toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sun, J.; Qu, Z.; Gao, Y.; Li, T.; Hong, J.; Zhang, T.; Zhou, R.; Liu, D.; Tu, X.; Chen, G.; Brüser, V.; Weltmann, K.-D.; Mei, D.; Fang, Z.; Borras, A.; Barranco, A.; Xu, S.; Ma, C.; Dou, L.; Zhang, S.; Shao, T.; Chen, G.; Liu, D.; Lu, X.; Bo, Z.; Chiang, W.-H.; Vasilev, K.; Keidar, M.; Nikiforov, A.; Jalili, A.R.; Cullen, P.J.; Dai, L.; Hessel, V.; Bogaerts, A.; Murphy, A.B.; Zhou, R.; Ostrikov, K.(K.) pdf  url
doi  openurl
  Title Plasma power-to-X (PP2X): status and opportunities for non-thermal plasma technologies Type A1 Journal Article
  Year 2024 Publication Journal of Physics D: Applied Physics Abbreviated Journal J. Phys. D: Appl. Phys.  
  Volume 57 Issue 50 Pages 503002  
  Keywords A1 Journal Article; plasma power-to-X, non-thermal plasma, gas conversion, plasma catalysis, renewable energy; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This article discusses the ‘power-to-X’ (P2X) concept, highlighting the integral role of non-thermal plasma (NTP) in P2X for the eco-friendly production of chemicals and valuable fuels. NTP with unique thermally non-equilibrium characteristics, enables exotic reactions to occur under ambient conditions. This review summarizes the plasma-based P2X systems, including plasma discharges, reactor configurations, catalytic or non-catalytic processes, and modeling techniques. Especially, the potential of NTP to directly convert stable molecules including CO<sub>2</sub>, CH<sub>4</sub>and air/N<sub>2</sub>is critically examined. Additionally, we further present and discuss hybrid technologies that integrate NTP with photocatalysis, electrocatalysis, and biocatalysis, broadening its applications in P2X. It concludes by identifying key challenges, such as high energy consumption, and calls for the outlook in plasma catalysis and complex reaction systems to generate valuable products efficiently and sustainably, and achieve the industrial viability of the proposed plasma P2X strategy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (down) 2024-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links  
  Impact Factor 3.4 Times cited Open Access  
  Notes Alexander von Humboldt Foundation; National Science Foundation, 1747760 ; Australian Research Council; Approved Most recent IF: 3.4; 2024 IF: 2.588  
  Call Number PLASMANT @ plasmant @ Serial 9330  
Permanent link to this record
 

 
Author Zani, V.; Renero-Lecuna, C.; Jimenez de Aberasturi, D.; di Silvio, D.; Kavak, S.; Bals, S.; Signorini, R.; Liz-Marzán, L.M. url  doi
openurl 
  Title Core–Shell Colloidal Nanocomposites for Local Temperature Monitoring during Photothermal Heating Type A1 Journal Article
  Year 2024 Publication The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Determining temperature changes at the heating site to accurately control thermal treatments has been a major goal in the field of nanothermometry. In this study, we address the need to effectively monitor local temperature during the application of photothermal therapies, which is essential to prevent uncontrolled heating induced by nanoparticle sensitizers used in such treatments. For this purpose, we developed a synthetic protocol to produce a nanocomposite probe that allows local photothermal heating and simultaneous in situ optical nanothermometry, within the biological transparency windows. The nanocomposite material comprises gold nanorods for light-to-heat conversion and neodymium (Nd3+)-based nanoparticles for local temperature monitoring. An inert spacer made of mesoporous silica provides a core-shell structure and ensures uniform separation between both functionalities to prevent photoluminescence quenching. By using an 808 nm laser as the source for both heating and photoluminescence excitation, we demonstrate a direct correlation between local temperature and near infrared Nd3+ emission intensities, thereby providing precise local temperature monitoring. Different levels of local heating were studied by varying the incident laser power, resulting in a maximum temperature increase of 47 °C detected with the nanothermometers. Albeit presented here as a proof of concept, this concept can be translated to the design of materials for photothermal therapy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (down) 2024-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links  
  Impact Factor 3.7 Times cited Open Access  
  Notes L.L.L.-M. acknowledges financial support by the Spanish Agencia Estatal de Investigación and FEDER (PID2023-151281OB-I00), S.K. acknowledges the Flemish Fund for Scientific Research (FWO Vlaanderen) through a PhD research grant (Project numbers: 1181122N & 1181124N) and the European Research Council (CoG 815128, REALNANO). Approved Most recent IF: 3.7; 2024 IF: 4.536  
  Call Number EMAT @ emat @ Serial 9328  
Permanent link to this record
 

 
Author Stoops, T.; De Backer, A.; Lobato, I.; Van Aert, S. pdf  url
doi  openurl
  Title Obtaining 3D Atomic Reconstructions from Electron Microscopy Images Using a Bayesian Genetic Algorithm: Possibilities, Insights, and Limitations Type A1 Journal Article
  Year 2024 Publication Microscopy and Microanalysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The Bayesian genetic algorithm (BGA) is a powerful tool to reconstruct the 3D structure of mono-atomic single-crystalline metallic nanoparticles imaged using annular dark field scanning transmission electron microscopy. The number of atoms in a projected atomic column in the image is used as input to obtain an accurate and atomically precise reconstruction of the nanoparticle, taking prior knowledge and the finite precision of atom counting into account. However, as the number of parameters required to describe a nanoparticle with atomic detail rises quickly with the size of the studied particle, the computational costs of the BGA rise to prohibitively expensive levels. In this study, we investigate these computational costs and propose methods and control parameters for efficient application of the algorithm to nanoparticles of at least up to 10 nm in size.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (down) 2024-10-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links  
  Impact Factor 2.8 Times cited Open Access  
  Notes European Research Council, 770887 ; Research Foundation Flanders, G034621N G0A7723N 40007495 ; FWO and F.R.S-FNRS; Flemish Government; Approved Most recent IF: 2.8; 2024 IF: 1.891  
  Call Number EMAT @ emat @ Serial 9270  
Permanent link to this record
 

 
Author Heirman, P.; Verswyvel, H.; Bauwens, M.; Yusupov, M.; De Waele, J.; Lin, A.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title Effect of plasma-induced oxidation on NK cell immune checkpoint ligands: A computational-experimental approach Type A1 Journal Article
  Year 2024 Publication Redox Biology Abbreviated Journal Redox Biology  
  Volume 77 Issue Pages 103381  
  Keywords A1 Journal Article; Non-thermal plasma Natural killer cells Immune checkpoints Cancer immunotherapy Umbrella sampling Oxidative stress; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Non-thermal plasma (NTP) shows promise as a potent anti-cancer therapy with both cytotoxic and immunomodulatory effects. In this study, we investigate the chemical and biological effects of NTP-induced oxidation on several key, determinant immune checkpoints of natural killer (NK) cell function. We used molecular dynamics (MD) and umbrella sampling simulations to investigate the effect of NTP-induced oxidative changes on the MHCI complexes HLA-Cw4 and HLA-E. Our simulations indicate that these chemical alterations do not significantly affect the binding affinity of these markers to their corresponding NK cell receptor, which is supported with

experimental read-outs of ligand expression on human head and neck squamous cell carcinoma cells after NTP application. Broadening our scope to other key ligands for NK cell reactivity, we demonstrate rapid reduction in CD155 and CD112, target ligands of the inhibitory TIGIT axis, and in immune checkpoint CD73 immediately after treatment. Besides these transient chemical alterations, the reactive species in NTP cause a cascade of downstream cellular reactions. This is underlined by the upregulation of the stress proteins MICA/B, potent ligands for NK cell activation, 24 h post treatment. Taken together, this work corroborates the immunomodulatory potential of NTP, and sheds light on the interaction mechanisms between NTP and cancer cells.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (down) 2024-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2213-2317 ISBN Additional Links  
  Impact Factor 11.4 Times cited Open Access  
  Notes This research was funded by the Impuls project of the University of Antwerp, grant number 46381. We acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (Grant ID 1100421N (Pepijn Heirman), 1S67621N (Hanne Verswyvel), G044420N (Abraham Lin) and G033020N (Pepijn Heirman, Annemie Bogaerts)). M.Y. ac knowledges the Agency for Innovative Development of the Republic of Uzbekistan, grant number AL-4821012320. The computational sources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish percomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. This article is based upon work from COST Action CA20114 PlasTHER “Therapeutical Applications of Cold Plasmas”, supported by COST (European Cooperation in Science and Technology). We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr Willy Floren, and the Vereycken family. Finally, we thank Robin De Meyer, Rani Vertongen and Louize Brants for their valuable input. Approved Most recent IF: 11.4; 2024 IF: 6.337  
  Call Number PLASMANT @ plasmant @ Serial 9331  
Permanent link to this record
 

 
Author Biscop, E.; Baroen, J.; De Backer, J.; Vanden Berghe, W.; Smits, E.; Bogaerts, A.; Lin, A. url  doi
openurl 
  Title Characterization of regulated cancer cell death pathways induced by the different modalities of non-thermal plasma treatment Type A1 Journal Article
  Year 2024 Publication Cell Death Discovery Abbreviated Journal Cell Death Discov.  
  Volume 10 Issue 1 Pages 416  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Non-thermal plasma (NTP) has shown promising anti-cancer effects, but there is still limited knowledge about the underlying cell death mechanisms induced by NTP and inherent differences between NTP treatment modalities. This study aimed to investigate four major regulated cell death (RCD) pathways, namely apoptosis, pyroptosis, necroptosis, and ferroptosis, in melanoma cancer cells following NTP treatment, and to provide an overview of molecular mechanistic differences between direct and indirect NTP treatment modalities. To discriminate which cell death pathways were triggered after treatment, specific inhibitors of apoptosis, pyroptosis, necroptosis, and ferroptosis were evaluated. RCD-specific molecular pathways were further investigated to validate the findings with inhibitors. Both direct and indirect NTP treatment increased caspase 3/7 and annexin V expression, indicative of apoptosis, as well as lipid peroxidation, characteristic of ferroptosis. Pyroptosis, on the other hand, was only induced by direct NTP treatment, evidenced by increased caspase 1 activity, whereas necroptosis was stimulated in a cell line-dependent manner. These findings highlight the molecular differences and implications of direct and indirect NTP treatment for cancer therapy. Altogether, activation of multiple cell death pathways offers advantages in minimizing treatment resistance and enhancing therapeutic efficacy, particularly in a combination setting. Understanding the mechanisms underlying NTP-induced RCD will enable the development of strategic combination therapies targeting multiple pathways to achieve cancer lethality.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (down) 2024-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2058-7716 ISBN Additional Links  
  Impact Factor Times cited Open Access  
  Notes This work was partially funded by the Research Foundation—Flanders (FWO) and supported by the following Grants: 12S9221N (AL), G044420N (AL and AB), and G033020N (AB). We would also like to acknowledge the help of Iuliia Efimova and Prof. Dmitri Krysko (Cell Death Investigation and Therapy Laboratory, Ghent University), where discussions and optimization for these experiments started, but unfortunately and abruptly halted due to the COVID pandemic. Still we appreciate their valuable discussions. Figure 6 was made in BioRender. We would also like to acknowledge the support from the European Cooperation in Science & Technology (COST) Action on “Therapeutical applications of Cold Plasmas” (CA20114; PlasTHER). Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @ Serial 9329  
Permanent link to this record
 

 
Author Wang, L.; Griffin, D.K.; Romanov, M.N.; Gielis, J. url  doi
openurl 
  Title Comparison of two polar equations in describing the geometries of domestic pigeon (Columba livia domestica) eggs Type A1 Journal article
  Year 2024 Publication Poultry science Abbreviated Journal  
  Volume Issue Pages 104196-104199  
  Keywords A1 Journal article; Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract Two-dimensional (2D)egg-shape equa-tions are potent mathematical tools, facilitating the description of avian egg geometries in their applied mathematical modelling and poultry science implementations. In the present study, 2 distinct polar equations,namely the Carter-Morley-Jones equation (CMJE) and simplified Gielis equation(SGE), were used to fit the profile geometries of 415 domestic pigeon (Columba livia domestica) eggs based on nonlinear least squares regression methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (down) 2024-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0032-5791; 1525-3171 ISBN Additional Links UA library record  
  Impact Factor 4.4 Times cited Open Access  
  Notes Approved Most recent IF: 4.4; 2024 IF: 1.908  
  Call Number UA @ admin @ c:irua:208221 Serial 9279  
Permanent link to this record
 

 
Author Fedirchyk, I.; Tsonev, I.; Quiroz Marnef, R.; Bogaerts, A. url  doi
openurl 
  Title Plasma-assisted NH3 cracking in warm plasma reactors for green H2 production Type A1 Journal Article
  Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal  
  Volume 499 Issue Pages 155946  
  Keywords A1 Journal Article; Plasma-assisted NH3 cracking Plasma reactors Warm plasma H2 production from NH3; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract renewable energy. Plasma technology is promising for this purpose, as it can crack NH3 without the need for a catalyst and is highly compatible with renewable electricity, reducing the environmental footprint of the cracking process. This work investigates the NH3 cracking performance of four different warm plasma reactors with different configurations and operating in a wide range of conditions. We show that the NH3 conversion in warm plasma reactors is primarily determined by the specific energy input, with the main difference observed in the energy cost (EC) of cracking. The lowest EC obtained is 146 kJ/mol but at a conversion of only 8 %. A more reasonable conversion of around 50 % yields an EC of around 200 kJ/mol in two of the reactors investigated. Plasma reactors operating at higher feed flow rates are more efficient and yield a higher H2 production rate. Our data indicate that NH3 cracking in these warm plasma reactors occurs mainly via thermal chemistry, with nonthermal plasma chemistry playing a less prominent role. NH3 decomposes not only inside the plasma core but also in a hot volume around it, which reduces the EC. Our study shows that warm plasmas are significantly more efficient for NH3 cracking than cold plasmas, even when the latter are combined with catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (down) 2024-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links  
  Impact Factor 15.1 Times cited Open Access  
  Notes Belgian Federal Government; European Commission Marie Sklodowska-Curie Actions; Approved Most recent IF: 15.1; 2024 IF: 6.216  
  Call Number PLASMANT @ plasmant @ Serial 9267  
Permanent link to this record
 

 
Author Sun, J.; Chen, Q.; Qin, W.; Wu, H.; Liu, B.; Li, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-catalytic dry reforming of CH4: Effects of plasma-generated species on the surface chemistry Type A1 Journal Article
  Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal  
  Volume 498 Issue Pages 155847  
  Keywords A1 Journal Article; Dry reforming of methane Plasma catalysis Plasma-enhanced surface chemistry Path flux and sensitivity analysis Coking kinetics; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract By means of steady-state experiments and a global model, we studied the effects of plasma-generated reactive species on the surface chemistry and coking in plasma-catalytic CH4/CO2 reforming at reduced pressure (8–40 kPa). We used a hybrid ZDPlasKin-CHEMKIN model to predict the species densities over time. The detailed plasma-catalytic mechanism consists of the plasma discharge scheme, a gas-phase chemistry set and a surface mechanism. Our experimental results show that the coupling of Ni/SiO2 catalyst with plasma is more effective in CH4/CO2 activation and conversion than unpacked DBD plasma, with syngas being the main products. The

highest total conversion of 16 % was achieved at 8000 V and 473 K, with corresponding CO and H2 yields of 15 % and 12 %, respectively. The reactants conversion and product selectivity are well captured by the kinetic model. Our simulation results suggest that vibrational species and radicals can accelerate the dissociative adsorption and Eley-Rideal (E-R) reactions. Path flux analysis shows that E-R reactions dominate the surface reaction pathways, which differs from thermal catalysis, indicating that the coupling of non-equilibrium plasma and catalysis can effectively shift the formation and consumption pathways of important adsorbates. For instance, our model suggests that HCOO(s) is primarily generated through the E-R reaction CO2(v) + H(s) → HCOO(s), while the hydrogenation reaction HCOO(s) + H → HCOOH(s) is the main source of HCOOH(s). Carbon deposition on the

catalyst surface is primarily formed through the stepwise dehydrogenation of CH4, while the E-R reactions enhanced by plasma-generated H and O atoms dominate the consumption of carbon deposition. This work provides new insights into the effects of reactive species on the surface chemistry in plasma-catalytic CH4/CO2 reforming.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (down) 2024-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links  
  Impact Factor 15.1 Times cited Open Access  
  Notes National Natural Science Foundation of China; Approved Most recent IF: 15.1; 2024 IF: 6.216  
  Call Number PLASMANT @ plasmant @ Serial 9266  
Permanent link to this record
 

 
Author Pascucci, F. url  doi
openurl 
  Title Superfluidity in exciton bilayer systems : Josephson effect and collective modes as definitive identification-markers Type Doctoral thesis
  Year 2024 Publication Abbreviated Journal  
  Volume Issue Pages xiii, 126 p.  
  Keywords Doctoral thesis; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract This thesis explores superfluidity in exciton bilayer systems, semiconductor structures with two thin conducting layers, one doped with electrons and the other with holes, separated by a few nanometers. Theoretical predictions suggest these systems can exhibit superfluid, supersolid, exciton normal solid, and Wigner crystal phases. Identifying clear markers of superfluidity is crucial due to experimental challenges in confirming excitonic superfluidity. This thesis focuses on two phenomena: the Josephson effect and density collective modes. For the Josephson effect, we propose an exciton bilayer Josephson junction in double monolayer Transition Metal Dichalcogenides. We suggest using the Shapiro method to measure the exciton Josephson current and propose fabricating the device with a tunable potential-barrier height. In low potential-barrier regions, the exciton superfluid flows over the barrier, while in high potential-barrier regions, flow is driven by quantum tunnelling. This helps delineate the boundary between Bose-Einstein Condensate (BEC) and BCS-BEC crossover regimes. For density collective modes, we examine low-temperature behaviour to identify the normal-superfluid transition as a function of density. In the normal state at high density, the system exhibits low-energy optic and acoustic modes. As density decreases, entering the superfluid phase, the response changes, with the superfluid gap blocking these modes. We expect pair-breaking collective modes to appear at the onset of exciton superfluidity due to the Coulomb interaction. Our theoretical model developed using a path-integral approach and the Hartree-Fock approximation, includes screening and intralayer correlations. We calculate gap and number equations governing superfluid phase behaviour, showing that intralayer correlations enhance screening, especially in the BCS-BEC crossover regime. This leads to a reduced superfluid gap, a shift in the BEC to BCS-BEC crossover boundary to lower densities, and the disappearance of a predicted minimum in electron-hole pair size. This study advances the understanding of superfluidity in exciton bilayer systems, providing theoretical predictions and experimental proposals. By identifying clear markers of superfluidity, this work contributes to the broader effort of realizing and characterizing excitonic condensed phases in realistic systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (down) 2024-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:207852 Serial 9318  
Permanent link to this record
 

 
Author Thiruvottriyur Shanmugam, S.; Steijlen, A.; Laurijssen, D.; Campos, R.; Steckel, J.; Daems, W.; Bassini, S.; Daems, E.; De Wael, K. pdf  doi
openurl 
  Title A 96-well LED array for multiplexed photoelectrochemical detection of nucleic acids Type A1 Journal article
  Year 2024 Publication Analytical chemistry Abbreviated Journal  
  Volume 96 Issue 38 Pages 15091-15096  
  Keywords A1 Journal article; Co-Design of Cyber-Physical Systems (Cosys-Lab); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract Photoelectrochemical detection of nucleic acid-based cancer biomarkers offers opportunities for highly sensitive, selective, and fast quantitative detection using low-cost measurement instruments. In order to establish itself as a standard method for identifying and quantifying nucleic acids, we have developed a multiplexing strategy using LED technology for photoelectrochemical detection in 96 samples simultaneously. A dedicated setup based on the 96-well plate configuration with a custom-made 96-well LED array was developed. Subsequently, a proof-of-concept study was performed for three miRNAs that are associated with prostate cancer, i.e., miRNA-141, miRNA-145, and miRNA-375. First, measurements with photosensitizer chlorin e6 and redox reporter hydroquinone free in solution proved the proper functioning of the multiplexed detection. Second, the photoelectrochemical detection of the three miRNAs at 24 nM levels was successfully demonstrated. Thereafter, linear calibration curves (R2 > 0.9 for all analytes) were made with plasma spiked with 8–500 pM miRNA. This work presents the first system for multiplexed high-throughput photoelectrochemical detection, allowing it potentially to become a cost-effective and faster alternative to RT-qPCR and gene sequencing techniques in the future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (down) 2024-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record  
  Impact Factor 7.4 Times cited Open Access  
  Notes Approved Most recent IF: 7.4; 2024 IF: 6.32  
  Call Number UA @ admin @ c:irua:208164 Serial 9275  
Permanent link to this record
 

 
Author Schrenker, N.J.; Braeckevelt, T.; De Backer, A.; Livakas, N.; Yu, C.-P.; Friedrich, T.; Roeffaers, M.B.J.; Hofkens, J.; Verbeeck, J.; Manna, L.; Van Speybroeck, V.; Van Aert, S.; Bals, S. url  doi
openurl 
  Title Investigation of the Octahedral Network Structure in Formamidinium Lead Bromide Nanocrystals by Low-Dose Scanning Transmission Electron Microscopy Type A1 Journal Article
  Year 2024 Publication Nano Letters Abbreviated Journal Nano Lett.  
  Volume 24 Issue 35 Pages 10936-10942  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Metal halide perovskites (MHP) are highly promising semiconductors. In this study, we focus on FAPbBr3 nanocrystals, which are of great interest for green light-emitting diodes. Structural parameters significantly impact the properties of MHPs and are linked to phase instability, which hampers long-term applications. Clearly, there is a need for local and precise characterization techniques at the atomic scale, such as transmission electron microscopy. Because of the high electron beam sensitivity of MHPs, these investigations are extremely challenging. Here, we applied a low-dose method based on four-dimensional scanning transmission electron microscopy. We quantified the observed elongation of the projections of the Br atomic columns, suggesting an alternation in the position of the Br atoms perpendicular to the Pb–Br–Pb bonds. Together with molecular dynamics simulations, these results remarkably reveal local distortions in an on-average cubic structure. Additionally, this study provides an approach to prospectively investigating the fundamental degradation mechanisms of MHPs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (down) 2024-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links  
  Impact Factor 10.8 Times cited Open Access  
  Notes The authors acknowledge financial support from the Research Foundation-Flanders (FWO) through project fundings (G0A7723N) and a postdoctoral fellowship to N.J.S. (FWO Grants 1238622N and V413524N). The authors acknowledge financial support from iBOF-21-085 PERSIST. S.B. and S.V.A. acknowledge financial support from the European Commission by ERC Consolidator Grant 815128 (REALNANO) and Grant 770887 (PICOMETRICS). L.M. acknowledges financial support from the European Commission by ERC Advanced Grant 101095974 (NEHA). V.V.S. furthermore acknowledges the Research Fund of Ghent University (BOF) for its financial support. The computational resources and services used in this work were provided by VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO), and the Flemish Government. Approved Most recent IF: 10.8; 2024 IF: 12.712  
  Call Number EMAT @ emat @ Serial 9273  
Permanent link to this record
 

 
Author de Block, T.; De Baetselier, I.; Van den Bossche, D.; Abdellati, S.; Gestels, Z.; Laumen, J.G.E.; Van Dijck, C.; Vanbaelen, T.; Claes, N.; Vandelannoote, K.; Kenyon, C.; Harrison, O.; Santhini Manoharan-Basil, S. pdf  url
doi  openurl
  Title Genomic oropharyngeal Neisseria surveillance detects MALDI-TOF MS species misidentifications and reveals a novel Neisseria cinerea clade Type A1 Journal Article
  Year 2024 Publication Journal of Medical Microbiology Abbreviated Journal  
  Volume 73 Issue 8 Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Introduction. Commensal Neisseria spp. are highly prevalent in the oropharynx as part of the healthy microbiome. N. meningitidis can colonise the oropharynx too from where it can cause invasive meningococcal disease. To identify N. meningitidis, clinical microbiology laboratories often rely on Matrix Assisted Laser Desorption/Ionisation Time of Flight Mass Spectrometry (MALDI-TOF MS).

Hypothesis/Gap statement. N. meningitidis may be misidentified by MALDI-TOF MS.

Aim. To conduct genomic surveillance of oropharyngeal Neisseria spp. in order to: (i) verify MALDI-TOF MS species identification, and (ii) characterize commensal Neisseria spp. genomes.

Methodology. We analysed whole genome sequence (WGS) data from 119 Neisseria spp. isolates from a surveillance programme for oropharyngeal Neisseria spp. in Belgium. Different species identification methods were compared: (i) MALDI-TOF MS, (ii) Ribosomal Multilocus Sequence Typing (rMLST) and (iii) rplF gene species identification. WGS data were used to further characterize Neisseria species found with supplementary analyses of Neisseria cinerea genomes.

Results. Based on genomic species identification, isolates from the oropharyngeal Neisseria surveilence study were composed of the following species: N. meningitidis (n=23), N. subflava (n=61), N. mucosa (n=15), N. oralis (n=8), N. cinerea (n=5), N. elongata (n=3), N. lactamica (n=2), N. bacilliformis (n=1) and N. polysaccharea (n=1). Of these 119 isolates, four isolates identified as N. meningitidis (n=3) and N. subflava (n=1) by MALDI-TOF MS, were determined to be N. polysaccharea (n=1), N. cinerea (n=2) and N. mucosa (n=1) by rMLST. Phylogenetic analyses revealed that N. cinerea isolates from the general population (n=3, cluster one) were distinct from those obtained from men who have sex with men (MSM, n=2, cluster two). The latter contained genomes misidentified as N. meningitidis using MALDI-TOF MS. These two N. cinerea clusters persisted after the inclusion of published N. cinerea WGS (n=42). Both N. cinerea clusters were further defined through pangenome and Average Nucleotide Identity (ANI) analyses.

Conclusion. This study provides insights into the importance of genomic genus-wide Neisseria surveillance studies to improve the characterization and identification of the Neisseria genus.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (down) 2024-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2615 ISBN Additional Links  
  Impact Factor 3 Times cited Open Access  
  Notes We would like to thank all the study participants for their help in this study. This research was supported by SOFI 2021 grant—‘PReventing the Emergence of untreatable STIs via radical Prevention’ (PRESTIP). Approved Most recent IF: 3; 2024 IF: 2.159  
  Call Number EMAT @ emat @ Serial 9262  
Permanent link to this record
 

 
Author Tunca, S.; Parrilla, M.; Raj, K.; Nuyts, G.; Verbruggen, S.W.; De Wael, K. pdf  doi
openurl 
  Title Nickel hydroxide nanosphere decorated reduced-TiO₂ nanotubes as supercapacitor electrodes Type A1 Journal article
  Year 2024 Publication Electrochimica acta Abbreviated Journal  
  Volume 505 Issue Pages 144990-11  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract A straightforward electrochemical method was developed to modify titanium dioxide nanotubes (TiO2 NTs), creating oxygen vacancies via electrochemical reduction (ER) and depositing nickel hydroxide nanospheres (Ni (OH)2 NSs). This was done to discover the electrochemical properties of a TiO2 NTs based binder-free supercapacitor electrode. The improved conductivity of the reduced TiO2 NTs (R-TiO2 NTs) electrode provided a 90fold increase in the specific capacitance compared to that of pristine TiO2 NTs. R-TiO2 NTs were further decorated with Ni(OH)2 NSs by an electrodeposition method to further improve the supercapacitive performance. Fabricated R-TiO2 NTs/Ni(OH)2 electrodes exhibited a high areal specific capacitance value of 305.91 mF/cm2 at a current density of 0.75 mA/cm2. The modified electrode shows an improved charge-storage capacity compared to the TiO2 NTs/Ni(OH)2 electrodes, and to previously reported 1D-TiO2/Ni(OH)2 nanocomposite structures. Furthermore, the proposed electrode showed good cyclic stability by retaining 71% of its initial capacitance after 1500 cycles and a promising rate capability with a capacitive retention of 86% while increasing the current density from 0.75 to 5 mA/cm2. Overall, the ER step proved to improve the conductivity of the R-TiO2 NTs, which favors the deposition of the Ni(OH)2 NSs and promotes the Faradaic reactions at the electrode-electrolyte interface demonstrating a promising supercapacitor electrode material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001309 Publication Date (down) 2024-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.6 Times cited Open Access  
  Notes Approved Most recent IF: 6.6; 2024 IF: 4.798  
  Call Number UA @ admin @ c:irua:208529 Serial 9308  
Permanent link to this record
 

 
Author Albrechts, M.; Tsonev, I.; Bogaerts, A. pdf  url
doi  openurl
  Title Can post-plasma CH4injection improve plasma-based dry reforming of methane? A modeling study Type A1 Journal Article
  Year 2024 Publication Green Chemistry Abbreviated Journal Green Chem.  
  Volume 26 Issue 18 Pages 9712-9728  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Thermal plasma-driven dry reforming of methane (DRM) has gained increased attention in recent years due to its high conversion and energy conversion efficiency (ECE). Recent experimental work investigated the performance of a pure CO<sub>2</sub>plasma with post-plasma CH<sub>4</sub>injection. The rationale behind this strategy is that by utilizing a pure CO<sub>2</sub>plasma, all plasma energy can be used to dissociate CO<sub>2</sub>, while CH<sub>4</sub>reforming proceeds post-plasma in the reforming reactor with residual heat, potentially improving the energy efficiency compared to injecting both CO<sub>2</sub>and CH<sub>4</sub>into the plasma. To assess whether post-plasma CH<sub>4</sub>injection indeed improves the DRM performance, we developed a chemical kinetics model describing the post-plasma conversion process. We first validated our model by reproducing the experimental results of the pure CO<sub>2</sub>plasma with post-plasma CH<sub>4</sub>injection. Subsequently, we compared both strategies: injecting only CO<sub>2</sub>inside the plasma while injecting CH<sub>4</sub>post-plasma,<italic>vs.</italic>classical plasma-based DRM. Our modeling results indicate that below specific energy inputs (SEI) of 220 kJ mol<sup>−1</sup>, the total conversion slightly improves (<italic>ca.</italic>5%) with the first strategy. However, the ECE is slightly lower due to the low H<sub>2</sub>selectivity caused by substantial H<sub>2</sub>O formation. The highest conversion and ECE are obtained at SEI values of 240–280 kJ mol<sup>−1</sup>, where both strategies yield nearly identical results, indicating the limited potential of improving the performance of DRM by pure CO<sub>2</sub>plasma with post-plasma CH<sub>4</sub>injection. Nevertheless, the approach is still very valuable to allow higher CH<sub>4</sub>/CO<sub>2</sub>ratios without problems of coke formation within the plasma, and thus, to improve plasma stability and reach higher syngas ratios, which is more useful for further Fischer–Tropsch or methanol synthesis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (down) 2024-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262 ISBN Additional Links  
  Impact Factor 9.8 Times cited Open Access  
  Notes HORIZON EUROPE Framework Programme, 101069491 ; Approved Most recent IF: 9.8; 2024 IF: 9.125  
  Call Number PLASMANT @ plasmant @ Serial 9265  
Permanent link to this record
 

 
Author Borah, R.; Raj A.G., K.; Verbruggen, S.W. pdf  doi
openurl 
  Title Flow-by membraneless electrolyzer designs : a macroporous flow dividing mesh enhances maximum allowable electrode length Type A1 Journal article
  Year 2024 Publication Fuel Abbreviated Journal  
  Volume 377 Issue Pages 132779-15  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract The membraneless electrolyzer design promises a low-cost and robust electrolyzer technology, eliminating the disadvantages associated with the membranes/diaphragms in conventional electrolyzers. Flow-by membraneless electrolyzers exploit the Segré–Silberberg effect, where the electrolyte flow between parallel face-to-face cathode and anode forbids the evolving hydrogen and oxygen bubbles to cross over to the other side, while still allowing ionic currents between the electrodes to pass. The removal of the membrane from traditional electrolyzers, and instead exploiting the electrolyte flow itself to function as a gas separator also imposes certain requirements, namely: 1) upward laminar flow and, 2) vertically aligned electrodes. Given the upper limit of the laminar flow regime (Reynolds number, Re ∼ 1800), the admissible length of both vertically aligned electrodes is constrained by the production volume of H2 and O2 at both electrodes. Beyond a certain production rate the evolving gas plume increases in thickness until it reaches the central line dividing the channel between the electrodes. From that point onwards, flow mediated separation of both gases becomes practically impossible. In this work the design constraints of membraneless electrolyzers are investigated by combined multiphysics modeling and mass-balance analysis. Next, a macroporous flow dividing mesh is introduced in the design that allows seamless ionic flow between the electrodes while facilitating a higher electrolyte velocity in the laminar regime. This in turn enables to increase the maximum electrode length (or height) by >50 %. The model based analysis provides important guidelines for further development of membraneless electrolyzers, significantly reducing future experimental optimization efforts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (down) 2024-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-2361 ISBN Additional Links UA library record  
  Impact Factor 7.4 Times cited Open Access  
  Notes Approved Most recent IF: 7.4; 2024 IF: 4.601  
  Call Number UA @ admin @ c:irua:207729 Serial 9291  
Permanent link to this record
 

 
Author Miao, X.; Milošević, M.; Zhang, C. pdf  doi
openurl 
  Title Magnetic ferroelectric metal in bilayer Fe₃GeTe₂ under interlayer sliding Type A1 Journal article
  Year 2024 Publication Physica: B : condensed matter Abbreviated Journal  
  Volume 694 Issue Pages 416427-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The inherent interlayer freedom in van der Waals stacked materials provides an excellent opportunity to investigate ferroelectric-like behavior through interlayer translation. Based on first-principles calculations, we find that the interlayer sliding in Fe3GeTe2 (FGT) bilayer enables the coexistence of polarization, metallicity, and ferromagnetism. We find that the polarization is induced by the uncompensated vertical interlayer charge transfer, and can be switched by an in-plane interlayer sliding. A moderate biaxial strain can reverse the polarization direction of the sliding FGT bilayer. The vertical polarization disentangles with the in-plane conductivity as was previously seen in the sliding ferroelectric WTe2 bilayer. Our work proposes an extremely rare magnetic ferroelectric metal phase that is useful for magnetoelectric and spintronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001300 Publication Date (down) 2024-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526; 1873-2135 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.8 Times cited Open Access  
  Notes Approved Most recent IF: 2.8; 2024 IF: 1.386  
  Call Number UA @ admin @ c:irua:208567 Serial 9304  
Permanent link to this record
 

 
Author Khalil, I.; Rigamonti, M.G.; Janssens, K.; Bugaev, A.; Arenas Esteban, D.; Robijns, S.; Donckels, T.; Beydokhti, M.T.; Bals, S.; De Vos, D.; Dusselier, M. doi  openurl
  Title Atomically dispersed ruthenium hydride on beta zeolite as catalysts for the isomerization of muconates Type A1 Journal article
  Year 2024 Publication Nature Catalysis Abbreviated Journal  
  Volume 7 Issue Pages 921-933  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Searching for sustainable polymers requires access to biomass-based monomers. In that sense, glucose-derived cis,cis-muconic acid stands as a high-potential intermediate. However, to unlock its potential, an isomerization to the value-added trans,trans-isomer, trans,trans-muconic acid, is required. Here we develop atomically dispersed low-loaded Ru on beta zeolite catalysts that produce trans,trans-muconate in ethanol with total conversion (to equilibrium) and a selectivity of >95%. We reach very high turnovers per Ru and productivity rates of 427 mM h(-1) (similar to 85 g l(-1) h(-1)), surpassing the bio-based cis,cis-muconic acid production rates by an order of magnitude. By coupling isomerization to Diels-Alder cycloaddition, terephthalate intermediates are produced in around 90% yields, circumventing the isomer equilibrium. Isomerization is promoted by Ru hydride species where the hydrides are generated from the alcohol solvent, as evidenced by Fourier transform infrared spectroscopy. Beyond isomerization, the Ru-zeolite and its hydride-forming capacity could be of use as a heterogeneous catalyst for other hydride chemistries, demonstrated by a successful hydride transfer hydrogenation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001294 Publication Date (down) 2024-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2520-1158 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 37.8 Times cited Open Access  
  Notes Approved Most recent IF: 37.8; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:207521 Serial 9277  
Permanent link to this record
 

 
Author Yari, S.; Bird, L.; Rahimisheikh, S.; Reis, A.C.; Mohammad, M.; Hadermann, J.; Robinson, J.; Shearing, P.R.; Safari, M. pdf  doi
openurl 
  Title Probing charge transport and microstructural attributes in solvent- versus water-based electrodes with a spotlight on Li-S battery cathode Type A1 Journal article
  Year 2024 Publication Advanced energy materials Abbreviated Journal  
  Volume Issue Pages 2402163  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In the quest for environmentally benign battery technologies, this study examines the microstructural and transport properties of water-processed electrodes and compares them to conventionally formulated electrodes using the toxic solvent, N-Methyl-2-pyrrolidone (NMP). Special focus is placed on sulfur electrodes utilized in lithium-sulfur batteries for their sustainability and compatibility with diverse binder/solvent systems. The characterization of the electrodes by X-ray micro-computed tomography reveals that in polyvinylidene fluoride (PVDF) Lithium bis(trifluoromethanesulfonyl)imide/NMP, sulfur particles tend to remain in large clusters but break down into finer particles in carboxymethyl cellulose-styrene butadiene rubber (CMC-SBR)/water and lithium polyacrylate (LiPAA)/water dispersions. The findings reveal that in the water-based electrodes, the binder properties dictate the spatial arrangement of carbon particles, resulting in either thick aggregates with short-range connectivity or thin films with long-range connectivity among sulfur particles. Additionally, cracking is found to be particularly prominent in thicker water-based electrodes, propagating especially in regions with larger particle agglomerates and often extending to cause local delamination of the electrodes. These microstructural details are shown to significantly impact the tortuosity and contact resistance of the sulfur electrodes and thereby affecting the cycling performance of the Li-S battery cells. The choice of solvent and binder is crucial in determining particle surface charge, which directly influences active material dispersion and carbon-binder arrangement within the battery porous electrodes. This, in turn, affects ionic and electronic transport properties, ultimately impacting electrochemical performance. Meticulous engineering of the slurry to control these factors is essential for efficient and sustainable water-based electrode processing. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001291 Publication Date (down) 2024-08-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 27.8 Times cited Open Access  
  Notes Approved Most recent IF: 27.8; 2024 IF: 16.721  
  Call Number UA @ admin @ c:irua:207624 Serial 9311  
Permanent link to this record
 

 
Author Barich, H.; Voet, O.; Sleegers, N.; Schram, J.; Montiel, F.N.; Beltran, V.; Nuyts, G.; De Wael, K. pdf  doi
openurl 
  Title Selecting optimal carbon inks for fabricating high-performance screen-printed electrodes for diverse electroanalytical applications Type A1 Journal article
  Year 2024 Publication Journal of electroanalytical chemistry : an international journal devoted to all aspects of electrode kynetics, interfacial structure, properties of electrolytes, colloid and biological electrochemistry. Abbreviated Journal  
  Volume 971 Issue Pages 118585-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract Carbon-based screen-printed electrodes (SPEs) are extensively employed in electrochemistry due to their reproducibility, low-cost production, disposability and versatility. It is commonly accepted that batch to batch variations may occur due to variations in the ink formulation or the use of a different ink to print the electrodes. In this paper, three different commercial carbon-based inks (DuPont, Loctite and SunChemical) were used to manufacture SPEs, referred to respectively as Dup-SPE, Loc-SPE and Sun-SPE, using a semi-automated screen-printing technology. This study focuses on evaluating the quality, characteristics and electrochemical performance of the fabricated SPEs. Furthermore, the study aimed to investigate potential correlations between the ink composition and the nature of different target molecules, as well as their electroanalytical responses. Specifically, phenolic compounds and cocaine cutting agents are tested in alkaline conditions, while benzodiazepines and cephalosporine antibiotics are investigated in acidic media using square wave voltammetry (SWV). This aims to extract insights for the proper selection of inks and SPEs in both conditions. Additionally, a scan rate study of cephalosporine antibiotics using linear sweep voltammetry (LSV) is performed confirming the ion-exchange polymer layer on the electrode surface of Loc-SPE, which impact surface and electrochemical properties, leading to drawbacks in alkaline SWV sensing, but strategic benefits in reductive sensing resulting in an enhanced selective detection of specific targets. The insights on ink-specific influences on the surface and electrochemical properties of the SPEs obtained, may be useful for facilitating the electrode selection in diverse electrochemical applications, emphasizing the critical role of ink composition in achieving desired sensing capabilities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (down) 2024-08-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1572-6657; 1873-2569 ISBN Additional Links UA library record  
  Impact Factor 4.5 Times cited Open Access  
  Notes Approved Most recent IF: 4.5; 2024 IF: 3.012  
  Call Number UA @ admin @ c:irua:207447 Serial 9314  
Permanent link to this record
 

 
Author Steijlen, A.; Docter, M.; Bastemeijer, J.; Topyla, M.; Moraczewska, M.; Hoekstra, T.; Parrilla, M.; De Wael, K. doi  openurl
  Title A practical guide to build a Raspberry Pi Pico based potentiostat for educational electrochemistry and electronic instrumentation Type A1 Journal article
  Year 2024 Publication Journal of chemical education Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract This manuscript presents the first practical guide to build a Raspberry Pi Pico based potentiostat for electrical and electrochemical instrumentation education. The circuit enables us to perform different types of voltammetry such as cyclic and square wave voltammetry. Voltammograms of paracetamol tablets in a neutral buffer solution were successfully recorded and compared to lab equipment. Thereafter, the effect of different scan rates and different concentrations was studied as a proof of concept. Furthermore, the experiments were expanded with measurements of other pharmaceutical tablets such as vitamin C. Over 80 nanobiology bachelor students successfully built their own potentiostat in an electronic instrumentation course. They validated their systems successfully with electrochemical experiments using paracetamol as a conventional pharmaceutical that can be performed in a classroom. The students acquired a valuable understanding of the electronic building blocks and system architecture within electrochemical instrumentation, equipping them with the requisite knowledge to effectively optimize instrumentation parameters in their future research work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001291 Publication Date (down) 2024-08-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9584; 1938-1328 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3 Times cited Open Access  
  Notes Approved Most recent IF: 3; 2024 IF: 1.419  
  Call Number UA @ admin @ c:irua:207478 Serial 9276  
Permanent link to this record
 

 
Author Tian, X.; Xie, X.; Li, J.; Kong, X.; Gong, W.-J.; Peeters, F.M.; Li, L. doi  openurl
  Title Multiferroic ScLaX₂ (X = P, As, and Sb) monolayers : bidirectional negative Poisson's ratio effects and phase transformations driven by rare-earth (main-group) elements Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 8 Pages 084407-84411  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The combination of auxetic property, ferroelasticity, and ferroelectricity in two-dimensional materials offers new avenues for next-generation multifunctional devices. However, two-dimensional materials that simultaneously exhibit those properties are rarely reported. Here, we present a class of two-dimensional Janus-like structures ScLaX2 X 2 (X X = P, As, and Sb) with a rectangular lattice based on first-principles calculations. We predict that those ScLaX2 X 2 monolayers are stable semiconductors with both intrinsic in-plane and out-of-plane auxetic properties, showing a bidirectional negative Poisson's ratio effect. The value of the out-of-plane negative Poisson's ratio effect can reach – 2.28 /- 3.06 /- 3.89. By applying uniaxial strain engineering, two transition paths can be found, including the VA main group element path and the rare-earth metal element path, corresponding to the ferroelastic and the multiferroic (ferroelastic and ferroelectric) phase transition, respectively. For the ScLaSb2 2 monolayer, the external force field can not only control the ferroelastic phase transition, but it can also lead to the reversal of the out-of-plane polarization, exhibiting potential multiferroicity. The coupling between the bidirectional negative Poisson's ratio effect and multiferroicity makes the ScLaX2 X 2 monolayers promising for future device applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001293 Publication Date (down) 2024-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes Approved Most recent IF: 3.4; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:207592 Serial 9306  
Permanent link to this record
 

 
Author Cadorim, L.R.; Sardella, E.; Milošević, M.V. url  doi
openurl 
  Title Vortical versus skyrmionic states in the topological phase of a twisted bilayer with d-wave superconducting pairing Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 110 Issue 6 Pages 064508-64511  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract It was recently shown that a chiral topological phase emerges from the coupling of two twisted monolayers of superconducting Bi2Sr2CaCu2O8+delta for 2 Sr 2 CaCu 2 O 8 +delta for certain twist angles. In this work, we reveal the behavior of such twisted superconducting bilayers with d x 2 – y 2 pairing symmetry in the presence of an applied magnetic field. Specifically, we show that the emergent vortex matter can serve as a smoking gun for the detection of topological superconductivity in such bilayers. Moreover, we report two distinct skyrmionic states that characterize the chiral topological phase and provide a full account of their experimental signatures and their evolution with the twist angle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001290 Publication Date (down) 2024-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2024 IF: 3.836  
  Call Number UA @ admin @ c:irua:208602 Serial 9327  
Permanent link to this record
 

 
Author Gholam, S.; Hadermann, J. pdf  url
doi  openurl
  Title The effect of the acceleration voltage on the quality of structure determination by 3D-electron diffraction Type A1 Journal Article
  Year 2024 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 266 Issue Pages 114022  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Nowadays, 3D Electron Diffraction (3DED) is widely used for the structure determination of sub-micron-sized particles. In this work, we investigate the influence of the acceleration voltage on the quality of 3DED datasets acquired on BaTiO3 nanoparticles. Datasets were acquired using a wide range of beam energies, from common, high acceleration voltages (300 kV and 200 kV) to medium (120 kV and 80 kV) and low acceleration voltages (60 kV and 30 kV). In the integration process, Rint increases as the beam energy reduces, which is mainly due to the increased dynamical scattering. Nevertheless, the structure was solved successfully in all cases. The structure refinement was comparable for all beam energies with small deficiencies such as negative atomic displacements for the heaviest atom in the structure, barium. Including extinction correction in the refinement noticeably improved the model for low acceleration voltages, probably due to higher beam absorption in these cases. Dynamical refinement, however, shows superior results for higher acceleration voltages, since the dynamical refinement calculations currently discard inelastic scattering effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001297 Publication Date (down) 2024-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.2 Times cited Open Access  
  Notes The authors acknowledge funding from the Research Foundation Flanders (FWO, Belgium) project SBO S000121N. The authors are also grateful to Dr. Armand Béché and Dr. Lars Riekehr for their technical support and to Prof. Lukáš Palatinus, Dr. Stefano Canossa, Dr. Maria Batuk and Amirhossein Hajizadeh for fruitful discussions. Approved Most recent IF: 2.2; 2024 IF: 2.843  
  Call Number EMAT @ emat @c:irua:208540 Serial 9268  
Permanent link to this record
 

 
Author Poppe, R.; Hadermann, J. pdf  url
doi  openurl
  Title Optimization of three-dimensional electron diffuse scattering data acquisition Type A1 Journal Article
  Year 2024 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 265 Issue Pages 114023  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The diffraction patterns of crystalline materials with local order contain sharp Bragg reflections as well as highly structured diffuse scattering. In this study, we quantitatively show how the diffuse scattering in three-dimensional electron diffraction (3D ED) data is influenced by various parameters, including the data acquisition mode, the detector type and the use of an energy filter. We found that diffuse scattering data used for quantitative analysis are preferably acquired in selected area electron diffraction (SAED) mode using a CCD and an energy filter. In this study, we also show that the diffuse scattering in 3D ED data can be obtained with a quality comparable to that from single-crystal X-ray diffraction. As electron diffraction requires much smaller crystal sizes than X-ray diffraction, this opens up the possibility to investigate the local structure of many technologically relevant materials for which no crystals large enough for single-crystal X-ray diffraction are available.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001294 Publication Date (down) 2024-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.2 Times cited Open Access  
  Notes The authors would like to thank Dr. Nikolaj Roth for fruitful discussions and Dr. Lukas Palatinus for providing an option to apply symmetry averaging in the three-dimensional reciprocal lattice in PETS2. The authors also acknowledge the Hercules fund ’Direct electron detector for soft matter TEM’ from Flemish Government for the purchase of the Merlin detector. Approved Most recent IF: 2.2; 2024 IF: 2.843  
  Call Number EMAT @ emat @c:irua:207457 Serial 9271  
Permanent link to this record
 

 
Author Lv, H.; Meng, S.; Cui, Z.; Li, S.; Li, D.; Gao, X.; Guo, H.; Bogaerts, A.; Yi, Y. pdf  url
doi  openurl
  Title Plasma-catalytic direct oxidation of methane to methanol over Cu-MOR: Revealing the zeolite-confined Cu2+ active sites Type A1 Journal Article
  Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal  
  Volume 496 Issue Pages 154337  
  Keywords A1 Journal Article; Direct oxidation Methanol production Plasma catalysis Copper-mordenite catalysts; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Efficient methane conversion to methanol remains a significant challenge in chemical industry. This study investigates the direct oxidation of methane to methanol under mild conditions, employing a synergy of nonthermal plasma and Cu-MOR (Copper-Mordenite) catalysts. Catalytic tests demonstrate that the Cu-MOR IE-3 catalyst (i.e., prepared by three cycles of ion exchange) exhibits superior catalytic performance (with 51 % methanol selectivity and 7.9 % methane conversion). Conversely, the Cu-MOR catalysts prepared via wetness impregnation tend to over-oxidize CH4 to CO and CO2. Through systematic catalyst characterizations (XRD, TPR, UV–Vis, HRTEM, XPS), we elucidate that ion exchange mainly leads to the formation of zeolite-confined Cu2+ species, while wetness impregnation predominantly results in CuO particles. Based on the catalytic performance, catalyst characterizations and in-situ FTIR spectra, we conclude that zeolite-confined Cu2+ species serve as the active sites for plasma-catalytic direct oxidation of methane to methanol.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (down) 2024-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links  
  Impact Factor 15.1 Times cited Open Access  
  Notes PetroChina Innovation Foundation, 2018D-5007-0501 ; Fundamental Research Funds for the Central Universities, DUT21JC40 ; Fundamental Research Funds for the Central Universities; China Scholarship Council; National Natural Science Foundation of China, 22272015 ; Approved Most recent IF: 15.1; 2024 IF: 6.216  
  Call Number PLASMANT @ plasmant @ Serial 9260  
Permanent link to this record
 

 
Author Arenas Esteban, D.; Wang, D.; Kadu, A.; Olluyn, N.; Sánchez-Iglesias, A.; Gomez-Perez, A.; González-Casablanca, J.; Nicolopoulos, S.; Liz-Marzán, L.M.; Bals, S. url  doi
openurl 
  Title Quantitative 3D structural analysis of small colloidal assemblies under native conditions by liquid-cell fast electron tomography Type A1 Journal Article
  Year 2024 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 15 Issue 1 Pages 6399  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Electron tomography has become a commonly used tool to investigate the three-dimensional (3D) structure of nanomaterials, including colloidal nanoparticle assemblies. However, electron microscopy is typically done under high-vacuum conditions, requiring sample preparation for assemblies obtained by wet colloid chemistry methods. This involves solvent evaporation and deposition on a solid support, which consistently alters the nanoparticle organization. Here, we suggest using electron tomography to study nanoparticle assemblies in their original colloidal liquid environment. To address the challenges related to electron tomography in liquid, we devise a method that combines fast data acquisition in a commercial liquid-cell with a dedicated alignment and reconstruction workflow. We present the advantages of this methodology in accurately characterizing two different systems. 3D reconstructions of assemblies comprising polystyrene-capped Au nanoparticles encapsulated in polymeric shells reveal less compact and more distorted configurations for experiments performed in a liquid medium compared to their dried counterparts. A similar expanded trend can be observed in quantitative analysis of the surface-to-surface distances of self-assembled Au nanorods in water rather than in a vacuum, which agrees with bulk measurements. This study, therefore, emphasizes the importance of developing high-resolution characterization tools that preserve the native environment of colloidal nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001281 Publication Date (down) 2024-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 16.6 Times cited Open Access  
  Notes S.B., D.A.E., D.W., N.O., and A.K. acknowledge financial support from ERC Consolidator Grant Number 815128 REALNANO and Horizon Europe MSCA-SE no. 101131111 – DELIGHT. D.W. acknowledges an Individual Fellowship funded by the Marie Skłodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). L.M.L.M. acknowledges financial support from Project PID2020-117779RB-I00, State Research Agency of Spain, Ministry of Science and Innovation. Approved Most recent IF: 16.6; 2024 IF: 12.124  
  Call Number EMAT @ emat @c:irua:207654 Serial 9272  
Permanent link to this record
 

 
Author Ghosh, S.; Pradhan, B.; Bandyopadhyay, A.; Skvortsova, I.; Zhang, Y.; Sternemann, C.; Paulus, M.; Bals, S.; Hofkens, J.; Karki, K.J.; Materny, A. url  doi
openurl 
  Title Rashba-type band splitting effect in 2D (PEA)₂PbI₄ perovskites and its impact on exciton-phonon coupling Type A1 Journal article
  Year 2024 Publication The journal of physical chemistry letters Abbreviated Journal  
  Volume 15 Issue 31 Pages 7970-7978  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Despite a few recent reports on Rashba effects in two-dimensional (2D) Ruddlesden-Popper (RP) hybrid perovskites, the precise role of organic spacer cations in influencing Rashba band splitting remains unclear. Here, using a combination of temperature-dependent two-photon photoluminescence (2PPL) and time-resolved photoluminescence spectroscopy, alongside density functional theory (DFT) calculations, we contribute to significant insights into the Rashba band splitting found for 2D RP hybrid perovskites. The results demonstrate that the polarity of the organic spacer cation is crucial in inducing structural distortions that lead to Rashba-type band splitting. Our investigations show that the intricate details of the Rashba band splitting occur for organic cations with low polarity but not for more polar ones. Furthermore, we have observed stronger exciton-phonon interactions due to the Rashba-type band splitting effect. These findings clarify the importance of selecting appropriate organic spacer cations to manipulate the electronic properties of 2D perovskites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001280 Publication Date (down) 2024-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.7 Times cited Open Access  
  Notes Approved Most recent IF: 5.7; 2024 IF: 9.353  
  Call Number UA @ admin @ c:irua:207672 Serial 9313  
Permanent link to this record
 

 
Author Maerivoet, S.; Wanten, B.; De Meyer, R.; Van Hove, M.; Van Alphen, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Effect of O2on Plasma-Based Dry Reforming of Methane: Revealing the Optimal Gas Composition via Experiments and Modeling of an Atmospheric Pressure Glow Discharge Type A1 Journal Article
  Year 2024 Publication ACS Sustainable Chemistry & Engineering Abbreviated Journal ACS Sustainable Chem. Eng.  
  Volume 12 Issue 30 Pages 11419-11434  
  Keywords A1 Journal Article; plasma-based conversion, thermal plasma, syngas production, CO2 conversion, CH4 conversio; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma technology is gaining increasing interest for the conversion of greenhouse gases, such as CO2 and CH4, into value-added chemicals using (renewable) electricity. In this paper, we study the effect of O2 addition to the combined conversion of CO2 and CH4 in an atmospheric pressure glow discharge plasma. This process is called “oxidative CO2 reforming of methane”, and we search for the optimal gas mixing ratio in terms of conversion, energy cost, product output and plasma stability. A mixing ratio of 42.5:42.5:15 CO2/CH4/O2 yields the best performance, with a CO2 and CH4 conversion of 50 and 74%, respectively, and an energy cost as low as 2 eV molecule−1 (corresponding to 7.9 kJ L−1 and 190 kJ mol−1), i.e., clearly below the target defined to be competitive with other technologies. The syngas components (CO and H2) are the most important products, with a syngas ratio, H2/CO, being 0.8. Plasma destabilization at high CH4 fractions due to solid carbon formation is the limiting factor for further improving this syngas ratio. The solid carbon material is found to be contaminated with steel particles originating from the electrode material, rendering it unappealing as a side product. Therefore, O2 addition helps to remove the carbon formation. Besides the experiments, we developed a 2D axisymmetric fluid dynamics model, which can successfully predict the experimental trends in conversion, product composition and temperatures, while providing unique insights in the formation of CxHy species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001280 Publication Date (down) 2024-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.4 Times cited Open Access  
  Notes Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, 40007511 G0I1822N ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2024 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:207488 Serial 9257  
Permanent link to this record
 

 
Author Bacaksiz, C.; Fyta, M. url  doi
openurl 
  Title Phthalocyanine adsorbed on monolayer CrI₃ : tailoring their magnetic properties Type A1 Journal article
  Year 2024 Publication ACS Omega Abbreviated Journal  
  Volume 9 Issue 32 Pages 34589-34596  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Metallo-phthalocyanines molecules, especially ironphthalocyanines (Fe-Pc), are often examined due to their rich chemical, magnetic, and optoelectronic features. Due to these, Fe-Pc molecules are promising for applications in gas sensors, field-effect transistors, organic LEDs, and data storage. Motivated by this potential, this study investigates Fe-Pc molecules adsorbed on a magnetic monolayer, CrI3. Using quantum-mechanical simulations, the aim of this work was to find pathways to selectively tune and engineer the magnetic and electronic properties of the molecules when they form hybrid complexes. The results quantitatively underline how adsorption alters the magnetic properties of the Fe-Pc molecules. Interestingly, the analysis points to changes in the molecular magnetic anisotropy when comparing the magnetic moment of the isolated molecule to that of the molecule/monolayer complex formed after adsorption. The presence of iodine vacancies was shown to enhance the magnetic interactions between the iron of the Fe-Pc molecule and the chromium of the monolayer. Our findings suggest ways to control oxygen capture-release properties through material choice and defect creation. Insights into the stability and charge density depletion on the molecule provide critical information for selective tuning of the magnetic properties and engineering of the functionalities of these molecule/material complexes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001280 Publication Date (down) 2024-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.1 Times cited Open Access  
  Notes Approved Most recent IF: 4.1; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:207512 Serial 9310  
Permanent link to this record
 

 
Author Schram, J.; Parrilla, M.; Sleegers, N.; Slosse, A.; Van Durme, F.; van Nuijs, A.L.N.; De Wael, K. pdf  doi
openurl 
  Title Electrochemical classification of benzodiazepines : a comprehensive approach combining insights from voltammetry and liquid chromatography – mass spectrometry Type A1 Journal article
  Year 2024 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal  
  Volume 279 Issue Pages 126623-10  
  Keywords A1 Journal article; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract The growing non-medical use of benzodiazepines (BZs) has led to the emergence of counterfeit BZ pills and new psycho-active substances (NPS) in the BZ class on the illicit market. Comprehensive analytical methods for BZ identification are required to allow law enforcement, first aid responders and drug-checking services to analyze a variety of sample types and contents to make timely decisions on the spot. In this work, the electrochemical behavior of diazepam (DZ), clonazepam (CZ) and alprazolam (AP) is studied on graphite screen-printed electrodes, both with and without dissolved oxygen in the solution, to link their redox signals to their chemical structure. After elucidation of their reduction mechanisms using liquid chromatography coupled to highresolution mass spectrometry, three structural classes (Class 1, Class 2 and Class 3) were defined, each with different redox centers and electrochemical behavior. Subsequently, 22 confiscated pills containing 14 different BZs were correctly assigned to these three structural classes, with the deoxygenated conditions displaying the highest class selectivity. Finally, the three classes were successfully detected after being spiked into five alcoholic beverages in the context of drug-facilitated sexual assault. For analysis in red wine, which complicated the analysis by interfering with Class 1, a dual test strategy in pH 2 and pH 7 was proposed for accurate detection. Its rapid measurements, broad scope and lack of interference from diluents or colors makes this method a promising approach for aiding various services in combating problematic BZ use.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001285 Publication Date (down) 2024-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.1 Times cited Open Access  
  Notes Approved Most recent IF: 6.1; 2024 IF: 4.162  
  Call Number UA @ admin @ c:irua:207508 Serial 9285  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: