|
Record |
Links |
|
Author |
Xiao, S.; Lu, Y.; Xiao, B.-Y.; Wu, L.; Song, J.-P.; Xiao, Y.-X.; Wu, S.-M.; Hu, J.; Wang, Y.; Chang, G.-G.; Tian, G.; Lenaerts, S.; Janiak, C.; Yang, X.-Y.; Su, B.-L. |
|
|
Title |
Hierarchically dual-mesoporous TiO2 microspheres for enhanced photocatalytic properties and lithium storage |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Chemistry: a European journal |
Abbreviated Journal |
Chem-Eur J |
|
|
Volume |
24 |
Issue |
50 |
Pages |
13246-13252 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL) |
|
|
Abstract |
Hierarchically dual‐mesoporous TiO2 microspheres have been synthesized via a solvothermal process in the presence of 1‐butyl‐3‐methylmidazolium tetrafluoroborate ([BMIm][BF4]) and diethylenetriamine (DETA) as co‐templates. Secondary mesostructured defects in the hierarchical TiO2 microspheres produce the oxygen vacancies, which not only significantly enhance the photocatalytic activity on degrading methyl blue (over 1.7 times to P25) and acetone (over 2.9 times of P25), but which also are beneficial for lithium storage. Moreover, we propose a mechanism to obtain a better understanding of the role of dual mesoporosity of TiO2 microspheres for enhancing the molecular diffusion, ion transportation and electron transformation. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000443804100025 |
Publication Date |
2018-06-21 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0947-6539 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
5.317 |
Times cited |
6 |
Open Access |
|
|
|
Notes |
; This work is supported by the National Key R&D Program of China (2017YFC1103800), the Program for Changjiang Scholars and Innovative Research Team in University (IRT 15R52), the National Natural Science Foundation of China (U1662134, U1663225, 51472190, 51611530672, 51503166, 21706199, 21711530705), the International Science & Technology Cooperation Program of China (2015DFE52870), the Natural Science Foundation of Hubei Province (2016CFA033, 2017CFB487), the Open Project Program of State Key Laboratory of Petroleum Pollution Control (PPC2016007), and the CNPC Research Institute of Safety and Environmental Technology. ; |
Approved |
Most recent IF: 5.317 |
|
|
Call Number |
UA @ admin @ c:irua:151812 |
Serial |
5957 |
|
Permanent link to this record |