toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Cherigui, E.A.M.; Şentosun, K.; Mamme, M.H.; Lukaczynska, M.; Terryn, H.; Bals, S.; Ustarroz, J.
  Title On the control and effect of water content during the electrodeposition of Ni nanostructures from deep eutectic solvents Type A1 Journal article
  Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 122 Issue 122 Pages 23129-23142
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The electrodeposition of nickel nanostructures on glassy carbon was investigated in 1:2 choline chloride urea deep eutectic solvent (DES) containing different amounts of water. By combining electrochemical techniques, with ex situ field emission scanning electron microscopy, high-angle annular dark field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy, the effect of water content on the electrochemical processes occurring during nickel deposition was better understood. At highly negative potentials and depending on water content, Ni growth is halted due to water splitting and formation of a mixed layer of Ni/NiOx(OH)(2(1-x)(ads)). Moreover, under certain conditions, the DES components can also be (electro)chemically reduced at the electrode surface, blocking further three-dimensional growth of the Ni NPs. Hence, a two-dimensional crystalline Ni-containing network can be formed in the interparticle region.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000447471700038 Publication Date 2018-09-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 27 Open Access OpenAccess
  Notes ; E.A.M.C. and M.H.M. acknowledge funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, research project G019014N). S.B. acknowledges funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). Finally, J.U. acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). ; ecas_sara Approved Most recent IF: 4.536
  Call Number UA @ lucian @ c:irua:154731 Serial 5121
Permanent link to this record
 

 
Author Wu, S.-M.; Liu, X.-L.; Lian, X.-L.; Tian, G.; Janiak, C.; Zhang, Y.-X.; Lu, Y.; Yu, H.-Z.; Hu, J.; Wei, H.; Zhao, H.; Chang, G.-G.; Van Tendeloo, G.; Wang, L.-Y.; Yang, X.-Y.; Su, B.-L.
  Title Homojunction of oxygen and titanium vacancies and its interfacial n-p effect Type A1 Journal article
  Year 2018 Publication Advanced materials Abbreviated Journal Adv Mater
  Volume 30 Issue 32 Pages 1802173
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The homojunction of oxygen/metal vacancies and its interfacial n-p effect on the physiochemical properties are rarely reported. Interfacial n-p homojunctions of TiO2 are fabricated by directly decorating interfacial p-type titanium-defected TiO2 around n-type oxygen-defected TiO2 nanocrystals in amorphous-anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO2; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D H-1 TQ-SQ MAS NMR are present. Amorphous-anatase TiO2 shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n-type to p-type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new homojunction of oxygen and titanium vacancies concept, characteristics, and mechanism are proposed at an atomic-/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000440813300022 Publication Date 2018-06-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19.791 Times cited 39 Open Access Not_Open_Access
  Notes ; This work was supported by National Key R&D Program of China (2017YFC1103800), National SFC (U1662134, U1663225, 51472190, 51611530672, 21711530705, 51503166, 21706199), ISTCP (2015DFE52870), PCSIRT (IRT_15R52), HPNSF (2016CFA033, 2017CFB487), and SKLPPC (PPC2016007). ; Approved Most recent IF: 19.791
  Call Number UA @ lucian @ c:irua:153106 Serial 5105
Permanent link to this record
 

 
Author Ren, Z.; Wu, M.; Chen, X.; Li, W.; Li, M.; Wang, F.; Tian, H.; Chen, J.; Xie, Y.; Mai, J.; Li, X.; Lu, X.; Lu, Y.; Zhang, H.; Van Tendeloo, G.; Zhang, Z.; Han, G.
  Title Electrostatic force-driven oxide heteroepitaxy for interface control Type A1 Journal article
  Year 2018 Publication Advanced materials Abbreviated Journal Adv Mater
  Volume 30 Issue 38 Pages 1707017
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Oxide heterostructure interfaces create a platform to induce intriguing electric and magnetic functionalities for possible future devices. A general approach to control growth and interface structure of oxide heterostructures will offer a great opportunity for understanding and manipulating the functionalities. Here, it is reported that an electrostatic force, originating from a polar ferroelectric surface, can be used to drive oxide heteroepitaxy, giving rise to an atomically sharp and coherent interface by using a low-temperature solution method. These heterostructures adopt a fascinating selective growth, and show a saturation thickness and the reconstructed interface with concentrated charges accumulation. The ferroelectric polarization screening, developing from a solid-liquid interface to the heterostructure interface, is decisive for the specific growth. At the interface, a charge transfer and accumulation take place for electrical compensation. The facile approach presented here can be extremely useful for controlling oxide heteroepitaxy and producing intriguing interface functionality via electrostatic engineering.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000444671900002 Publication Date 2018-08-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19.791 Times cited 4 Open Access Not_Open_Access
  Notes ; Z.H.R., M.J.W., and X.C. contributed equally to this work. This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51232006, 51472218, 11474249, 61574123, 11374009, and 11234011), the National 973 Program of China (Grant No. 2015CB654901), National Young 1000 Talents Program of China, the Fundamental Research Funds for the Central Universities (Grant No. 2017FZA4008), and the 111 Project under Grant No. B16042. J.M. and X.L. gratefully thank the beam time and technical supports provided by 23A SWAXS beamline at NSRRC, Hsinchu. ; Approved Most recent IF: 19.791
  Call Number UA @ lucian @ c:irua:153628 Serial 5098
Permanent link to this record
 

 
Author van der Burgt, J.S.; Geuchies, J.J.; van der Meer, B.; Vanrompay, H.; Zanaga, D.; Zhang, Y.; Albrecht, W.; Petukhov, A.V.; Filion, L.; Bals, S.; Swart, I.; Vanmaekelbergh, D.
  Title Cuboidal supraparticles self-assembled from cubic CsPbBr3 perovskite nanocrystals Type A1 Journal article
  Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 122 Issue 122 Pages 15706-15712
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Colloidal CsPbBr3 nanocrystals (NCs) have emerged as promising candidates for various opto-electronic applications, such as light-emitting diodes, photodetectors, and solar cells. Here, we report on the self-assembly of cubic NCs from an organic suspension into ordered cuboidal supraparticles (SPs) and their structural and optical properties. Upon increasing the NC concentration or by addition of a nonsolvent, the formation of the SPs occurs homogeneously in the suspension, as monitored by in situ X-ray scattering measurements. The three-dimensional structure of the SPs was resolved through high-angle annular dark-field scanning transmission electron microscopy and electron tomography. The NCs are atomically aligned but not connected. We characterize NC vacancies on superlattice positions both in the bulk and on the surface of the SPs. The occurrence of localized atomic-type NC vacancies-instead of delocalized ones-indicates that NC-NC attractions are important in the assembly, as we verify with Monte Carlo simulations. Even when assembled in SPs, the NCs show bright emission, with a red shift of about 30 meV compared to NCs in suspension.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000439003600071 Publication Date 2018-06-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 60 Open Access OpenAccess
  Notes ; The authors thank Dr. Rajeev Dattani and Jacques Gorini from the ID02 beamline of the ESRF for their excellent assistance during the X-ray scattering experiments. We also thank Carlo van Overbeek, P. Tim Prins, and Federico Montanarella for their support during the synchrotron experiments. The authors gratefully acknowledge Prof. Dr. Alfons van Blaaderen for fruitful discussions. D.V. acknowledges funding from NWO-CW TOPPUNT “Superficial superstructures.” J.J.G. acknowledges the joint Debye and ESRF graduate programs for the financial support. H.V. gratefully acknowledges the financial support by the Flemish Fund for Scientific Research (FWO grant 1S32617NN). S.B. acknowledges the financial support from the European Research Council (ERC Starting grant # 335078-COLOURATOMS). Y.Z. acknowledges the financial support from the European Union's Horizon 2020 research and innovation program, under the Marie Sklodowska-Curie grant agreement #665501 through a FWO [PEGASUS]2 Marie Sklodowska-Curie fellowship (12U4917N). W.A. acknowledges the financial support from the European Research Council under the European Unions Seventh Framework Program (FP-2007-2013)/ERC Advanced grant agreement 291667 HierarSACol. ; ecas_Sara Approved Most recent IF: 4.536
  Call Number UA @ lucian @ c:irua:153161UA @ admin @ c:irua:153161 Serial 5087
Permanent link to this record
 

 
Author Jimenez-Mena, N.; Jacques, P.J.; Ding, L.; Gauquelin, N.; Schryvers, D.; Idrissi, H.; Delannay, F.; Simar, A.
  Title Enhancement of toughness of Al-to-steel Friction Melt Bonded welds via metallic interlayers Type A1 Journal article
  Year 2019 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct
  Volume 740-741 Issue Pages 274-284
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The toughness of Al-to-steel welds decreases with increasing thickness of the intermetallic (IM) layer formed at the interface. Co plating has been added as interlayer in Al-to-steel Friction Melt Bonded (FMB) welds to control the nature and thickness of the IM layer. In comparison to a weld without interlayer, Co plating brings about a reduction of the thickness of the IM layer by 70%. The critical energy release rate of the crack propagating in the weld is used as an indicator of toughness. It is evaluated via an adapted crack propagation test using an energy conservation criterion. For a weld without interlayer, critical energy release rate is found to increase when the thickness of the intermetallic layer decreases. When the intermetallic layer is thick, the crack propagates in a brittle manner through the intermetallic whereas, at low layer thickness, the crack deviates and partially propagates through the Al plate, which causes an increase of toughness. The use of a Co interlayer brings about an increase of toughness by causing full deviation of the crack towards the Al plate.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000453494500029 Publication Date 2018-10-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0921-5093 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.094 Times cited 4 Open Access Not_Open_Access: Available from 25.10.2020
  Notes The authors acknowledge the financial support of the Interuniversity Attraction Poles Program from the Belgian State through the Belgian Policy Agency, Belgium, contract IAP7/21 INTEMATE. N. Jimenez-Mena acknowledges the financial support of the (Fonds pour la formation à la recherchedans l'industrie et dans l'agriculture (FRIA), Belgium. A. Simar acknowledges the financial support of the (European Research Council – Starting Grant (ERC-StG), project ALUFIX, grant agreement no 716678. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS), Belgium. The authors also acknowledge M. Coulombier for the help provided in the measurement of the friction coefficient, and T. Pardoen and F. Lani for the fruitful discussions. Approved Most recent IF: 3.094
  Call Number EMAT @ emat @c:irua:154866UA @ admin @ c:irua:154866 Serial 5061
Permanent link to this record
 

 
Author Pourbabak, S.; Montero-Sistiaga, M.L.; Schryvers, D.; Van Humbeeck, J.; Vanmeensel, K.
  Title Microscopic investigation of as built and hot isostatic pressed Hastelloy X processed by Selective Laser Melting Type A1 Journal article
  Year 2019 Publication Materials characterization Abbreviated Journal Mater Charact
  Volume 153 Issue Pages 366-371
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Microstructural characteristics of Hastelloy X produced by Selective Laser Melting have been investigated by various microscopic techniques in the as built (AB) condition and after hot isostatic pressing (HIP). At sub-grain level the AB material consists of columnar high density dislocation cells while the HIP sample consists of columnar sub-grains with lower dislocation density that originate from the original dislocation cells, contradicting existing models. The sub-grains contain nanoscale precipitates enriched in Al, Ti, Cr and O, located at sub-grain boundaries in the AB condition and within the grains after HIP. At some grain boundaries, micrometer sized chromium carbides are detected after HIP. Micro hardness within the grains was found to decrease after HIP, which was attributed to the decrease in dislocation density due to recovery annealing.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000472696900040 Publication Date 2019-05-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.714 Times cited 2 Open Access Not_Open_Access
  Notes S.P. likes to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. The authors acknowledge ENGIE Research and Technology Division for the use of the SLM280HL machine and financial support. This work was also made possible through the AUHA13009 grant “TopSPIN for TEM nanostatistics” of the Flemish HERCULES foundation. Approved Most recent IF: 2.714
  Call Number EMAT @ emat @UA @ admin @ c:irua:159974 Serial 5178
Permanent link to this record
 

 
Author Kim, Y.; Che, F.; Jo, J.W.; Choi, J.; de Arquer, F.P.G.; Voznyy, O.; Sun, B.; Kim, J.; Choi, M.-J.; Quintero-Bermudez, R.; Fan, F.; Tan, C.S.; Bladt, E.; Walters, G.; Proppe, A.H.; Zou, C.; Yuan, H.; Bals, S.; Hofkens, J.; Roeffaers, M.B.J.; Hoogland, S.; Sargent, E.H.
  Title A Facet-Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics Type A1 Journal article
  Year 2019 Publication Advanced materials Abbreviated Journal Adv Mater
  Volume 31 Issue 31 Pages 1805580
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Colloidal nanocrystals combine size- and facet-dependent properties with solution processing. They offer thus a compelling suite of materials for technological applications. Their size- and facet-tunable features are studied in synthesis; however, to exploit their features in optoelectronic devices, it will be essential to translate control over size and facets from the colloid all the way to the film. Larger-diameter colloidal quantum dots (CQDs) offer the attractive possibility of harvesting infrared (IR) solar energy beyond absorption of silicon photovoltaics. These CQDs exhibit facets (nonpolar (100)) undisplayed in small-diameter CQDs; and the materials chemistry of smaller nanocrystals fails consequently to translate to materials for the short-wavelength IR regime. A new colloidal management strategy targeting the passivation of both (100) and (111) facets is demonstrated using distinct choices of cations and anions. The approach leads to narrow-bandgap CQDs with impressive colloidal stability and photoluminescence quantum yield. Photophysical studies confirm a reduction both in Stokes shift (approximate to 47 meV) and Urbach tail (approximate to 29 meV). This approach provides a approximate to 50% increase in the power conversion efficiency of IR photovoltaics compared to controls, and a approximate to 70% external quantum efficiency at their excitonic peak.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000465600000001 Publication Date 2019-03-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19.791 Times cited 74 Open Access OpenAccess
  Notes ; Y.K., F.C., J.W.J., and J.C. contributed equally. This work was supported by King Abdullah University of Science and Technology (KAUST, Office of Sponsored Research (OSR), Award No. OSR-2017-CPF-3325) and Ontario Research Fund-Research Excellence program (ORF7-Ministry of Research and Innovation, Ontario Research Fund-Research Excellence Round 7). E.B. gratefully acknowledges financial support by the Research Foundation-Flanders (FWO Vlaanderen). Y.K. received financial support from the DGIST R&D Programs of the Ministry of Science, ICT & Future Planning of Korea (18-ET-01). M.B.J.R. and J.H. acknowledge financial support from the Research Foundation-Flanders (FWO, grants nr ZW15_09-GOH6316 and G.098319N) and the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04). H.Y. acknowledges the Research Foundation-Flanders (FWO) for a postdoctoral fellowship. The authors thank L. Levina, R. Wolowiec, D. Kopilovic, and E. Palmiano for their technical help over the course of this research. ; Approved Most recent IF: 19.791
  Call Number UA @ admin @ c:irua:160392 Serial 5239
Permanent link to this record
 

 
Author Gan, Y.; Christensen, D.V.; Zhang, Y.; Zhang, H.; Krishnan, D.; Zhong, Z.; Niu, W.; Carrad, D.J.; Norrman, K.; von Soosten, M.; Jespersen, T.S.; Shen, B.; Gauquelin, N.; Verbeeck, J.; Sun, J.; Pryds, N.; Chen, Y.
  Title Diluted oxide interfaces with tunable ground states Type A1 Journal article
  Year 2019 Publication Advanced materials Abbreviated Journal Adv Mater
  Volume 31 Issue 10 Pages 1805970
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The metallic interface between two oxide insulators, such as LaAlO3/SrTiO3 (LAO/STO), provides new opportunities for electronics and spintronics. However, due to the presence of multiple orbital populations, tailoring the interfacial properties such as the ground state and metal-insulator transitions remains challenging. Here, an unforeseen tunability of the phase diagram of LAO/STO is reported by alloying LAO with a ferromagnetic LaMnO3 insulator without forming lattice disorder and at the same time without changing the polarity of the system. By increasing the Mn-doping level, x, of LaAl1-xMnxO3/STO (0 <= x <= 1), the interface undergoes a Lifshitz transition at x = 0.225 across a critical carrier density of n(c) = 2.8 x 10(13) cm(-2), where a peak T-SC approximate to 255 mK of superconducting transition temperature is observed. Moreover, the LaAl1-xMnxO3 turns ferromagnetic at x >= 0.25. Remarkably, at x = 0.3, where the metallic interface is populated by only d(xy) electrons and just before it becomes insulating, a same device with both signatures of superconductivity and clear anomalous Hall effect (7.6 x 10(12) cm(-2) < n(s) <= 1.1 x 10(13) cm(-2)) is achieved reproducibly. This provides a unique and effective way to tailor oxide interfaces for designing on-demand electronic and spintronic devices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000460329300004 Publication Date 2019-01-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19.791 Times cited 31 Open Access Not_Open_Access
  Notes ; The authors thank the technical help from J. Geyti. J.R.S. acknowledges the support of the National Basic Research of China (2016YFA0300701, 2018YFA0305704), the National Natural Science Foundation of China (11520101002), and the Key Program of the Chinese Academy of Sciences. N.G., D.K., and J.V. acknowledge funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp, Belgium. ; Approved Most recent IF: 19.791
  Call Number UA @ admin @ c:irua:158553 Serial 5245
Permanent link to this record
 

 
Author Wang, F.; Gao, T.; Zhang, Q.; Hu, Z.-Y.; Jin, B.; Li, L.; Zhou, X.; Li, H.; Van Tendeloo, G.; Zhai, T.
  Title Liquid-alloy-assisted growth of 2D ternaryGa2In4S9 toward high-performance UV photodetection Type A1 Journal article
  Year 2019 Publication Advanced materials Abbreviated Journal Adv Mater
  Volume 31 Issue 2 Pages 1806306
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract 2D ternary systems provide another degree of freedom of tuning physical properties through stoichiometry variation. However, the controllable growth of 2D ternary materials remains a huge challenge that hinders their practical applications. Here, for the first time, by using a gallium/indium liquid alloy as the precursor, the synthesis of high-quality 2D ternary Ga2In4S9 flakes of only a few atomic layers thick (approximate to 2.4 nm for the thinnest samples) through chemical vapor deposition is realized. Their UV-light-sensing applications are explored systematically. Photodetectors based on the Ga2In4S9 flakes display outstanding UV detection ability (R-lambda = 111.9 A W-1, external quantum efficiency = 3.85 x 10(4)%, and D* = 2.25 x 10(11) Jones@360 nm) with a fast response speed (tau(ring) approximate to 40 ms and tau(decay) approximate to 50 ms). In addition, Ga2In4S9-based phototransistors exhibit a responsivity of approximate to 10(4) A W-1@360 nm above the critical back-gate bias of approximate to 0 V. The use of the liquid alloy for synthesizing ultrathin 2D Ga2In4S9 nanostructures may offer great opportunities for designing novel 2D optoelectronic materials to achieve optimal device performance.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000455111100013 Publication Date 2018-11-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19.791 Times cited 29 Open Access Not_Open_Access
  Notes ; F.K.W., T.G, and Q.Z. contributed equally to this work. The authors acknowledge the support from National Nature Science Foundation of China (21825103, 51727809, 51472097, 91622117, and 51872069), National Basic Research Program of China (2015CB932600), and the Fundamental Research Funds for the Central Universities (2017KFKJXX007, 2015ZDTD038, 2017III055, and 2018III039GX). The authors thank the Analytical and Testing Centre of Huazhong University of Science and Technology. ; Approved Most recent IF: 19.791
  Call Number UA @ admin @ c:irua:156756 Serial 5254
Permanent link to this record
 

 
Author Samaee, V.; Sandfeld, S.; Idrissi, H.; Groten, J.; Pardoen, T.; Schwaiger, R.; Schryvers, D.
  Title Dislocation structures and the role of grain boundaries in cyclically deformed Ni micropillars Type A1 Journal article
  Year 2020 Publication Materials Science And Engineering A-Structural Materials Properties Microstructure And Processing Abbreviated Journal Mat Sci Eng A-Struct
  Volume 769 Issue Pages 138295
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Transmission electron microscopy and finite element-based dislocation simulations were combined to study the development of dislocation microstructures after cyclic deformation of single crystal and bicrystal Ni micropillars oriented for multi-slip. A direct correlation between large accumulation of plastic strain and the presence of dislocation cell walls in the single crystal micropillars was observed, while the presence of the grain boundary hampered the formation of wall-like structures in agreement with a smaller accumulated plastic strain. Automated crystallographic orientation and nanostrain mapping using transmission electron microscopy revealed the presence of lattice heterogeneities associated to the cell walls including long range elastic strain fields. By combining the nanostrain mapping with an inverse modelling approach, information about dislocation density, line orientation and Burgers vector direction was derived, which is not accessible otherwise in such dense dislocation structures. Simulations showed that the image forces associated with the grain boundary in this specific bicrystal configuration have only a minor influence on dislocation behavior. Thus, the reduced occurrence of “mature” cell walls in the bicrystal can be attributed to the available volume, which is too small to accommodate cell structures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000500373800018 Publication Date 2019-08-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0921-5093 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.4 Times cited 1 Open Access OpenAccess
  Notes Financial support from the Flemish (FWO) and German Research Foundation (DFG) through the European M-ERA.NET project “FaSS” (Fatigue Simulation near Surfaces) under the grant numbers GA.014.13 N,SCHW855/5-1, and SA2292/2-1 is gratefully acknowledged. V.S. acknowledges the FWO research project G012012 N “Understanding nanocrystalline mechanical behaviour from structural investigations”. H.I. is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). S.S. acknowledges financial support from the European Research Council through the ERC Grant Agreement No. 759419 (MuDiLingo – A Multiscale Dislocation Language for Data- Driven Materials Science). Approved Most recent IF: 6.4; 2020 IF: 3.094
  Call Number EMAT @ emat @c:irua:163475 Serial 5371
Permanent link to this record
 

 
Author Nerl, H.C.; Pokle, A.; Jones, L.; Müller‐Caspary, K.; Bos, K.H.W.; Downing, C.; McCarthy, E.K.; Gauquelin, N.; Ramasse, Q.M.; Lobato, I.; Daly, D.; Idrobo, J.C.; Van Aert, S.; Van Tendeloo, G.; Sanvito, S.; Coleman, J.N.; Cucinotta, C.S.; Nicolosi, V.
  Title Self‐Assembly of Atomically Thin Chiral Copper Heterostructures Templated by Black Phosphorus Type A1 Journal article
  Year 2019 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
  Volume 29 Issue 37 Pages 1903120
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000478478400001 Publication Date 2019-07-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.124 Times cited 1 Open Access OpenAccess
  Notes European Research Council, 2DNanoCaps TC2D CoG 3D2DPrint CoG Picometrics grant agreement No. 770887; Engineering and Physical Sciences Research Council, EP/P033555/1 EP/R029431 ; Science Foundation Ireland, HPC1600932 ; Approved Most recent IF: 12.124
  Call Number EMAT @ emat @c:irua:161901 Serial 5362
Permanent link to this record
 

 
Author Liao, Z.; Gauquelin, N.; Green, R.J.; Macke, S.; Gonnissen, J.; Thomas, S.; Zhong, Z.; Li, L.; Si, L.; Van Aert, S.; Hansmann, P.; Held, K.; Xia, J.; Verbeeck, J.; Van Tendeloo, G.; Sawatzky, G.A.; Koster, G.; Huijben, M.; Rijnders, G.
  Title Thickness dependent properties in oxide heterostructures driven by structurally induced metal-oxygen hybridization variations Type A1 Journal article
  Year 2017 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
  Volume 27 Issue 17 Pages 1606717
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Thickness-driven electronic phase transitions are broadly observed in different types of functional perovskite heterostructures. However, uncertainty remains whether these effects are solely due to spatial confinement, broken symmetry, or rather to a change of structure with varying film thickness. Here, this study presents direct evidence for the relaxation of oxygen-2p and Mn-3d orbital (p-d) hybridization coupled to the layer-dependent octahedral tilts within a La2/3Sr1/3MnO3 film driven by interfacial octahedral coupling. An enhanced Curie temperature is achieved by reducing the octahedral tilting via interface structure engineering. Atomically resolved lattice, electronic, and magnetic structures together with X-ray absorption spectroscopy demonstrate the central role of thickness-dependent p-d hybridization in the widely observed dimensionality effects present in correlated oxide heterostructures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000400449200011 Publication Date 2017-03-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.124 Times cited 55 Open Access
  Notes M.H., G.K., and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) Grant No. NMP3-LA-2010-246102 IFOX. J.V. and S.V.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (Grant Nos. G.0044.13N, G.0374.13N, G.0368.15N, and G.0369.15N). The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX. N.G., J.G., S.V.A., and J.V. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483-ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which was funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. Approved Most recent IF: 12.124
  Call Number UA @ admin @ c:irua:152640 Serial 5367
Permanent link to this record
 

 
Author Ramaneti, R.; Sankaran, K.J.; Korneychuk, S.; Yeh, C.J.; Degutis, G.; Leou, K.C.; Verbeeck, J.; Van Bael, M.K.; Lin, I.N.; Haenen, K.
  Title Vertically aligned diamond-graphite hybrid nanorod arrays with superior field electron emission properties Type A1 Journal article
  Year 2017 Publication APL materials Abbreviated Journal Apl Mater
  Volume 5 Issue 6 Pages 066102
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract A “patterned-seeding technique” in combination with a “nanodiamond masked reactive ion etching process” is demonstrated for fabricating vertically aligned diamond-graphite hybrid (DGH) nanorod arrays. The DGH nanorod arrays possess superior field electron emission (FEE) behavior with a low turn-on field, long lifetime stability, and large field enhancement factor. Such an enhanced FEE is attributed to the nanocomposite nature of theDGHnanorods, which contain sp(2)-graphitic phases in the boundaries of nano-sized diamond grains. The simplicity in the nanorod fabrication process renders the DGH nanorods of greater potential for the applications as cathodes in field emission displays and microplasma display devices. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000404623000002 Publication Date 2017-06-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2166-532x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.335 Times cited 16 Open Access
  Notes The authors would like to thank the Methusalem “NANO” network for financial support and Mr. B. Ruttens and Professor Jan D'Haen for technical and experimental assistance. K.J. Sankaran is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO). Approved Most recent IF: 4.335
  Call Number UA @ admin @ c:irua:152633 Serial 5369
Permanent link to this record
 

 
Author Crippa, F.; Rodriguez-Lorenzo, L.; Hua, X.; Goris, B.; Bals, S.; Garitaonandia, J.S.; Balog, S.; Burnand, D.; Hirt, A.M.; Haeni, L.; Lattuada, M.; Rothen-Rutishauser, B.; Petri-Fink, A.
  Title Phase transformation of superparamagnetic iron oxide nanoparticles via thermal annealing : implications for hyperthermia applications Type A1 Journal article
  Year 2019 Publication ACS applied nano materials Abbreviated Journal
  Volume 2 Issue 2 Pages 4462-4470
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Magnetic hyperthermia has the potential to play an important role in cancer therapy and its efficacy relies on the nanomaterials selected. Superparamagnetic iron oxide nanoparticles (SPIONs) are excellent candidates due to the ability of producing enough heat to kill tumor cells by thermal ablation. However, their heating properties depend strongly on crystalline structure and size, which may not be controlled and tuned during the synthetic process; therefore, a postprocessing is needed. We show how thermal annealing can be simultaneously coupled with ligand exchange to stabilize the SPIONs in polar solvents and to modify their crystal structure, which improves hyperthermia behavior. Using high-resolution transmission electron microscopy, X-ray diffraction, Mossbauer spectroscopy, vibrating sample magnetometry, and lock-in thermography, we systematically investigate the impact of size and ligand exchange procedure on crystallinity, their magnetism, and heating ability. We describe a valid and simple approach to optimize SPIONs for hyperthermia by carefully controlling the size, colloidal stability, and crystallinity.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000477917700048 Publication Date 2019-06-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 18 Open Access Not_Open_Access
  Notes ; This work was supported by the Swiss National Science Foundation through the National Center of Competence in Research Bio-Inspired Materials, the Adolphe Merkle Foundation, the University of Fribourg, and the European Society for Molecular Imaging (Grant E141200643). ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:161927 Serial 5393
Permanent link to this record
 

 
Author Retuerto, M.; Calle-Vallejo, F.; Pascual, L.; Lumbeeck, G.; Fernandez-Diaz, M.T.; Croft, M.; Gopalakrishnan, J.; Pena, M.A.; Hadermann, J.; Greenblatt, M.; Rojas, S.
  Title La1.5Sr0.5NiMn0.5Ru0.5O6 double perovskite with enhanced ORR/OER bifunctional catalytic activity Type A1 Journal article
  Year 2019 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
  Volume 11 Issue 24 Pages 21454-21464
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Perovskites (ABO(3)) with transition metals in active B sites are considered alternative catalysts for the water oxidation to oxygen through the oxygen evolution reaction (OER) and for the oxygen reduction through the oxygen reduction reaction (ORR) back to water. We have synthesized a double perovskite (A(2)BB'O-6) with different cations in A, B, and B' sites, namely, ((La15Sr0.5)-Sr-.)(A)(Ni0.5Mn0.5)(B)(Ni0.5Ru0.5)(B)O-6 (LSNMR), which displays an outstanding OER/ORR bifunctional performance. The composition and structure of the oxide has been determined by powder X-ray diffraction, powder neutron diffraction, and transmission electron microscopy to be monoclinic with the space group P2(1)/n and with cationic ordering between the ions in the B and B' sites. X-ray absorption near-edge spectroscopy suggests that LSNMR presents a configuration of similar to Ni2+, similar to Mn4+, and similar to Ru5+. This bifunctional catalyst is endowed with high ORR and OER activities in alkaline media, with a remarkable bifunctional index value of similar to 0.83 V (the difference between the potentials measured at -1 mA cm(-2) for the ORR and +10 mA cm(-2) for the OER). The ORR onset potential (E-onset) of 0.94 V is among the best reported to date in alkaline media for ORR-active perovskites. The ORR mass activity of LSNMR is 1.1 A g(-1) at 0.9 V and 7.3 A g(-1) at 0.8 V. Furthermore, LSNMR is stable in a wide potential window down to 0.05 V. The OER potential to achieve a current density of 10 mA cm(-2) is 1.66 V. Density functional theory calculations demonstrate that the high ORR/OER activity of LSNMR is related to the presence of active Mn sites for the ORR- and Ru-active sites for the OER by virtue of the high symmetry of the respective reaction steps on those sites. In addition, the material is stable to ORR cycling and also considerably stable to OER cycling.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000472683300019 Publication Date 2019-05-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.504 Times cited 12 Open Access
  Notes ; This work was supported by the ENE2016-77055-C3-3-R project from the Spanish Ministry of Economy and Competitiveness (MINECO) and PIE 201480E122 from CSIC. M.R. thanks MINECO's Juan de la Cierva program for a grant (FPDI-2013-17582). F.C.-V. thanks the Spanish MEC for a Ramon y Cajal research contract (RYC-2015-18996). M.G. acknowledges the support from NSF-DMR-1507252 grant, NJ, USA. ; Approved Most recent IF: 7.504
  Call Number UA @ admin @ c:irua:161320 Serial 5400
Permanent link to this record
 

 
Author Yang, M.; Chen, H.; Orekhov, A.; Lu, Q.; Lan, X.; Li, K.; Zhang, S.; Song, M.; Kong, Y.; Schryvers, D.; Du, Y.
  Title Quantified contribution of β″ and β′ precipitates to the strengthening of an aged Al–Mg–Si alloy Type A1 Journal article
  Year 2020 Publication Materials Science And Engineering A-Structural Materials Properties Microstructure And Processing Abbreviated Journal Mat Sci Eng A-Struct
  Volume 774 Issue Pages 138776
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract It is generally believed that β00 precipitates, rather than β0 precipitates, are the major strengthening precipitates in

aged Al–Mg–Si alloys. The reason for this difference is not well understood. To clarify this, two samples of the

same Al–Mg–Si alloy but with different aging states were prepared. The under-aged sample only contains nanoprecipitates

of the β00 type, while the peak-aged one contains nearly equal volumes of β00 and β0 precipitates. We

have, for the first time, separated the strengthening effect of the contribution from βʺ and βʹ precipitates,

respectively, by an indirect approach based on high-precision measurements of volume fractions, number densities,

sizes, proportions of the precipitates, their lattice strains, the composition and grain size of the matrix. The

β0 precipitates, which take 45.6% of the total precipitate volume in the peak-aged sample, contribute to the entire

precipitation strengthening by only 31.6%. The main reason why they are less useful compared to β00 precipitates

has been found to be associated with their smaller lattice strains relative to the matrix, which is 0.99% versus

2.10% (for β00 ).
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000514747200001 Publication Date 2019-12-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0921-5093 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.4 Times cited Open Access OpenAccess
  Notes National Natural Science Foundation of China, 51531009 51711530713 51501230 ; Central South University, 2018gczd033 ; Flemish Science Foundation, VS.026.18N ; Program for Guangdong Introducing Innovative and Entrepreneurial Teams, 2016ZT06G025 ; Guangdong Natural Science Foundation, 2017B030306014 ; Approved Most recent IF: 6.4; 2020 IF: 3.094
  Call Number EMAT @ emat @c:irua:165290 Serial 5440
Permanent link to this record
 

 
Author Boyat, X.; Ballat-Durand, D.; Marteau, J.; Bouvier, S.; Favergeon, J.; Orekhov, A.; Schryvers, D.
  Title Interfacial characteristics and cohesion mechanisms of linear friction welded dissimilar titanium alloys: Ti–5Al–2Sn–2Zr–4Mo–4Cr (Ti17) and Ti–6Al–2Sn–4Zr–2Mo (Ti6242) Type A1 Journal article
  Year 2019 Publication Materials characterization Abbreviated Journal Mater Charact
  Volume 158 Issue Pages 109942
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract A detailed microstructural examination endeavoring to understand the interfacial phenomena yielding to cohesion

in solid-state assembling processes was performed. This study focuses on the transition zone of a dissimilar

titanium alloy joint obtained by Linear Friction Welding (LFW) the β-metastable Ti17 to the near-α

Ti6242. The transition zone delimitating both alloys is characterized by a sharp microstructure change from

acicular HCP (Hexagonal Close-Packed) α′ martensitic laths in the Ti6242 to equiaxed BCC β (Body-Centered

Cubic) subgrains in the Ti17; these α′ plates were shown to precipitate within prior-β subgrains remarkably more

rotated than the ones formed in the Ti17. Both α′ and β microstructures were found to be intermingled within

transitional subgrains demarcating a limited gradient from one chemical composition to the other. These peculiar

interfacial grains revealed that the cohesive mechanisms between the rubbing surfaces occurred in the

single-phase β domain under severe strain and high-temperature conditions. During the hot deformation process,

the mutual migration of the crystalline interfaces from one material to another assisted by a continuous dynamic

recrystallization process was identified as the main adhesive mechanism at the junction zone. The latter led to

successful cohesion between the rubbing surfaces. Once the reciprocating motion stopped, fast cooling caused

both materials to experience either a βlean→α′ or βlean→βmetastable transformation in the interfacial zone depending

on their local chemical composition. The limited process time and the subsequent hindered chemical

homogenization at the transition zone led to retaining the so-called intermingled α’/βm subgrains constituting

the border between both Ti-alloys.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000503314000018 Publication Date 2019-10-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.714 Times cited Open Access
  Notes The authors gratefully acknowledge the financial support of the French National Research Agency (ANR) through the OPTIMUM ANR- 14-CE27-0017 project. The authors would also like to thank the Hautsde- France Region and the European Regional Development Fund (ERDF) 2014/2020 for the co-funding of this work. The authors would also like to thank ACB for providing LFW samples as well as Airbus for their technical support. Approved Most recent IF: 2.714
  Call Number EMAT @ emat @c:irua:165084 Serial 5441
Permanent link to this record
 

 
Author Sirotina, A.P.; Callaert, C.; Volykhov, A.A.; Frolov, A.S.; Sanchez-Barriga, J.; Knop-Gericke, A.; Hadermann, J.; Yashina, L.V.
  Title Mechanistic studies of gas reactions with multicomponent solids : what can we learn by combining NAP XPS and atomic resolution STEM/EDX? Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 123 Issue 43 Pages 26201-26210
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Rapid development of experimental techniques has enabled real time studies of solid gas reactions at the level reaching the atomic scale. In the present paper, we focus on a combination of atomic resolution STEM/EDX, which visualizes the reaction zone, and near ambient pressure (NAP) XPS, which collects information for a surface layer of variable thickness under reaction conditions. We compare the behavior of two affined topological insulators, Bi2Te3 and Sb2Te3. We used a simple reaction with molecular oxygen occurring at 298 K, which is of practical importance to avoid material degradation. Despite certain limitations, a combination of in situ XPS and ex situ cross-sectional STEM/EDX allowed us to obtain a self-consistent picture of the solid gas reaction mechanism for oxidation of Sb2Te3 and Bi2Te3 crystals, which includes component redistribution between the oxide and the subsurface layer and Te segregation with formation of a thin ordered layer at the interface. The process is multistep in case of both compounds. At the very beginning of the oxidation process the reactivity is determined by the energy benefit of the corresponding element oxygen bond formation. Further in the oxidation process, the behavior of these two compounds becomes similar and features component redistribution between the oxide and the subsurface layer.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000493865700019 Publication Date 2019-10-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited Open Access
  Notes Approved Most recent IF: 4.536
  Call Number UA @ admin @ c:irua:164664 Serial 6310
Permanent link to this record
 

 
Author Jin, B.; Liang, F.; Hu, Z.-Y.; Wei, P.; Liu, K.; Hu, X.; Van Tendeloo, G.; Lin, Z.; Li, H.; Zhou, X.; Xiong, Q.; Zhai, T.
  Title Nonlayered CdSe flakes homojunctions Type A1 Journal article
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater
  Volume 30 Issue 30 Pages 1908902
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract 2D homojunctions have stimulated extensive attention because of their perfect thermal and lattice matches, as well as their tunable band structures in 2D morphology, which provide fascinating opportunities for novel electronics and optoelectronics. Recently, 2D nonlayered materials have attracted the attention of researchers owing to their superior functional applications and diverse portfolio of the 2D family. Therefore, 2D nonlayered homojunctions would open the door to a rich spectrum of exotic 2D materials. However, they are not investigated due to their extremely difficult synthesis methods. Herein, nonlayered CdSe flakes homojunctions are obtained via self-limited growth with InCl3 as a passivation agent. Interestingly, two pieces of vertical wurtzite-zinc blende (WZ-ZB) homojunctions epitaxially integrate into WZ/ZB lateral junctions. These homojunctions show a divergent second-harmonic generation intensity, strongly correlated to the multiple twinned ZB phase, as identified by aberration-corrected scanning transmission electron microscopy and theoretical calculations. Impressively, the photodetector based on this WZ/ZB CdSe homojunction shows excellent performances, integrating a high photoswitching ratio (3.4 x 10(5)) and photoresponsivity (3.7 x 10(3) A W-1), suggesting promising potential for applications in electronics and optoelectronics.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000508624800001 Publication Date 2020-01-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19 Times cited 8 Open Access Not_Open_Access
  Notes ; This work was supported by the National Natural Science Foundation of China (Grant Nos. 21825103, 51727809, and 51802103), the Hubei Provincial Natural Science Foundation of China (2019CFA002), and the Fundamental Research Funds for the Central Universities (HUST: 2019kfyXMBZ018; WUT: 2019III012GX). Here the authors also thank the support from Analytical and Testing Center in HUST and the State Key Laboratory of Silicate Materials for Architectures in WUT. ; Approved Most recent IF: 19; 2020 IF: 12.124
  Call Number UA @ admin @ c:irua:165654 Serial 6314
Permanent link to this record
 

 
Author Tran Phong Le, P.; Hofhuis, K.; Rana, A.; Huijben, M.; Hilgenkamp, H.; Rijnders, G.A.J.H.M.; ten Elshof, J.E.; Koster, G.; Gauquelin, N.; Lumbeeck, G.; Schuessler-Langeheine, C.; Popescu, H.; Fortuna, F.; Smit, S.; Verbeek, X.H.; Araizi-Kanoutas, G.; Mishra, S.; Vaskivskyi, I.; Duerr, H.A.; Golden, M.S.
  Title Tailoring vanadium dioxide film orientation using nanosheets : a combined microscopy, diffraction, transport, and soft X-ray in transmission study Type A1 Journal article
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater
  Volume 30 Issue 1 Pages 1900028
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Vanadium dioxide (VO2) is a much-discussed material for oxide electronics and neuromorphic computing applications. Here, heteroepitaxy of VO2 is realized on top of oxide nanosheets that cover either the amorphous silicon dioxide surfaces of Si substrates or X-ray transparent silicon nitride membranes. The out-of-plane orientation of the VO2 thin films is controlled at will between (011)(M1)/(110)(R) and (-402)(M1)/(002)(R) by coating the bulk substrates with Ti0.87O2 and NbWO6 nanosheets, respectively, prior to VO2 growth. Temperature-dependent X-ray diffraction and automated crystal orientation mapping in microprobe transmission electron microscope mode (ACOM-TEM) characterize the high phase purity, the crystallographic and orientational properties of the VO2 films. Transport measurements and soft X-ray absorption in transmission are used to probe the VO2 metal-insulator transition, showing results of a quality equal to those from epitaxial films on bulk single-crystal substrates. Successful local manipulation of two different VO2 orientations on a single substrate is demonstrated using VO2 grown on lithographically patterned lines of Ti0.87O2 and NbWO6 nanosheets investigated by electron backscatter diffraction. Finally, the excellent suitability of these nanosheet-templated VO2 films for advanced lensless imaging of the metal-insulator transition using coherent soft X-rays is discussed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000505545800010 Publication Date 2019-10-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19 Times cited 1 Open Access OpenAccess
  Notes P.T.P.L. and K.H. contributed equally to this work. The authors thank Mark A. Smithers for performing high-resolution scanning electron microscopy and electron backscattering diffraction. The authors also thank Dr. Nicolas Jaouen for his contribution to the soft X-ray imaging experiments. This work is part of the DESCO research program of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). P.T.P.L. acknowledges the NWO/CW ECHO grant ECHO.15.CM2.043. N.G. acknowledges funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and the FLAG-ERA JTC 2017 project GRAPH-EYE. G.L. acknowledges financial support from the Flemish Research Fund (FWO) under project G.0365.15N. I.V. acknowledges support by the U.S. Department of Energy, Office of Science under Award Number 0000231415. Approved Most recent IF: 19; 2020 IF: 12.124
  Call Number UA @ admin @ c:irua:165705 Serial 6325
Permanent link to this record
 

 
Author Canossa, S.; Ji, Z.; Wuttke, S.
  Title Circumventing Wear and Tear of Adaptive Porous Materials Type A1 Journal article
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater
  Volume Issue Pages 1908547
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The assessment of the architectural stability of molecular porous materials is not yet a common practice, but critical to their understanding and development. The conformational adaptation of porous materials to guest binding and other chemical dynamics poses a risk of architectural damage, leading to performance deterioration during their prolonged usage. The deformation of the framework backbone and the disconnection of building units are driven by chemical, mechanical, and thermal perturbations, and can be quantitatively described by the term connection completeness. Analytical means that can be used to measure this parameter are presented in order to provide a standard, practical protocol for evaluating architectural damage made to framework materials. Preventive and remedial strategies are proposed for enhancing the architectural integrity of frameworks without compromising their functional mechanisms, paving the way to the design of robust yet adaptive materials. In this way, the discussion on architectural stability is initiated, and readers are encouraged to carefully characterize molecular porous materials for a better understanding of their structure-property relationship.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000511238300001 Publication Date 2020-02-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19 Times cited Open Access OpenAccess
  Notes Fonds Wetenschappelijk Onderzoek, 12ZV120N ; Approved Most recent IF: 19; 2020 IF: 12.124
  Call Number EMAT @ emat @c:irua:166505 Serial 6387
Permanent link to this record
 

 
Author Caglak, E.; Govers, K.; Lamoen, D.; Labeau, P.-E.; Verwerft, M.
  Title Atomic scale analysis of defect clustering and predictions of their concentrations in UO2+x Type A1 Journal article
  Year 2020 Publication Journal Of Nuclear Materials Abbreviated Journal J Nucl Mater
  Volume 541 Issue Pages 152403
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The physical properties of uranium dioxide vary greatly with stoichiometry. Oxidation towards hyperstoichiometric UO2 – UO2+x – might be encountered at various stages of the nuclear fuel cycle if oxidative conditions are met; the impact of stoichiometry changes upon physical properties should therefore be properly assessed to ensure safe and reliable operations. These physical properties are intimately linked to the arrangement of atomic defects in the crystalline structure. The evolution of the defect concentration with environmental parameters – oxygen partial pressure and temperature – were evaluated by means of a point defect model where the reaction energies are derived from atomic-scale simulations. To this end, various configurations and net charge states of oxygen interstitial clusters in UO2 have been calculated. Various methodologies have been tested to determine the optimum cluster configurations and a rigid lattice approach turned out to be the most useful strategy to optimize defect configuration structures. Ultimately, results from the point defect model were discussed and compared to experimental measurements of stoichiometry dependence on oxygen partial pressure and temperature.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000575165800006 Publication Date 2020-08-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.1 Times cited Open Access OpenAccess
  Notes This work is dedicated to the memory of Prof. Alain Dubus, ULB, Bruxelles, Belgium. Financial support from the SCK CEN is gratefully acknowledged. Approved Most recent IF: 3.1; 2020 IF: 2.048
  Call Number EMAT @ emat @c:irua:172464 Serial 6402
Permanent link to this record
 

 
Author Ji, Z.; Wang, H.; Canossa, S.; Wuttke, S.; Yaghi, O.M.
  Title Pore Chemistry of Metal–Organic Frameworks Type A1 Journal article
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater
  Volume 30 Issue 41 Pages 2000238
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The pores in metal–organic frameworks (MOFs) can be functionalized by placing chemical entities along the backbone and within the backbone. This chemistry is enabled by the architectural, thermal, and chemical robustness of the frameworks and the ability to characterize them by many diffraction and spectroscopic techniques. The pore chemistry of MOFs is articulated in terms of site isolation, coupling, and cooperation and relate that to their functions in guest recognition, catalysis, ion and electron transport, energy transfer, pore‐dynamic modulation, and interface construction. It is envisioned that the ultimate control of pore chemistry requires arranging functionalities into defined sequences and developing techniques for reading and writing such sequences within the pores.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000532830900001 Publication Date 2020-05-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19 Times cited Open Access OpenAccess
  Notes (Not present) Approved Most recent IF: 19; 2020 IF: 12.124
  Call Number EMAT @ emat @c:irua:169485 Serial 6422
Permanent link to this record
 

 
Author Wei, P.; Ke, B.; Xing, L.; Li, C.; Ma, S.; Nie, X.; Zhu, W.; Sang, X.; Zhang, Q.; Van Tendeloo, G.; Zhao, W.
  Title Atomic-resolution interfacial structures and diffusion kinetics in Gd/Bi0.5Sb1.5Te3 magnetocaloric/thermoelectric composites Type A1 Journal article
  Year 2020 Publication Materials Characterization Abbreviated Journal Mater Charact
  Volume 163 Issue Pages 110240-110248
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The demand of a full solid-state cooling technology based on magnetocaloric and thermoelectric effects has led to a growing interest in screening candidate materials with high-efficiency cooling performance, which also stimulates the exploration of magnetocaloric/thermoelectric hybrid cooling materials. A series of Gd/Bi0.5Sb1.5Te3 composites was fabricated in order to develop the hybrid cooling technology. The chemical composition, phase structure and diffusion kinetics across the reaction layers in Gd/Bi0.5Sb1.5Te3 composites were analyzed at different reaction temperatures. Micro-area elemental analysis indicates that the formation of interfacial phases is dominated by the diffusion of Gd and Te while the diffusion of Bi and Sb is impeded. The interfacial phases, including GdTe2, GdTe3, and intermediate phases GdTex, are identified by atomic-resolution electron microscopy. The concentration modulation of Gd and Te is adapted by altering the stacking of the Te square-net sheets and the corrugated GdTe sheets. Boltzmann-Marano analysis was applied to reveal the diffusion kinetics of Gd and Te in the interfacial layers. The diffusion coefficients of Te in GdTe2 and GdTe3 are much higher than that of Gd while in GdTe the situation is reversed. This study provides a clear picture to understand the interfacial phase structures down to an atomic scale as well as the interfacial diffusion kinetics in Gd/Bi0.5Sb1.5Te3 hybrid cooling materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000551341700045 Publication Date 2020-03-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.7 Times cited 1 Open Access Not_Open_Access
  Notes ; This work was supported by National Natural Science Foundation of China (Nos. 91963122, 11834012, 51620105014, 51521001, 51902237), National Key Research and Development Program of China (No. 2018YFB0703603), the Fundamental Research Funds for the Central Universities (WUT: 2019III012GX, 183101006). XRD and EPMA experiments were performed at the Center for Materials Research and Testing of Wuhan University of Technology. ; Approved Most recent IF: 4.7; 2020 IF: 2.714
  Call Number UA @ admin @ c:irua:171317 Serial 6456
Permanent link to this record
 

 
Author Mulder, J.T.; Kirkwood, N.; De Trizio, L.; Li, C.; Bals, S.; Manna, L.; Houtepen, A.J.
  Title Developing lattice matched ZnMgSe shells on InZnP quantum dots for phosphor applications Type A1 Journal article
  Year 2020 Publication ACS applied nano materials Abbreviated Journal
  Volume 3 Issue 4 Pages 3859-3867
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Indium phosphide quantum dots (QDs) have drawn attention as alternatives to cadmium- and lead-based QDs that are currently used as phosphors in lamps and displays. The main drawbacks of InP QDs are, in general, a lower photoluminescence quantum yield (PLQY), a decreased color purity, and poor chemical stability. In this research, we attempted to increase the PLQY and stability of indium phosphide QDs by developing lattice matched InP/MgSe core-shell nanoheterostructures. The choice of MgSe comes from the fact that, in theory, it has a near-perfect lattice match with InP, provided MgSe is grown in the zinc blende crystal structure, which can be achieved by alloying with zinc. To retain lattice matching, we used Zn in both the core and shell and we fabricated InZnP/ZnxMg1-xSe core/shell QDs. To identify the most suitable conditions for the shell growth, we first developed a synthesis route to ZnxMg1-xSe nanocrystals (NCs) wherein Mg is effectively incorporated. Our optimized procedure was employed for the successful growth of ZnxMg1-xSe shells around In(Zn)P QDs. The corresponding core/ shell systems exhibit PLQYs higher than those of the starting In(Zn)P QDs and, more importantly, a higher color purity upon increasing the Mg content. The results are discussed in the context of a reduced density of interface states upon using better lattice matched ZnxMg1-xSe shells.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000529206200076 Publication Date 2020-03-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.9 Times cited 22 Open Access OpenAccess
  Notes ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 766900 (testing the large-scale limit of quantum mechanics). A.J.H. acknowledges support from the European Research Council Horizon 2020 ERC Grant Agreement No. 678004 (Doping on Demand). This research is supported by the Dutch Technology Foundation TTW, which is part of The Netherlands Organization for Scientific Research (NWO) and which is partly funded by Ministry of Economic Affairs. The authors thank Wiel Evers for performing the TEM imaging and the EDX analysis. The authors also thank Lea Pasquale and Mirko Prato for their help with performing and analyzing the XPS measurements and Filippo Drago for the ICP measurements. ; Approved Most recent IF: 5.9; 2020 IF: NA
  Call Number UA @ admin @ c:irua:169563 Serial 6482
Permanent link to this record
 

 
Author Ben Dkhil, S.; Perkhun, P.; Luo, C.; Mueller, D.; Alkarsifi, R.; Barulina, E.; Quiroz, Y.A.A.; Margeat, O.; Dubas, S.T.; Koganezawa, T.; Kuzuhara, D.; Yoshimoto, N.; Caddeo, C.; Mattoni, A.; Zimmermann, B.; Wuerfel, U.; Pfannmöller, M.; Bals, S.; Ackermann, J.; Videlot-Ackermann, C.
  Title Direct correlation of nanoscale morphology and device performance to study photocurrent generation in donor-enriched phases of polymer solar cells Type A1 Journal article
  Year 2020 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter
  Volume 12 Issue 25 Pages 28404-28415
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The nanoscale morphology of polymer blends is a key parameter to reach high efficiency in bulk heterojunction solar cells. Thereby, research typically focusing on optimal blend morphologies while studying nonoptimized blends may give insight into blend designs that can prove more robust against morphology defects. Here, we focus on the direct correlation of morphology and device performance of thieno[3,4-b]-thiophene-alt-benzodithiophene (PTB7):[6,6]phenyl C-71 butyric acid methyl ester (PC71BM) bulk heterojunction (BHJ) blends processed without additives in different donor/acceptor weight ratios. We show that while blends of a 1:1.5 ratio are composed of large donor-enriched and fullerene domains beyond the exciton diffusion length, reducing the ratio below 1:0.5 leads to blends composed purely of polymer-enriched domains. Importantly, the photocurrent density in such blends can reach values between 45 and 60% of those reached for fully optimized blends using additives. We provide here direct visual evidence that fullerenes in the donor-enriched domains are not distributed homogeneously but fluctuate locally. To this end, we performed compositional nanoscale morphology analysis of the blend using spectroscopic imaging of low-energy-loss electrons using a transmission electron microscope. Charge transport measurement in combination with molecular dynamics simulations shows that the fullerene substructures inside the polymer phase generate efficient electron transport in the polymer-enriched phase. Furthermore, we show that the formation of densely packed regions of fullerene inside the polymer phase is driven by the PTB7:PC71BM enthalpy of mixing. The occurrence of such a nanoscale network of fullerene clusters leads to a reduction of electron trap states and thus efficient extraction of photocurrent inside the polymer domain. Suitable tuning of the polymer-acceptor interaction can thus introduce acceptor subnetworks in polymer-enriched phases, improving the tolerance for high-efficiency BHJ toward morphological defects such as donor-enriched domains exceeding the exciton diffusion length.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000543780900058 Publication Date 2020-06-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.5 Times cited 7 Open Access OpenAccess
  Notes ; J.A., O.M., and C.V.-A. acknowledge financial support by the French Fond Unique Interministeriel (FUI) under the project “SFUMATO” (Grant Number: F1110019V/ 201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7, Grant Number: 287594). J.A., C.V.-A., and E.B. acknowledge the Association Nationale de la Recherche et de la Technologie (ANRT) and the Ministere de l'Enseignement Superieur, de la Recherche et de l'Innovation, awarded through the company Dracula Technologies (Valence, France), for framework of a CIFRE Ph.D. grant 2017/0529. J.A. and P.P. received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant agreement no. 713750. They further acknowledge support of the Regional Council of Provence-Alpes-Cote d'Azur, A*MIDEX (no. ANR-11-IDEX-0001-02), and the Investissements d'Avenir project funded by the French Government, managed by the French National Research Agency (ANR). J.A. and Y.A.A.Q. acknowledge the French Research Agency for funding through the project NFA-15 (ANR-17-CE05-0020-01). N.Y. acknowledges that the synchrotron radiation experiments were performed at BL19B2 in SPring-8 with the approval of Japan Synchrotron Radiation Research Institute (JASRI) (proposal nos. 2017B1629 and 2018B1791). S.B. acknowledges financial support from the European Research Council (ERC Consolidator Grant 815128-REALNANO) and from FWO (G.0381.16N). M.P. gratefully acknowledges funding by the Ministerium fur Wissenschaft, Forschung und Kunst Baden-Wurttemberg through the HEiKA materials research centre FunTECH-3D (MWK, 33-753-30-20/3/3) and the Large-Scale-Data-Facility (LSDF) sds@hd through grant INST 35/1314-1 FUGG. A.M. acknowledges Italian MIUR for funding through the project PON04a2 00490 M2M Netergit, PRACE, for awarding access to Marconi KNL at CINECA, Italy, through projects DECONVOLVES (2018184466) and PROVING-IL (2019204911). C.C. acknowledges the CINECA award under the ISCRA initiative for the availability of high-performance computing resources and support (project MITOMASC). ; sygma Approved Most recent IF: 9.5; 2020 IF: 7.504
  Call Number UA @ admin @ c:irua:170703 Serial 6484
Permanent link to this record
 

 
Author Bigiani, L.; Andreu, T.; Maccato, C.; Fois, E.; Gasparotto, A.; Sada, C.; Tabacchi, G.; Krishnan, D.; Verbeeck, J.; Ramon Morante, J.; Barreca, D.
  Title Engineering Au/MnO₂ hierarchical nanoarchitectures for ethanol electrochemical valorization Type A1 Journal article
  Year 2020 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A
  Volume 8 Issue 33 Pages 16902-16907
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The design of eco-friendly electrocatalysts for ethanol valorization is an open challenge towards sustainable hydrogen production. Herein we present an original fabrication route to effective electrocatalysts for the ethanol oxidation reaction (EOR). In particular, hierarchical MnO(2)nanostructures are grown on high-area nickel foam scaffolds by a plasma-assisted strategy and functionalized with low amounts of optimally dispersed Au nanoparticles. This strategy leads to catalysts with a unique morphology, designed to enhance reactant-surface contacts and maximize active site utilization. The developed nanoarchitectures show superior performances for ethanol oxidation in alkaline media. We reveal that Au decoration boosts MnO(2)catalytic activity by inducing pre-dissociation and pre-oxidation of the adsorbed ethanol molecules. This evidence validates our strategy as an effective route for the development of green electrocatalysts for efficient electrical-to-chemical energy conversion.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000562931300008 Publication Date 2020-07-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 11.9 Times cited 16 Open Access OpenAccess
  Notes ; This work was financially supported by Padova University DOR 2016-2019 and P-DiSC #03BIRD2018-UNIPD OXYGENA projects, as well as by the INSTM Consortium (INSTMPD004 – NETTUNO), AMGA Foundation Mn4Energy project and Insubria University FAR2018. J. V. and D. K. acknowledge funding from the Flemish Government (Hercules), GOA project “Solarpaint” (Antwerp University) and European Union's H2020 programme under grant agreement no. 823717 ESTEEM3. The authors are grateful to Dr Gianluca Corr for skillful technical support. ; esteem3TA; esteem3reported Approved Most recent IF: 11.9; 2020 IF: 8.867
  Call Number UA @ admin @ c:irua:171989 Serial 6506
Permanent link to this record
 

 
Author Jin, B.; Zuo, N.; Hu, Z.-Y.; Cui, W.; Wang, R.; Van Tendeloo, G.; Zhou, X.; Zhai, T.
  Title Excellent excitonic photovoltaic effect in 2D CsPbBr₃/CdS heterostructures Type A1 Journal article
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater
  Volume Issue Pages 2006166-2006168
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract P-n photovoltaic junctions are essential building blocks for optoelectronic devices for energy conversion. However, this photovoltaic efficiency has almost reached its theoretical limit. Here, a brand-new excitonic photovoltaic effect in 2D CsPbBr3/CdS heterostructures is revealed. These heterostructures, synthesized by epitaxial growth, display a clean interface and a strong interlayer coupling. The excitonic photovoltaic effect is a function of both the built-in equilibrium electrical potential energy and the chemical potential energy, which is generated by the significant concentration gradient of electrons and holes at the heterojunction interface. Excitingly, this novel photovoltaic effect results in a large open-circuit voltage of 0.76 V and a high power conversion efficiency of 17.5%. In addition, high photodetection performance, including a high photoswitch ratio (I-light/I-dark) of 10(5)and a fast response rate of 23 mu s are obtained. These findings provide a new platform for photovoltaic applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000567829000001 Publication Date 2020-09-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19 Times cited 1 Open Access Not_Open_Access
  Notes ; B.J., N.Z., and Z.Y.H. contributed equally to this work. This work was supported by the National Natural Science Foundation of China (Grant No. 21825103 and 51802103), the Hubei Provincial Natural Science Foundation of China (Grant No. 2019CFA002), and the Fundamental Research Funds for the Central University (Grant No. 2019kfyXMBZ018, WUT: 2019III012GX). Here the authors also thank the support from Analytical and Testing Center in HUST and the State Key Laboratory of Silicate Materials for Architectures in WUT. ; Approved Most recent IF: 19; 2020 IF: 12.124
  Call Number UA @ admin @ c:irua:171970 Serial 6514
Permanent link to this record
 

 
Author Kertik, A.; Wee, L.H.; Şentosun, K.; Navarro, J.A.R.; Bals, S.; Martens, J.A.; Vankelecom, I.F.J.
  Title High-performance CO2-selective hybrid membranes by exploiting MOF-breathing effects Type A1 Journal article
  Year 2020 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter
  Volume 12 Issue 2 Pages 2952-2961
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Conventional CO2 separation in the petrochemical industry via cryogenic distillation or amine-based absorber-stripper units is energy-intensive and environmentally unfriendly. Membrane-based gas separation technology, in contrast, has contributed significantly to the development of energy-efficient systems for processes such as natural gas purification. The implementation of commercial polymeric membranes in gas separation processes is restricted by their permeability-selectivity trade-off and by their insufficient thermal and chemical stability. Herein, we present the fabrication of a Matrimid-based membrane loaded with a breathing metal-organic framework (MOF) (NH2-MIL-53(Al)) which is capable of separating binary CO2/CH4 gas mixtures with high selectivities without sacrificing much of its CO2 permeabilities. NH2-MIL-53(Al) crystals were embedded in a polyimide (PI) matrix, and the mixed-matrix membranes (MMMs) were treated at elevated temperatures (up to 350 degrees C) in air to trigger PI cross-linking and to create PI-MOF bonds at the interface to effectively seal the grain boundary. Most importantly, the MOF transitions from its narrow-pore form to its large-pore form during this treatment, which allows the PI chains to partly penetrate the pores and cross-link with the amino functions at the pore mouth of the NH2-MIL-53(Al) and stabilizes the open-pore form of NH2-MIL-53(Al). This cross-linked MMM, with MOF pore entrances was made more selective by the anchored PI-chains and achieves outstanding CO2/CH4 selectivities. This approach provides significant advancement toward the design of selective MMMs with enhanced thermal and chemical stabilities which could also be applicable for other potential applications, such as separation of hydrocarbons (olefin/paraffin or isomers), pervaporation, and solvent-resistant nanofiltration.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000508464500108 Publication Date 2019-12-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.5 Times cited 26 Open Access OpenAccess
  Notes ; A.K. is grateful to the Erasmus Mundus Doctorate in Membrane Engineering (EUDIME) programme. L.H.W. thanks the FWO-Vlaanderen for a postdoctoral research fellowships under contract number 12M1418N. We thank Methusalem and IAP-PAI for research funding. S.B. acknowledges financial support from European Research Council (ERC) (ERC Starting Grant No. 335078-COLOURATOM). We are also grateful to Frank Mathijs (KU Leuven) for the mechanical tests, Bart Goderis and Olivier Verkinderen for the DSC measurements, and Huntsman (Switzerland) for providing the Matrimid polymer. ; Approved Most recent IF: 9.5; 2020 IF: 7.504
  Call Number UA @ admin @ c:irua:166576 Serial 6534
Permanent link to this record
 

 
Author Erfurt, D.; Koida, T.; Heinemann, M.D.; Li, C.; Bertram, T.; Nishinaga, J.; Szyszka, B.; Shibata, H.; Klenk, R.; Schlatmann, R.
  Title Impact of rough substrates on hydrogen-doped indium oxides for the application in CIGS devices Type A1 Journal article
  Year 2020 Publication Solar Energy Materials And Solar Cells Abbreviated Journal Sol Energ Mat Sol C
  Volume 206 Issue Pages 110300
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Indium oxide based transparent conductive oxides (TCOs) are promising contact layers in solar cells due to their outstanding electrical and optical properties. However, when applied in Cu(In,Ga)Se-2 or Si-hetero-junction solar cells the specific roughness of the material beneath can affect the growth and the properties of the TCO. We investigated the electrical properties of hydrogen doped and hydrogen-tungsten co-doped indium oxides grown on rough Cu(In,Ga)Se-2 samples as well as on textured and planar glass. At sharp ridges and V-shaped valleys crack-shaped voids form inside the indium oxide films, which limit the effective electron mobility of the In2O3:H and In2O3:H,W thin films. This was found for films deposited by magnetron sputtering and reactive plasma deposition at several deposition parameters, before as well as after annealing and solid phase crystallization. This suggests universal behavior that will have a wide impact on solar cell devices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000519653800038 Publication Date 2019-11-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.9 Times cited 5 Open Access OpenAccess
  Notes ; This work was supported by the German Federal Ministry for Economic Affairs and Energy under contract number 0325762G (TCO4CIGS). The authors thank M. Hartig, K. Mayer-Stillrich, I. Dorbandt, B. Bunn, M. Kirsch for technical support. C. Li is grateful for financial support from Max Planck Society, Germany and technical support from the MPI FKF StEM group members. ; Approved Most recent IF: 6.9; 2020 IF: 4.784
  Call Number UA @ admin @ c:irua:168668 Serial 6544
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: