|
Record |
Links |
|
Author |
Sun, J.; Qu, Z.; Gao, Y.; Li, T.; Hong, J.; Zhang, T.; Zhou, R.; Liu, D.; Tu, X.; Chen, G.; Brüser, V.; Weltmann, K.-D.; Mei, D.; Fang, Z.; Borras, A.; Barranco, A.; Xu, S.; Ma, C.; Dou, L.; Zhang, S.; Shao, T.; Chen, G.; Liu, D.; Lu, X.; Bo, Z.; Chiang, W.-H.; Vasilev, K.; Keidar, M.; Nikiforov, A.; Jalili, A.R.; Cullen, P.J.; Dai, L.; Hessel, V.; Bogaerts, A.; Murphy, A.B.; Zhou, R.; Ostrikov, K.(K.) |
|
|
Title |
Plasma power-to-X (PP2X): status and opportunities for non-thermal plasma technologies |
Type |
A1 Journal Article |
|
Year |
2024 |
Publication |
Journal of Physics D: Applied Physics |
Abbreviated Journal |
J. Phys. D: Appl. Phys. |
|
|
Volume |
57 |
Issue |
50 |
Pages |
503002 |
|
|
Keywords |
A1 Journal Article; plasma power-to-X, non-thermal plasma, gas conversion, plasma catalysis, renewable energy; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ; |
|
|
Abstract |
This article discusses the ‘power-to-X’ (P2X) concept, highlighting the integral role of non-thermal plasma (NTP) in P2X for the eco-friendly production of chemicals and valuable fuels. NTP with unique thermally non-equilibrium characteristics, enables exotic reactions to occur under ambient conditions. This review summarizes the plasma-based P2X systems, including plasma discharges, reactor configurations, catalytic or non-catalytic processes, and modeling techniques. Especially, the potential of NTP to directly convert stable molecules including CO<sub>2</sub>, CH<sub>4</sub>and air/N<sub>2</sub>is critically examined. Additionally, we further present and discuss hybrid technologies that integrate NTP with photocatalysis, electrocatalysis, and biocatalysis, broadening its applications in P2X. It concludes by identifying key challenges, such as high energy consumption, and calls for the outlook in plasma catalysis and complex reaction systems to generate valuable products efficiently and sustainably, and achieve the industrial viability of the proposed plasma P2X strategy. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
|
Publication Date |
2024-12-20 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-3727 |
ISBN |
|
Additional Links |
|
|
|
Impact Factor |
3.4 |
Times cited |
|
Open Access |
|
|
|
Notes |
Alexander von Humboldt Foundation; National Science Foundation, 1747760 ; Australian Research Council; |
Approved |
Most recent IF: 3.4; 2024 IF: 2.588 |
|
|
Call Number |
PLASMANT @ plasmant @ |
Serial |
9330 |
|
Permanent link to this record |