs Type P1 Proceeding
  Year 2018 Publication (down) Conference digest T2 – 76th Device Research Conference (DRC), JUN 24-27, 2018, Santa Barbara, CA Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Ieee Place of Publication New york Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-5386-3028-0 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:153780 Serial 5106  
Permanent link to this record
 

 
Author Bizindavyi, J.; Verhulst, A.S.; Sorée, B.; Groeseneken, G. doi  openurl
  Title Impact of calibrated band-tails on the subthreshold swing of pocketed TFETs Type P1 Proceeding
  Year 2018 Publication (down) Conference digest T2 – 76th Device Research Conference (DRC), JUN 24-27, 2018, Santa Barbara, CA Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000444728400086 Publication Date 2018-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-5386-3028-0 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:153780 Serial 5217  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: