toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Verbruggen, S.W.; Lenaerts, S.; Denys, S. pdf  url
doi  openurl
  Title Analytic versus CFD approach for kinetic modeling of gas phase photocatalysis Type A1 Journal article
  Year 2015 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 262 Issue Pages 1-8  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this work two methods for determining the LangmuirHinshelwood kinetic parameters for a slit-shaped flat bed photocatalytic reactor are compared: an analytic mass transfer based model adapted from literature and a computational fluid dynamics (CFD) approach that was used in conjunction with a simplex optimization routine. Despite the differences between both approaches, similar values for the kinetic parameters and similar trends in terms of their UV intensity dependence were found. Using an effectiveness-NTU (number of transfer units) approach, the analytic mass transfer based method could quantify the relative contributions of the rate limiting steps through a reaction effectiveness parameter. The numeric CFD approach on the other hand could yield the two kinetic parameters that determine the photocatalytic reaction rate simultaneously. Furthermore, it proved to be more accurate as it accounts for the spatial variation of flow rate, reaction rate and concentrations at the surface of the photocatalyst. We elaborate this dual kinetic analysis with regard to the photocatalytic degradation of acetaldehyde in air over a silicon wafer coated with a layer of TiO2 P25 (Evonik) and study the usefulness and limitations of both strategies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347577700001 Publication Date 2014-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 30 Open Access  
  Notes ; S.W.V. acknowledges the Research Foundation of Flanders (FWO) for financial support. ; Approved Most recent IF: 6.216; 2015 IF: 4.321  
  Call Number UA @ admin @ c:irua:119724 Serial 5927  
Permanent link to this record
 

 
Author Van Eynde, E.; Tytgat, T.; Smits, M.; Verbruggen, S.W.; Hauchecorne, B.; Lenaerts, S. doi  openurl
  Title Biotemplated diatom silica-titania materials for air purification Type A1 Journal article
  Year 2013 Publication Photochemical & photobiological sciences Abbreviated Journal Photoch Photobio Sci  
  Volume 12 Issue 4 Pages 690-695  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract We present a novel manufacture route for silicatitania photocatalysts using the diatom microalga Pinnularia sp. Diatoms self-assemble into porous silica cell walls, called frustules, with periodic micro-, meso- and macroscale features. This unique hierarchical porous structure of the diatom frustule is used as a biotemplate to incorporate titania by a solgel methodology. Important material characteristics of the modified diatom frustules under study are morphology, crystallinity, surface area, pore size and optical properties. The produced biosilicatitania material is evaluated towards photocatalytic activity for NOx abatement under UV radiation. This research is the first step to obtain sustainable, well-immobilised silicatitania photocatalysts using diatoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000316572500016 Publication Date 2012-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1474-905x; 1474-9092 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.344 Times cited 18 Open Access  
  Notes ; ; Approved Most recent IF: 2.344; 2013 IF: 2.939  
  Call Number UA @ admin @ c:irua:106625 Serial 5930  
Permanent link to this record
 

 
Author van Walsem, J.; Verbruggen, S.W.; Modde, B.; Lenaerts, S.; Denys, S. pdf  url
doi  openurl
  Title CFD investigation of a multi-tube photocatalytic reactor in non-steady-state conditions Type A1 Journal article
  Year 2016 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 304 Issue Pages 808-816  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A novel multi-tube photoreactor is presented with a high efficiency (over 90% conversion) toward the degradation of acetaldehyde in air under UV conditions with an incident intensity of 2.1 mW cm−2. A CFD model was developed to simulate the transient adsorption and photocatalytic degradation processes of acetaldehyde in this reactor design and to estimate the corresponding kinetic parameters through an optimization routine using the experimentally determined outlet concentration profiles. The CFD model takes into account the entire reactor geometry and all relevant flow parameters, in contrast to analytical methods that often oversimplify the physical and chemical process characteristics. Using CFD, we show that both adsorption and desorption rate constants increase by respectively one and two orders of magnitude when the UV light is switched on, which clearly affects the transient behavior. The agreement of the experimental and modelled concentration profiles is excellent as evidenced by a coefficient of determination of at least 0.965. To demonstrate the reliability and accuracy of all parameters obtained from the modelling approach, an ultimate validation test was performed using other conditions than the ones used for estimating the kinetic parameters. The model was able to accurately simulate simultaneous adsorption, desorption and photocatalytic degradation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384777200089 Publication Date 2016-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 10 Open Access  
  Notes ; J.V.W. acknowledges the Agentschap Innoveren & Ondernemen for a PhD fellowship. S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. ; Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:139620 Serial 5933  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; van Walsem, J.; Tytgat, T.; Lenaerts, S.; Denys, S. pdf  url
doi  openurl
  Title CFD modeling of transient adsorption/desorption behavior in a gas phase photocatalytic fiber reactor Type A1 Journal article
  Year 2016 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 292 Issue Pages 42-50  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract We present the use of computational fluid dynamics (CFD) for accurately determining the adsorption parameters of acetaldehyde on photocatalytic fiber filter material, integrated in a continuous flow system. Unlike the traditional analytical analysis based on Langmuir adsorption, not only steady-state situations but also transient phenomena can be accounted for. Air displacement effects in the reactor and gas detection cell are investigated and inherently made part of the model. Incorporation of a surface aldol condensation reaction in the CFD analysis further improves the accuracy of the model which enables to extract precise, intrinsic adsorption parameters for situations in which analytical analysis would otherwise fail.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373648000005 Publication Date 2016-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 12 Open Access  
  Notes ; S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. M.K. acknowledges the IWT for a Ph.D. fellowship. Konstantina Kalafata and Ioanna Fasaki are greatly thanked for providing the NanoPhos suspension. Bioscience Engineering bachelor students M. Gerritsma, J. Helsen and Y. Riahi Drif are thanked for their assistance in performing the adsorption experiments. ; Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:130876 Serial 5934  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. url  doi
openurl 
  Title Coupled plasmon modes in 2D gold nanoparticle clusters and their effect on local temperature control Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 123 Issue 50 Pages 30594-30603  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Assemblies of closely separated gold nanoparticles exhibit a strong collective plasmonic response due to coupling of the plasmon modes of the individual nanostructures. In the context of self-assembly of nanoparticles, close-packed two-dimensional (2D) clusters of spherical nanoparticles present an important composite system that promises numerous applications. The present study probes the collective plasmonic characteristics and resulting photothermal behavior of close-packed 2D Au nanoparticle clusters to delineate the effects of the cluster size, interparticle distance, and particle size. Smaller nanoparticles (20 and 40 nm in diameter) that exhibit low individual scattering and high absorption were considered for their relevance to photothermal applications. In contrast to typical literature studies, the present study compares the optical response of clusters of different sizes ranging from a single nanoparticle up to large assemblies of 61 nanoparticles. Increasing the cluster size induces significant changes to the spectral position and optophysical characteristics. Based on the model outcome, an optimal cluster size for maximum absorption per nanoparticle is also determined for enhanced photothermal effects. The effect of the particle size and interparticle distance is investigated to elucidate the nature of interaction in terms of near-field and far-field coupling. The photothermal effect resulting from absorption is compared for different cluster sizes and interparticle distances considering a homogeneous water medium. A strong dependence of the steady-state temperature of the nanoparticles on the cluster size, particle position in the cluster, incident light polarization, and interparticle distance provides new physical insight into the local temperature control of plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000503919500061 Publication Date 2019-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:164530 Serial 5938  
Permanent link to this record
 

 
Author van Walsem, J.; Roegiers, J.; Modde, B.; Lenaerts, S.; Denys, S. pdf  url
doi  openurl
  Title Determination of intrinsic kinetic parameters in photocatalytic multi-tube reactors by combining the NTUm-method with radiation field modelling Type A1 Journal article
  Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 354 Issue 354 Pages 1042-1049  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this work, we propose an adapted Number of Transfer Units (NTUm)-method as an effective tool to determine the Langmuir-Hinshelwood kinetic parameters for a photocatalytic multi-tube reactor. The Langmuir-Hinshelwood rate constant kLH and the Langmuir adsorption constant KL were determined from several experiments under different UV-irradiance conditions, resulting in irradiance depending values for kLH. In order to determine a unique, intrinsic empirical constant k0, valid for all irradiation conditions, we coupled the adapted NTUm-method with a radiation field model to predict UV-irradiance distribution inside the reactor. The final set of kinetic parameters were derived using a Generalized Reduced Gradient (GRG) nonlinear solving method in Matlab which minimizes the differences between model and experimental reactor outlet concentrations of acetaldehyde for various photocatalytic experiments under varying operating conditions, including inlet concentration, flow rate and UV-irradiance. An excellent agreement of the intrinsic empirical constant k0, derived from the coupled NTUm-radiation field model and an earlier published CFD approach was found, emphasizing its validity and reliability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000445413900099 Publication Date 2018-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 2 Open Access  
  Notes ; J.V.W. acknowledges the Agentschap Innoveren & Ondernemen for a PhD fellowship. ; Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:154845 Serial 5940  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Van Hal, M.; Bosserez, T.; Rongé, J.; Hauchecorne, B.; Martens, J.A.; Lenaerts, S. pdf  url
doi  openurl
  Title Harvesting hydrogen gas from air pollutants with an un-biased gas phase photo-electrochemical cell Type A1 Journal article
  Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 10 Issue 7 Pages 1413-1418  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The concept of an all-gas-phase photo-electrochemical cell (PEC) producing hydrogen gas from volatile organic contaminated gas and light is presented. Without applying any external bias, organic contaminants are degraded and hydrogen gas is produced in separate electrode compartments. The system works most efficiently with organic pollutants in inert carrier gas. In the presence of oxygen gas, the cell performs less efficiently but still significant photocurrents are generated, showing the cell can be run on organic contaminated air. The purpose of this study is to demonstrate new application opportunities of PEC technology and to encourage further advancement toward photo-electrochemical remediation of air pollution with the attractive feature of simultaneous energy recovery and pollution abatement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398838600017 Publication Date 2017-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 6 Open Access  
  Notes ; S.W.V. and J.R. acknowledge the Research Foundation-Flanders (FWO) for a postdoctoral fellowship. T.B. and J.A.M. acknowledge the Flemish government for long-term structural funding (Methusalem). Nicolaas Schewyck is greatly thanked for his experimental work during his master thesis. ; Approved Most recent IF: 7.226  
  Call Number UA @ admin @ c:irua:140922 Serial 5955  
Permanent link to this record
 

 
Author Xiao, S.; Lu, Y.; Xiao, B.-Y.; Wu, L.; Song, J.-P.; Xiao, Y.-X.; Wu, S.-M.; Hu, J.; Wang, Y.; Chang, G.-G.; Tian, G.; Lenaerts, S.; Janiak, C.; Yang, X.-Y.; Su, B.-L. pdf  url
doi  openurl
  Title Hierarchically dual-mesoporous TiO2 microspheres for enhanced photocatalytic properties and lithium storage Type A1 Journal article
  Year 2018 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 24 Issue 50 Pages 13246-13252  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Hierarchically dual‐mesoporous TiO2 microspheres have been synthesized via a solvothermal process in the presence of 1‐butyl‐3‐methylmidazolium tetrafluoroborate ([BMIm][BF4]) and diethylenetriamine (DETA) as co‐templates. Secondary mesostructured defects in the hierarchical TiO2 microspheres produce the oxygen vacancies, which not only significantly enhance the photocatalytic activity on degrading methyl blue (over 1.7 times to P25) and acetone (over 2.9 times of P25), but which also are beneficial for lithium storage. Moreover, we propose a mechanism to obtain a better understanding of the role of dual mesoporosity of TiO2 microspheres for enhancing the molecular diffusion, ion transportation and electron transformation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000443804100025 Publication Date 2018-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 6 Open Access  
  Notes ; This work is supported by the National Key R&D Program of China (2017YFC1103800), the Program for Changjiang Scholars and Innovative Research Team in University (IRT 15R52), the National Natural Science Foundation of China (U1662134, U1663225, 51472190, 51611530672, 51503166, 21706199, 21711530705), the International Science & Technology Cooperation Program of China (2015DFE52870), the Natural Science Foundation of Hubei Province (2016CFA033, 2017CFB487), the Open Project Program of State Key Laboratory of Petroleum Pollution Control (PPC2016007), and the CNPC Research Institute of Safety and Environmental Technology. ; Approved Most recent IF: 5.317  
  Call Number UA @ admin @ c:irua:151812 Serial 5957  
Permanent link to this record
 

 
Author Van Hal, M.; Verbruggen, S.W.; Yang, X.-Y.; Lenaerts, S.; Tytgat, T. url  doi
openurl 
  Title Image analysis and in situ FTIR as complementary detection tools for photocatalytic soot oxidation Type A1 Journal article
  Year 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 367 Issue 367 Pages 269-277  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Air pollution, especially particulate matter (PM), is an increasingly urgent problem in urban environments, causing both short and long-term health problems, climate interference and aesthetical problems due to building fouling. Photocatalysis has been shown to be a possible solution to that end. In this work two complementary detection methods for photocatalytic soot oxidation are studied and their advantages and disadvantages are discussed. First, a colour-based digital image analysis method is drastically improved towards an accurate, detailed and straightforward detection tool, that enables simultaneous measurement of the degradation of different grades of soot fouling (for instance a shallow soot haze versus condensed soot deposits). In the next part, a second soot oxidation detection method is presented based on in situ FTIR spectroscopy. This method has the additional advantage of providing more insight into the photocatalytic soot degradation process by monitoring both gaseous and adsorbed intermediates as well as reaction products while the reactions are ongoing. As an illustration, the proposed detection strategies were applied on four different commercially available and synthesized photocatalytic materials. The digital image analysis showed that P25 (Evonik) is the fastest photocatalytic soot degrader of all studied materials for both a uniform soot haze as well as concentrated soot spots. Application of the in situ method showed that for all studied materials adsorbed formate-related surface species were formed and that commercially available ZnO nanopowder has the highest specificity towards complete mineralization into CO2. With this we aim to provide a set of complementary experimental tools for the convenient, reliable, realistic and standardised detection of photocatalytic soot degradation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461380400028 Publication Date 2019-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 1 Open Access  
  Notes ; M.V.H. acknowledges the Research Foundation-Flanders (FWO) for a doctoral fellowship. M.V.H., S.W.V., S.L. and X-Y.Y. thank the FWO and the National Natural Science Foundation of China (NSFC) for funding an international collaboration project. Mr. M. Minjauw is greatly thanked for his help in the AFM measurements. ; Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:157789 Serial 5958  
Permanent link to this record
 

 
Author Jammaer, J.; Aprile, C.; Verbruggen, S.W.; Lenaerts, S.; Pescarmona, P.P.; Martens, J.A. doi  openurl
  Title A non-aqueous synthesis of TiO2SiO2 composites in supercritical CO2 for the photodegradation of pollutants Type A1 Journal article
  Year 2011 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 4 Issue 10 Pages 1457-1463  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Titania/silica composites with different Ti/Si ratios are synthesized via a nonconventional synthesis route. The synthesis involves non-aqueous reaction of metal alkoxides and formic acid at 75 °C in supercritical carbon dioxide. The as-prepared composite materials contain nanometer-sized anatase crystallites and amorphous silica. Large specific surface areas are obtained. The composites are evaluated in the photocatalytic degradation of phenol in aqueous medium, and in the elimination of acetaldehyde from air. The highest photocatalytic activity in both processes is achieved with a composite containing 40 wt % TiO2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000296497400010 Publication Date 2011-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 15 Open Access  
  Notes ; The authors acknowledge sponsorship from CECAT and Methusalem (long-term financing of the Flemish government). We thank Dr. E. Gobechiya for assistance with XRD measurements and A. Lemaire for assistance with mercury porosimetry measurements. ; Approved Most recent IF: 7.226; 2011 IF: 6.827  
  Call Number UA @ admin @ c:irua:93363 Serial 5973  
Permanent link to this record
 

 
Author Smits, M.; Chan, C. kit; Tytgat, T.; Craeye, B.; Costarramone, N.; Lacombe, S.; Lenaerts, S. pdf  doi
openurl 
  Title Photocatalytic degradation of soot deposition : self-cleaning effect on titanium dioxide coated cementitious materials Type A1 Journal article
  Year 2013 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 222 Issue Pages 411-418  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Diesel soot emissions deteriorate the appearance of architectural building materials by soot fouling. This soot deposition devalue the aesthetic value of the building. A solution to counteract this problem is applying titanium dioxide on building materials. TiO2 can provide air-purifying and self-cleaning properties due to its photocatalytic activity. In literature, photocatalytic soot oxidation is observed on glass or silicon substrates. However, degradation of soot by photocatalysis was not yet investigated on cementitious samples (mortar, concrete) although it is one of the most frequently used building materials. In this study, photocatalytic soot oxidation by means of TiO2 coated cementitious samples is addressed. The soot removal capacity of four types of TiO2 layers, coated on mortar samples, is evaluated by means of two detection methods. The first method is based on colorimetric measurements, while the second method uses digital image processing to calculate the area of soot coverage. The experimental data revealed that cementitious materials coated with commercially available TiO2 exhibited self-cleaning properties as it was found that all coated samples were able to remove soot. The P25 coating gave the best soot degradation performance, while the Eoxolit product showed the slowest soot degradation rate. In addition, gas chromatography measurements in a closed chamber experiment with P25 confirmed that complete mineralization of about 60% of the soot was obtained within 24 hours since CO2 was the sole observed oxidation product. Due to its realistic approach, this study proves that photocatalytic soot removal on TiO2 coated cementitious surfaces is possible in practice, which is an important step towards the practical application of self-cleaning building materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000319528900046 Publication Date 2013-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 43 Open Access  
  Notes ; This work was supported by a PhD grant (M. Smits) from the University of Antwerp, a PhD grant (T. Tytgat) funded by the Institute of Innovation by Science and Technology in Flanders (IWT) and the exchange program Tournesol (Project T2012.05) financed by the Flemish government. ; Approved Most recent IF: 6.216; 2013 IF: 4.058  
  Call Number UA @ admin @ c:irua:106519 Serial 5979  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; Martens, J.A.; Lenaerts, S. doi  openurl
  Title Predicting the surface plasmon resonance wavelength of gold-silver alloy nanoparticles Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 117 Issue 37 Pages 19142-19145  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Gold-silver alloy nanoparticles display surface plasmon resonance (SPR) over a broad range of the UV-vis spectrum. We propose a model to predict the SPR wavelength of gold-silver alloy colloids based on the combined effect of alloy composition and particle size. The SPR wavelength is derived from extinction spectra simulated using available experimental dielectric constant data and accounts for particle size by applying Mie theory. Comparison of calculated values with experimental data evidences the accuracy of the model. The new SPR wavelength estimation tool will be of particular interest for developing dedicated bimetallic plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000330162600042 Publication Date 2013-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 51 Open Access  
  Notes ; S.W.V. acknowledges the Research Foundation of Flanders (FWO) for financial support. JAM. acknowledges the Flemish government for long-term structural funding (Methusalem). ; Approved Most recent IF: 4.536; 2013 IF: 4.835  
  Call Number UA @ admin @ c:irua:114837 Serial 5985  
Permanent link to this record
 

 
Author Hauchecorne, B.; Lenaerts, S. pdf  doi
openurl 
  Title Unravelling the mysteries of gas phase photocatalytic reaction pathways by studying the catalyst surface : a literature review of different Fourier transform infrared spectroscopic reaction cells used in the field Type A1 Journal article
  Year 2013 Publication Journal of photochemistry and photobiology: C: photochemistry reviews Abbreviated Journal J Photoch Photobio C  
  Volume 14 Issue Pages 72-85  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Unlike the profound knowledge of the reaction mechanisms occurring in water phase photocatalysis, still fairly little is known on the reaction mechanisms occurring on the catalyst surface when dealing with gaseous pollutants. Unfortunately, there are some differences between both reactions. For one, there are no abundant hydroxyl radicals present in the gas phase, so that possibly other species prove to be important in abating the pollutant. In order to unravel the mysteries of gas phase photocatalytic reaction pathways, in situ techniques must be used to allow the detection and identification of reaction intermediates on a working catalyst. Several techniques were already used in the past, of which Fourier transform infrared spectroscopy seems to be the most versatile. This review will therefore give a selective overview of different spectroscopic reaction cells constructed for the in situ study of photocatalytic gas phase reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000314669600005 Publication Date 2012-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1389-5567 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.317 Times cited 8 Open Access  
  Notes ; The University of Antwerp is greatly acknowledged for the fellowship granted to Birger Hauchecorne. The authors would also like to thank Sammy W. Verbruggen for his help in providing several papers of interest. ; Approved Most recent IF: 12.317; 2013 IF: 11.625  
  Call Number UA @ admin @ c:irua:106518 Serial 6001  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Tytgat, T.; Van Passel, S.; Martens, J.A.; Lenaerts, S. pdf  doi
openurl 
  Title Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air Type A1 Journal article
  Year 2014 Publication Chemicke zvesti Abbreviated Journal Chem Pap  
  Volume 68 Issue 9 Pages 1273-1278  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In the commercialisation of photocatalytic air purifiers, the performance as well as the cost of the catalytic material plays an important role. Where most comparative studies only regard the photocatalytic activity as a decisive parameter, in this study both activity and cost are taken into account. Using a cost-effectiveness analysis, six different commercially available TiO2-based catalysts are evaluated in terms of their activities in photocatalytic degradation of acetaldehyde as a model reaction for indoor air purification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000336443400015 Publication Date 2014-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0366-6352 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.258 Times cited 10 Open Access  
  Notes ; S. W. V. wishes to thank the Research Foundation Flanders (FWO) for the financial support received. The authors are grateful to the University of Antwerp for supporting and funding this research. Evonik is sincerely thanked for providing catalyst samples for our experiments free of charge. All companies are thanked for providing specific pricing data. ; Approved Most recent IF: 1.258; 2014 IF: 1.468  
  Call Number UA @ admin @ c:irua:117297 Serial 6174  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Silver–Gold Bimetallic Alloy versus Core–Shell Nanoparticles: Implications for Plasmonic Enhancement and Photothermal Applications Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume Issue Pages acs.jpcc.0c02630  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Bimetallic plasmonic nanoparticles enable tuning of the optical response and chemical stability by variation of the composition. The present numerical simulation study compares Ag–Au alloy, Ag@Au core–shell, and Au@Ag core–shell bimetallic plasmonic nanoparticles of both spherical and anisotropic (nanotriangle and nanorods) shapes. By studying both spherical and anisotropic (with LSPR in the near-infrared region) shapes, cases with and without interband transitions of Au can be decoupled. Explicit comparisons are facilitated by numerical models supported by careful validation and examination of optical constants of Au–Ag alloys reported in the literature. Although both Au–Ag core–shell and alloy nanoparticles exhibit an intermediary optical response between that of pure Ag and Au nanoparticles, there are noticeable differences in the spectral characteristics. Also, the effect of the bimetallic constitution in anisotropic nanoparticles is starkly different from that in spherical nanoparticles due to the absence of Au interband transitions in the former case. In general, the improved chemical stability of Ag nanoparticles by incorporation of Au comes with a cost of reduction in plasmonic enhancement, also applicable to anisotropic nanoparticles with a weaker effect. A photothermal heat transfer study confirms that increased absorption by the incorporation of Au in spherical Ag nanoparticles also results in an increased steady-state temperature. On the other hand, anisotropic nanoparticles are inherently better absorbers and hence better photothermal sources, and their photothermal properties are apparently not strongly affected by the incorporation of one metal in the other. This study of the optical/spectral and photothermal characteristics of bimetallic Au–Ag alloy versus core–shell nanoparticles provides detailed physical insight for development of new taylor-made plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000538758700039 Publication Date 2020-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Universiteit Antwerpen, DOCPRO4 Rituraj Borah ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number DuEL @ duel @c:irua:169223 Serial 6367  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Silver–Gold Bimetallic Alloy versus Core–Shell Nanoparticles: Implications for Plasmonic Enhancement and Photothermal Applications Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume Issue Pages acs.jpcc.0c02630  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Bimetallic plasmonic nanoparticles enable tuning of the optical response and chemical stability by variation of the composition. The present numerical simulation study compares Ag–Au alloy, Ag@Au core–shell, and Au@Ag core–shell bimetallic plasmonic nanoparticles of both spherical and anisotropic (nanotriangle and nanorods) shapes. By studying both spherical and anisotropic (with LSPR in the near-infrared region) shapes, cases with and without interband transitions of Au can be decoupled. Explicit comparisons are facilitated by numerical models supported by careful validation and examination of optical constants of Au–Ag alloys reported in the literature. Although both Au–Ag core–shell and alloy nanoparticles exhibit an intermediary optical response between that of pure Ag and Au nanoparticles, there are noticeable differences in the spectral characteristics. Also, the effect of the bimetallic constitution in anisotropic nanoparticles is starkly different from that in spherical nanoparticles due to the absence of Au interband transitions in the former case. In general, the improved chemical stability of Ag nanoparticles by incorporation of Au comes with a cost of reduction in plasmonic enhancement, also applicable to anisotropic nanoparticles with a weaker effect. A photothermal heat transfer study confirms that increased absorption by the incorporation of Au in spherical Ag nanoparticles also results in an increased steady-state temperature. On the other hand, anisotropic nanoparticles are inherently better absorbers and hence better photothermal sources, and their photothermal properties are apparently not strongly affected by the incorporation of one metal in the other. This study of the optical/spectral and photothermal characteristics of bimetallic Au–Ag alloy versus core–shell nanoparticles provides detailed physical insight for development of new taylor-made plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000538758700039 Publication Date 2020-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Universiteit Antwerpen, DOCPRO4 Rituraj Borah ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number DuEL @ duel @c:irua:169223 Serial 6368  
Permanent link to this record
 

 
Author Vandekerckhove, T.G.L.; Boon, N.; Vlaeminck, S.E. pdf  doi
openurl 
  Title Pioneering on single-sludge nitrification/denitrification at 50 °C Type A1 Journal article
  Year 2020 Publication Chemosphere Abbreviated Journal Chemosphere  
  Volume 252 Issue Pages 126527-10  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Thermophilic nitrification has been proven in lab-scale bioreactors at 50 °C. The challenge is now to develop a solution for thermophilic nitrogen removal, integrating nitrification with denitrification and aerobic carbon removal. This pioneering study aimed at a single-sludge nitrification/denitrification process at 50 °C, through exposing nitrification in a step by step approach to anoxia and/or organics. Firstly, recurrent anoxia was tolerated by a nitrifying community during long-term membrane bioreactor (MBR) operation (85 days), with high ammonium oxidation efficiencies (>98%). Secondly, five organic carbon sources did not affect thermophilic ammonium and nitrite oxidation rates in three-day aerobic batch flask incubations. Moving to long-term tests with sequencing batch reactors (SBR) and MBR (>250 days), good nitrification performance was obtained at increasing COD/Ninfluent ratios (0, 0.5, 1, 2 and 3). Thirdly, combining nitrification, recurrent anoxia and presence of organic carbon resulted in a nitrogen removal efficiency of 92–100%, with a COD/Nremoved of 4.8 ± 0.6 and a nitrogen removal rate of 50 ± 14 mg N g−1 VSS d−1. Overall, this is the first proof of principle thermophilic nitrifiers can cope with redox fluctuations (aerobic/anoxic) and the aerobic or anoxic presence of organic carbon, can functionally co-exist with heterotrophs and that single-sludge nitrification/denitrification can be achieved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000534377000121 Publication Date 2020-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.8 Times cited Open Access  
  Notes ; The authors acknowledge (i) the Agency for Innovation by Science and Technology (IWT Flanders) [grant number SB-141205] for funding Tom G.L. Vandekerckhove, (ii) Wouter Peleman and Zoe Pesonen for practical support during their master thesis, (iii) Jolien De Paepe for assisting in the reactor operation, and (iv) Jo De Vrieze and Tim Lacoere for their help with qPCR and 16S rRNA gene amplicon sequencing. ; Approved Most recent IF: 8.8; 2020 IF: 4.208  
  Call Number UA @ admin @ c:irua:167324 Serial 6581  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Effect of size distribution, skewness and roughness on the optical properties of colloidal plasmonic nanoparticles Type A1 Journal article
  Year 2022 Publication Colloids and surfaces: A: physicochemical and engineering aspects Abbreviated Journal Colloid Surface A  
  Volume 640 Issue Pages 128521  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract It is a generally accepted idea that the particle size distribution strongly affects the optical spectra of colloidal plasmonic nanoparticles. It is often quoted as one of the main reasons while explaining the mismatch between the theoretical and experimental optical spectra of such nanoparticles. In this work, these aspects are critically analyzed by means of a bottom up statistical approach that considers variables such as mean, standard deviation and skewness of the nanoparticle size distribution independently from one another. By assuming normal and log-normal distributions of the particle size, the effect of the statistical parameters on the Mie analytical optical spectra of colloidal nanoparticles was studied. The effect of morphology was also studied numerically in order to understand to what extent it can play a role. It is our finding that the particle polydispersity, skewness and surface morphology in fact only weakly impact the optical spectra. While, the selection of suitable optical constants with regard to the crystallinity of the nanoparticles is a far more influential factor for correctly predicting both the plasmon band position and the plasmon bandwidth in theoretical simulations of the optical spectra. It is shown that the mean particle size can be correctly estimated directly from the plasmon band position, as it is the mean that determines the resonance wavelength. The standard deviation can on the other hand be estimated from the intensity distribution data obtained from dynamic light scattering experiments. The results reported herein clear the ambiguity around particle size distribution and optical response of colloidal plasmonic nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Elservier Place of Publication Editor  
  Language Wos 000765946900002 Publication Date 2022-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-7757 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.2  
  Call Number DuEL @ duel @c:irua:185704 Serial 6908  
Permanent link to this record
 

 
Author Perreault, P.; Kummamuru, N.B.; Gonzalez Quiroga, A.; Lenaerts, S. pdf  url
doi  openurl
  Title CO2 capture initiatives : are governments, society, industry and the financial sector ready? Type A1 Journal article
  Year 2022 Publication Current Opinion in Chemical Engineering Abbreviated Journal Curr Opin Chem Eng  
  Volume 38 Issue Pages 100874  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The deployment of CCUS plants does not match the enormous requirements to meet the CO2 emission reductions fixed during the Paris agreement, and we must ask ourselves what is refraining the technology deployment, especially in light of the recent high CO2 prices. Owing to the higher costs than their fossil counterparts, Carbon Capture & Utilization represents a long-term solution. In addition to a gigantic scale-up effort even for the most mature Carbon Capture & Storage (CCS) technologies, various factors are responsible for the slow roll-out of CCS projects. Luckily, the financial sector and governments are playing their role. Support from the public is however key, and an open communication is required to convert social tolerance into social acceptance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000885329800001 Publication Date 2022-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-3398 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.6  
  Call Number UA @ admin @ c:irua:191272 Serial 7137  
Permanent link to this record
 

 
Author Van Winckel, T.; Ngo, N.; Sturm, B.; Al-Omari, A.; Wett, B.; Bott, C.; Vlaeminck, S.E.; De Clippeleir, H. pdf  url
doi  openurl
  Title Enhancing bioflocculation in high-rate activated sludge improves effluent quality yet increases sensitivity to surface overflow rate Type A1 Journal article
  Year 2022 Publication Chemosphere Abbreviated Journal Chemosphere  
  Volume 308 Issue 2 Pages 136294-11  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract High-rate activated sludge (HRAS) relies on good bioflocculation and subsequent solid-liquid separation to maximize the capture of organics. However, full-scale applications often suffer from poor and unpredictable effluent suspended solids (ESS). While the biological aspects of bioflocculation are thoroughly investigated, the effects of fines (settling velocity < 0.6 m3/m2/h), shear and surface overflow rate (SOR) are unclear. This work tackled the impact of fines, shear, and SOR on the ESS in absence of settleable influent solids. This was assessed on a full-scale HRAS step-feed (SF) and pilot-scale HRAS contact-stabilization (CS) configuration using batch settling tests, controlled clarifier experiments, and continuous operation of reactors. Fines contributed up to 25% of the ESS in the full-scale SF configuration. ESS decreased up to 30 mg TSS/L when bioflocculation was enhanced with the CS configuration. The feast-famine regime applied in CS promoted the production of high-quality extracellular polymeric substances (EPS). However, this resulted in a narrow and unfavorable settling velocity distribution, with 50% ± 5% of the sludge mass settling between 0.6 and 1.5 m3/m2/h, thus increasing sensitivity towards SOR changes. A low shear environment (20 s−1) before the clarifier for at least one min was enough to ensure the best possible settling velocity distribution, regardless of prior shear conditions. Overall, this paper provides a more complete view on the drivers of ESS in HRAS systems, creating the foundation for the design of effective HRAS clarifiers. Tangible recommendations are given on how to manage fines and establish the optimal settling velocity of the sludge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000863979600006 Publication Date 2022-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.8  
  Call Number UA @ admin @ c:irua:190187 Serial 7154  
Permanent link to this record
 

 
Author Van Hoecke, L.; Boeye, D.; Gonzalez‐Quiroga, A.; Patience, G.S.; Perreault, P. pdf  url
doi  openurl
  Title Experimental methods in chemical engineering : computational fluid dynamics/finite volume method–CFD/FVM Type A1 Journal article
  Year 2022 Publication The Canadian journal of chemical engineering Abbreviated Journal Can J Chem Eng  
  Volume Issue Pages 1-17  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Computational fluid dynamics (CFD) applies numerical methods to solve transport phenomena problems. These include, for example, problems related to fluid flow comprising the Navier--Stokes transport equations for either compressible or incompressible fluids together with turbulence models and continuity equations for single and multi-component (reacting and inert) systems. The design space is first segmented into discrete volume elements (meshing). The finite volume method, the subject of this article, discretizes the equations in time and space to produce a set of non-linear algebraic expressions that are assigned to each volume element-cell. The system of equations is solved iteratively with algorithms like the semi-implicit method for pressure-linked equations (SIMPLE) and the pressure implicit splitting of operators (PISO). CFD is especially useful for testing multiple design elements because it is often faster and cheaper than experiments. The downside is that this numerical method is based on models that require validation to check their accuracy. According to a bibliometric analysis, the broad research domains in chemical engineering include: (1) dynamics and CFD-DEM (2) fluid flow, heat transfer and turbulence, (3) mass transfer and combustion, (4) ventilation and environment, and (5) design and optimization. Here, we review the basic theoretical concepts of CFD and illustrate how to set up a problem in the open-source software OpenFOAM to isomerize n-butane to i-butane in a notched reactor under turbulent conditions. We simulated the problem with 1000, 4000, and 16000 cells. According to the Richardson extrapolation, the simulation underestimates the adiabatic temperature rise by 7% with 16000 cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000859840100001 Publication Date 2022-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-4034; 1939-019x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.1  
  Call Number UA @ admin @ c:irua:189284 Serial 7160  
Permanent link to this record
 

 
Author Lang, X.; Ouyang, Y.; Vandewalle, L.A.; Goshayeshi, B.; Chen, S.; Madanikashani, S.; Perreault, P.; Van Geem, K.M.; van Geem, K.M. pdf  url
doi  openurl
  Title Gas-solid hydrodynamics in a stator-rotor vortex chamber reactor Type A1 Journal article
  Year 2022 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 446 Issue 5 Pages 137323-12  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The gas-solid vortex reactor (GSVR) has enormous process intensification potential. However the huge gas consumption can be a serious disadvantage for the GSVR in some applications such as fast pyrolysis. In this work, we demonstrate a recent novel design, where a stator-rotor vortex chamber (STARVOC) is driven by the fluid's kinetic energy, to decouple the solids bed rotation and gas. Gas-solid fluidization by using air and monosized aluminum balls was performed to investigate the hydrodynamics. A constructed fluidization flow regime map for a fixed solids loading of 100 g shows that the bed can only be fluidized for a rotation speed between 200 and 400 RPM. Below 200 RPM, particles settle down on the bottom plate and cannot form a stable bed due to inertia and friction. Above 400 RPM, the bed cannot be fluidized with superficial velocities up to 1.8 m/s (air flow rate of 90 Nm(3)/h). The bed thickness shows some non-uniformities, being smaller at the top of the bed than at the bottom counterpart. However by increasing the air flow rate or rotation speed the axial nonuniformity can be resolved. The bed pressure drop first increases with increasing gas flow rate and then levels off, showing similar characteristics as conventional fluidized beds. Theoretical pressure drops calculated from mathematical models such as Kao et al. model agree well with experimental measurements. Particle velocity discrepancies between the top and bottom particles reveal that the impact of gravity cannot be completely neglected. Design guidelines and possible applications for further development of STARVOC concept are proposed based on fundamental data provided in this work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000833418100006 Publication Date 2022-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 15.1  
  Call Number UA @ admin @ c:irua:189283 Serial 7167  
Permanent link to this record
 

 
Author Baetens, D.; Schoofs, K.; Somers, N.; Denys, S. pdf  url
doi  openurl
  Title A brief review on Multiphysics modelling of the various physical and chemical phenomena occurring in active oxidation reactors Type A1 Journal article
  Year 2023 Publication Current opinion in green and sustainable chemistry Abbreviated Journal  
  Volume 40 Issue Pages 100764-100766  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Heterogeneous photocatalysis can be used as an advanced oxidation technology frequently studied for application in photoreactors for air and water treatment. Extensive experimental investigation entails high costs and is also time consuming. Multiphysics modelling, a relatively new numerical method, provides a cost-effective and valuable alternative. By reconstructing the reactor geometry in dedicated software, meshing it and solving for occurring physical and chemical phenomena, Multiphysics models can be used to evaluate the performance of different reactor designs, increase insight into the occurring phenomena and study the influence of operational parameters on reactor performance. Finally, Multiphysics models are also developed for various applications like optimising the operational parameters, creating the ideal reactor design or scaling up a lab-scale reactor to a realistic prototype.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000947344000001 Publication Date 2023-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2452-2236 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.3 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.3; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:195208 Serial 7278  
Permanent link to this record
 

 
Author Orozco-Jimenez, A.J.; Pinilla-Fernandez, D.A.; Pugliese, V.; Bula, A.; Perreault, P.; Gonzalez-Quiroga, A. pdf  url
doi  openurl
  Title Angular momentum based-analysis of gas-solid fluidized beds in vortex chambers Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 457 Issue Pages 141222-21  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Gas-solid vortex chambers are a promising alternative for reactive and non-reactive processes requiring enhanced heat and mass transfer rates and order-of-milliseconds contact time. The conservation of angular momentum is instrumental in understanding how the interactions between gas, particulate solids, and chamber walls influence the formation of a rotating solids bed. Therefore, this work applies the conservation of angular momentum to derive a model that gives the average angular velocity of solids in terms of gas injection velocity, wall-solids bed drag coefficient, gas and particle properties, and chamber geometry. Three datasets from published studies, comprising 1 g-Geldart B- and d-type particles in different vortex chambers, validate the model results. Using a sensitivity analysis, we assessed the effect of input variables on the average angular velocity of solids, average void fraction, and average bed height. Results indicate that the top and bottom end-wall boundaries exert the most significant braking effect on the rotating solids bed compared with the cylindrical outer wall and gas injection boundaries. The wall-solids bed drag coefficient appears independent of the gas injection velocity for a wide range of operating conditions. The proposed model is a valuable tool for analyzing and comparing gas–solid vortex typologies, unraveling improvement opportunities, and scale-up.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000951011600001 Publication Date 2022-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number UA @ admin @ c:irua:192868 Serial 7282  
Permanent link to this record
 

 
Author Segura, P.C.; De Meur, Q.; Alloul, A.; Tanghe, A.; Onderwater, R.; Vlaeminck, S.E.; Vande Wouwer, A.; Wattiez, R.; Dewasme, L.; Leroy, B. pdf  url
doi  openurl
  Title Preferential photoassimilation of volatile fatty acids by purple non-sulfur bacteria : experimental kinetics and dynamic modelling Type A1 Journal article
  Year 2022 Publication Biochemical engineering journal Abbreviated Journal Biochem Eng J  
  Volume 186 Issue Pages 108547-10  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple non-sulfur bacteria (PNSB) are known for their metabolic versatility and thrive as anoxygenic photoheterotrophs. In environmental engineering and resource recovery, cells would grow on mixtures of volatile fatty acids (VFA) generated by anaerobic fermentation of waste streams. In this study, we aim to better understand the behavior of Rhodospirillum rubrum, a model PNSB species, grown using multiple VFA as carbon sources. We highlighted that assimilation of individual VFA follows a sequential pattern. Based on observations in other PNSB, this seems to be specific to isocitrate lyase-lacking organisms. We hypothesized that the inhibition phenomenon could be due to the regulation of the metabolic fluxes in the substrate cycle between acetoacetyl-CoA and crotonyl-CoA. Developed macroscopic dynamic models showed a good predictive capability for substrate competition for every VFA mixture containing acetate, propionate, and/or butyrate. These novel insights provide valuable input for better design and operation of PNSB-based waste treatment solutions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000891992900005 Publication Date 2022-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1369-703x; 1873-295x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.9  
  Call Number UA @ admin @ c:irua:192741 Serial 7332  
Permanent link to this record
 

 
Author Kummamuru, N.B.; Perreault, P.; Lenaerts, S. pdf  doi
openurl 
  Title A new generalized empirical correlation for predicting methane hydrate equilibrium conditions in pure water Type A1 Journal article
  Year 2021 Publication Industrial & Engineering Chemistry Research Abbreviated Journal Ind Eng Chem Res  
  Volume 60 Issue 8 Pages 3474-3483  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This work contributes to a new generalized empirical correlation for predicting methane (CH4) hydrate equilibrium conditions in pure water. Unlike the conventional thermodynamic approach that involves complex reckoning, the proposed empirical equation is developed by regressing 215 experimental data points from the literature and validating with 45 data points for predicting methane hydrate equilibrium conditions in pure water. The new correlation is proposed for a temperature and pressure range of 273.2–303.48 K and 2.63–72.26 MPa, respectively. The accuracy and performance of the proposed correlation is quantitatively evaluated using statistical error analysis. The proposed correlation was able to estimate CH4 hydrate equilibrium conditions satisfactorily with an R2 of 0.99987. The overall error analysis for the proposed correlation shows fair agreement with the experimental data reported within the literature. Concurrently, the new correlation showed better performance in predicting equilibrium conditions compared to those calculated by other empirical correlations available in the literature within the investigated range. In addition, the proposed empirical equation is also checked to evaluate its efficacy in fitting each set of experimental binary/ternary methane hydrates (BTMH) and binary hydrogen hydrates (BHH) for an accurate representation of equilibrium data over a wide range of composition, pressure, and temperature conditions. A maximum percentage deviation of 0.58% and 0.24% was observed between experimental and calculated equilibrium conditions for BTMH and BHH, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000626326200017 Publication Date 2021-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.843  
  Call Number UA @ admin @ c:irua:175862 Serial 7394  
Permanent link to this record
 

 
Author Jochems, P.; Mueller, T.; Satyawali, Y.; Diels, L.; Dejonghe, W.; Hanefeld, U. pdf  doi
openurl 
  Title Active site titration of immobilized beta-galactosidase for the determination of active enzymes Type A1 Journal article
  Year 2015 Publication Biochemical engineering journal Abbreviated Journal  
  Volume 93 Issue Pages 137-141  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In the present study, an active site titration method is demonstrated, to determine the amount of active enzyme (beta-galactosidase), immobilized on a support. Two types of supports were investigated, viz, amino acrylic resin and a mixed matrix membrane. Furthermore, 2',4'-dinitrophenyl 2-deoxy-2-fluoro-beta-D-galactopyranoside was used as an inhibitor for the active site titration of immobilized beta-galactosidase obtained from Kluyveromyces lactis. Using the active site titration, approximately 8.3 mg of active enzyme was found on 1 g of dried commercially available SPRIN imibond, which is an amino acrylic resin with covalently bound beta-galactosidase obtained from K. lactis. However, this method, in its present form, was not effective on the mixed matrix membranes due to the irreversible partial adsorption of the leaving group (2',4'-dinitrophenolate) by the membrane. This observation implied that it is important to investigate interactions between the support and the used inhibitor and leaving group. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347362100018 Publication Date 2014-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1369-703x; 1873-295x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:123763 Serial 7417  
Permanent link to this record
 

 
Author Weiβ, R.; Gritsch, S.; Brader, G.; Nikolic, B.; Spiller, M.; Santolin, J.; Weber, H.K.; Schwaiger, N.; Pluchon, S.; Dietel, K.; Guebitz, G.; Nyanhongo, G. url  doi
openurl 
  Title A biobased, bioactive, low CO₂ impact coating for soil improvers Type A1 Journal article
  Year 2021 Publication Green Chemistry Abbreviated Journal Green Chem  
  Volume 23 Issue 17 Pages 6501-6514  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Lignosulfonate-based bioactive coatings as soil improvers for lawns were developed using laccase as a biocatalyst. Incorporation of glycerol, xylitol and sorbitol as plasticizers considerably reduced the brittleness of the synthesized coatings of marine carbonate granules while thermal enzyme inactivation at 100 degrees C enabled the production of stable coatings. Heat inactivation produced stable coatings with a molecular weight of 2000 kDa and a viscosity of 4.5 x 10(-3) Pas. The desired plasticity for the spray coating of soil improver granules was achieved by the addition of 2.7% of xylitol. Agriculture beneficial microorganisms (four different Bacillus species) were integrated into the coatings. The stable coatings protected the marine calcium carbonate granules, maintained the viability of the microorganisms and showed no toxic effects on the germination and growth of model plants including corn, wheat, salad, and tomato despite a slight delay in germination. Moreover, the coatings reduced the dust formation of soil improvers by 70%. CO2 emission analysis showed potential for the reduction of up to 3.4 kg CO2-eq. kg(-1) product, making it a viable alternative to fossil-based coatings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000683056500001 Publication Date 2021-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.125 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.125  
  Call Number UA @ admin @ c:irua:180511 Serial 7558  
Permanent link to this record
 

 
Author Roegiers, J.; van Walsem, J.; Denys, S. pdf  url
doi  openurl
  Title CFD- and radiation field modeling of a gas phase photocatalytic multi-tube reactor Type A1 Journal article
  Year 2018 Publication Chemical engineering journal Abbreviated Journal  
  Volume 338 Issue Pages 287-299  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This paper focusses on the development of a Multiphysics model as a tool for assessing the performance of a multi-tube photoreactor. The model predicts the transient behavior of acetaldehyde concentration, as a model compound for the organic fraction of the indoor air pollutants, under varying sets of conditions. A 3D-model couples radiation field modeling with reaction kinetics and fluid dynamics in order to simulate the transport of the pollutant as it progresses through the reactor. A model-based approach is proposed to determine the layer thickness and refractive index of different P25-powder modified solgel coatings, using an optimization procedure to estimate these parameters based on UV-irradiance measurements. The radiation field model was able to accurately predict the irradiance on the catalytic surface within the reactor. Consequently, the radiation field model was used to define an irradiance dependent reaction rate constant in a coupled Multiphysics model. An optimization routine was deployed to estimate the adsorption, desorption- and photocatalytic reaction rate constants on the TiO2-surface, using experimentally determined, transient outlet concentrations of acetaldehyde. Additionally, a validation test was performed in an air-tight climate chamber at much higher flow rates, higher irradiance and realistic indoor pollutant concentrations to emphasize the reliability and accuracy of the parameters for adsorption, desorption and photocatalytic reaction. The developed model makes it possible to optimize the reactor design and scale-up for commercial applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000427618400031 Publication Date 2018-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:149115 Serial 7589  
Permanent link to this record
 

 
Author Roegiers, J.; Denys, S. pdf  url
doi  openurl
  Title CFD-modelling of activated carbon fibers for indoor air purification Type A1 Journal article
  Year 2019 Publication Chemical engineering journal Abbreviated Journal  
  Volume 365 Issue Pages 80-87  
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Activated carbon fibers for indoor air purification were investigated by means of pressure drop and adsorption capacity. The Darcy-Forchheimer law combined with Computational Fluid Dynamics (CFD) modelling was deployed to simulate the pressure drop over an activated carbon fiber (ACF) filter with varying filter thickness. The CFD model was later combined with adsorption modelling to simulate breakthrough profiles of acetaldehyde adsorption on the ACF-filter. The adsorption model incorporates mass transfer resistance and adsorption equilibrium. It assumes local equilibrium between gas phase and solid phase. The latter was investigated for three different adsorption isotherms: linear, Langmuir and Freundlich adsorption. Successful agreement between model simulations and experimental data was obtained, using the Freundlich adsorption model. The numerical model could provide valuable insights and allows to continuously improve the design of filtration devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459009800009 Publication Date 2019-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156996 Serial 7590  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: