|
Record |
Links |
|
Author |
Jin, B.; Zuo, N.; Hu, Z.-Y.; Cui, W.; Wang, R.; Van Tendeloo, G.; Zhou, X.; Zhai, T. |
|
|
Title |
Excellent excitonic photovoltaic effect in 2D CsPbBr₃/CdS heterostructures |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Advanced Functional Materials |
Abbreviated Journal |
Adv Funct Mater |
|
|
Volume |
|
Issue |
|
Pages |
2006166-2006168 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
P-n photovoltaic junctions are essential building blocks for optoelectronic devices for energy conversion. However, this photovoltaic efficiency has almost reached its theoretical limit. Here, a brand-new excitonic photovoltaic effect in 2D CsPbBr3/CdS heterostructures is revealed. These heterostructures, synthesized by epitaxial growth, display a clean interface and a strong interlayer coupling. The excitonic photovoltaic effect is a function of both the built-in equilibrium electrical potential energy and the chemical potential energy, which is generated by the significant concentration gradient of electrons and holes at the heterojunction interface. Excitingly, this novel photovoltaic effect results in a large open-circuit voltage of 0.76 V and a high power conversion efficiency of 17.5%. In addition, high photodetection performance, including a high photoswitch ratio (I-light/I-dark) of 10(5)and a fast response rate of 23 mu s are obtained. These findings provide a new platform for photovoltaic applications. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000567829000001 |
Publication Date |
2020-09-21 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1616-301x |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
19 |
Times cited |
1 |
Open Access |
Not_Open_Access |
|
|
Notes |
; B.J., N.Z., and Z.Y.H. contributed equally to this work. This work was supported by the National Natural Science Foundation of China (Grant No. 21825103 and 51802103), the Hubei Provincial Natural Science Foundation of China (Grant No. 2019CFA002), and the Fundamental Research Funds for the Central University (Grant No. 2019kfyXMBZ018, WUT: 2019III012GX). Here the authors also thank the support from Analytical and Testing Center in HUST and the State Key Laboratory of Silicate Materials for Architectures in WUT. ; |
Approved |
Most recent IF: 19; 2020 IF: 12.124 |
|
|
Call Number |
UA @ admin @ c:irua:171970 |
Serial |
6514 |
|
Permanent link to this record |