toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Pascucci, F. url  doi
openurl 
  Title Superfluidity in exciton bilayer systems : Josephson effect and collective modes as definitive identification-markers Type Doctoral thesis
  Year (down) 2024 Publication Abbreviated Journal  
  Volume Issue Pages xiii, 126 p.  
  Keywords Doctoral thesis; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract This thesis explores superfluidity in exciton bilayer systems, semiconductor structures with two thin conducting layers, one doped with electrons and the other with holes, separated by a few nanometers. Theoretical predictions suggest these systems can exhibit superfluid, supersolid, exciton normal solid, and Wigner crystal phases. Identifying clear markers of superfluidity is crucial due to experimental challenges in confirming excitonic superfluidity. This thesis focuses on two phenomena: the Josephson effect and density collective modes. For the Josephson effect, we propose an exciton bilayer Josephson junction in double monolayer Transition Metal Dichalcogenides. We suggest using the Shapiro method to measure the exciton Josephson current and propose fabricating the device with a tunable potential-barrier height. In low potential-barrier regions, the exciton superfluid flows over the barrier, while in high potential-barrier regions, flow is driven by quantum tunnelling. This helps delineate the boundary between Bose-Einstein Condensate (BEC) and BCS-BEC crossover regimes. For density collective modes, we examine low-temperature behaviour to identify the normal-superfluid transition as a function of density. In the normal state at high density, the system exhibits low-energy optic and acoustic modes. As density decreases, entering the superfluid phase, the response changes, with the superfluid gap blocking these modes. We expect pair-breaking collective modes to appear at the onset of exciton superfluidity due to the Coulomb interaction. Our theoretical model developed using a path-integral approach and the Hartree-Fock approximation, includes screening and intralayer correlations. We calculate gap and number equations governing superfluid phase behaviour, showing that intralayer correlations enhance screening, especially in the BCS-BEC crossover regime. This leads to a reduced superfluid gap, a shift in the BEC to BCS-BEC crossover boundary to lower densities, and the disappearance of a predicted minimum in electron-hole pair size. This study advances the understanding of superfluidity in exciton bilayer systems, providing theoretical predictions and experimental proposals. By identifying clear markers of superfluidity, this work contributes to the broader effort of realizing and characterizing excitonic condensed phases in realistic systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:207852 Serial 9318  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: