|
Record |
Links |
|
Author |
Samaee, V.; Sandfeld, S.; Idrissi, H.; Groten, J.; Pardoen, T.; Schwaiger, R.; Schryvers, D. |
|
|
Title |
Dislocation structures and the role of grain boundaries in cyclically deformed Ni micropillars |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Materials Science And Engineering A-Structural Materials Properties Microstructure And Processing |
Abbreviated Journal |
Mat Sci Eng A-Struct |
|
|
Volume |
769 |
Issue |
|
Pages |
138295 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Transmission electron microscopy and finite element-based dislocation simulations were combined to study the development of dislocation microstructures after cyclic deformation of single crystal and bicrystal Ni micropillars oriented for multi-slip. A direct correlation between large accumulation of plastic strain and the presence of dislocation cell walls in the single crystal micropillars was observed, while the presence of the grain boundary hampered the formation of wall-like structures in agreement with a smaller accumulated plastic strain. Automated crystallographic orientation and nanostrain mapping using transmission electron microscopy revealed the presence of lattice heterogeneities associated to the cell walls including long range elastic strain fields. By combining the nanostrain mapping with an inverse modelling approach, information about dislocation density, line orientation and Burgers vector direction was derived, which is not accessible otherwise in such dense dislocation structures. Simulations showed that the image forces associated with the grain boundary in this specific bicrystal configuration have only a minor influence on dislocation behavior. Thus, the reduced occurrence of “mature” cell walls in the bicrystal can be attributed to the available volume, which is too small to accommodate cell structures. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000500373800018 |
Publication Date |
2019-08-21 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0921-5093 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
6.4 |
Times cited |
1 |
Open Access |
OpenAccess |
|
|
Notes |
Financial support from the Flemish (FWO) and German Research Foundation (DFG) through the European M-ERA.NET project “FaSS” (Fatigue Simulation near Surfaces) under the grant numbers GA.014.13 N,SCHW855/5-1, and SA2292/2-1 is gratefully acknowledged. V.S. acknowledges the FWO research project G012012 N “Understanding nanocrystalline mechanical behaviour from structural investigations”. H.I. is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). S.S. acknowledges financial support from the European Research Council through the ERC Grant Agreement No. 759419 (MuDiLingo – A Multiscale Dislocation Language for Data- Driven Materials Science). |
Approved |
Most recent IF: 6.4; 2020 IF: 3.094 |
|
|
Call Number |
EMAT @ emat @c:irua:163475 |
Serial |
5371 |
|
Permanent link to this record |