toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ryabova, A.S.; Istomin, S.Y.; Dosaev, K.A.; Bonnefont, A.; Hadermann, J.; Arkharova, N.A.; Orekhov, A.S.; Sena, R.P.; Saveleva, V.A.; Kerangueven, G.; Antipov, E., V.; Savinova, E.R.; Tsirlina, G.A. pdf  url
doi  openurl
  Title Mn₂O₃ oxide with bixbyite structure for the electrochemical oxygen reduction reaction in alkaline media : highly active if properly manipulated Type A1 Journal article
  Year 2021 Publication Electrochimica Acta Abbreviated Journal Electrochim Acta  
  Volume 367 Issue Pages 137378  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We consider compositional and structural factors which can affect the activity of bixbyite alpha-Mn2O3 towards the oxygen reduction reaction (ORR) and the stability of this oxide in alkaline solution. We compare electrochemistry of undoped, Fe and Al-doped alpha-Mn2O3 with bixbyite structure and braunite Mn7SiO12 having bixbyite-related crystal structure, using the rotating disk electrode (RDE), the rotating ring-disk electrode (RRDE), and cyclic voltammetry (CV) techniques. All manganese oxides under study are stable in the potential range between the ORR onset and ca. 0.7 V vs. Reversible Hydrogen Electrode (RHE). It is found that any changes introduced in the bixbyite structure and/or composition of alpha-Mn2O3 lead to an activity drop in both the oxygen reduction and hydrogen peroxide reactions in this potential interval. For the hydrogen peroxide reduction reaction these modifications also result in a change in the nature of the rate-determining step. The obtained results confirm that due to its unique crystalline structure undoped alpha-Mn2O3 is the most ORR active (among currently available) Mn oxide catalyst and favor the assumption of the key role of the (111) surface of alpha-Mn2O3 in the very high activity of this material towards the ORR. (C) 2020 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000607621500013 Publication Date 2020-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:176080 Serial 6731  
Permanent link to this record
 

 
Author Hendrickx, M.; Tang, Y.; Hunter, E.C.; Battle, P.D.; Hadermann, J. pdf  url
doi  openurl
  Title Structural and magnetic properties of the perovskites A₂LaFe₂SbO₉ (A = Ca, Sr, Ba) Type A1 Journal article
  Year 2021 Publication Journal Of Solid State Chemistry Abbreviated Journal J Solid State Chem  
  Volume 295 Issue Pages 121914  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polycrystalline samples of A(2)LaFe(2)SbO(9) (A = Ca, Sr, Ba) perovskites appeared monophasic to X-ray or neutron powder diffraction but a single-crystal study utilising transmission electron microscopy revealed a greater level of complexity. Although local charge balance is maintained, compositional and structural variations are present among and within the submicron-sized crystals. Despite the inhomogeneity, A = Ca is monophasic with a partially-ordered distribution of Fe3+ and Sb5+ cations across two crystallographically-distinct octahedral sites, i.e. Ca2La(Fe1.25Sb0.25)(2d) (Fe0.75Sb0.75)(2c)O-9. For A = Sr or Ba, the inhomogeneities result in differences in the filling patterns of the octahedra and the ordering of the B cations. Particles of A = Sr contain a phase (Fe:Sb similar to 2:1) without B cation ordering and one (Fe:Sb similar to 1:1) with B cation ordering. Monophasic A = Ba lacks long-range cation order although ordered nanodomains are present within the disordered phase. The temperature dependence of the magnetic properties of each sample is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000615711800013 Publication Date 2020-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.299  
  Call Number UA @ admin @ c:irua:176663 Serial 6739  
Permanent link to this record
 

 
Author Vishwakarma, M.; Kumar, M.; Hendrickx, M.; Hadermann, J.; Singh, A.P.; Batra, Y.; Mehta, B.R. pdf  url
doi  openurl
  Title Enhancing the hydrogen evolution properties of kesterite absorber by Si-doping in the surface of CZTS thin film Type A1 Journal article
  Year 2021 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume Issue Pages 2002124  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this work, the effects of Si-doping in Cu2ZnSnS4 are examined computationally and experimentally. The density functional theory calculations show that an increasing concentration of Si (from x = 0 to x = 1) yields a band gap rise due to shifting of the conduction band minimum towards higher energy states in the Cu2Zn(Sn1-xSix)S-4. CZTSiS thin film prepared by co-sputtering process shows Cu2Zn(Sn1-xSix)S-4 (Si-rich) and Cu2ZnSnS4 (S-rich) kesterite phases on the surface and in the bulk of the sample, respectively. A significant change in surface electronic properties is observed in CZTSiS thin film. Si-doping in CZTS inverts the band bending at grain-boundaries from downward to upward and the Fermi level of CZTSiS shifts upward. Further, the coating of the CdS and ZnO layer improves the photocurrent to approximate to 5.57 mA cm(-2) at -0.41 V-RHE in the CZTSiS/CdS/ZnO sample, which is 2.39 times higher than that of pure CZTS. The flat band potential increases from CZTS approximate to 0.43 V-RHE to CZTSiS/CdS/ZnO approximate to 1.31 V-RHE indicating the faster carrier separation process at the electrode-electrolyte interface in the latter sample. CdS/ZnO layers over CZTSiS significantly reduce the charge transfer resistance at the semiconductor-electrolyte interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000635804900001 Publication Date 2021-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.279  
  Call Number UA @ admin @ c:irua:177688 Serial 6780  
Permanent link to this record
 

 
Author Bhaskar, G.; Gvozdetskyi, V.; Batuk, M.; Wiaderek, K.M.; Sun, Y.; Wang, R.; Zhang, C.; Carnahan, S.L.; Wu, X.; Ribeiro, R.A.; Bud'ko, S.L.; Canfield, P.C.; Huang, W.; Rossini, A.J.; Wang, C.-Z.; Ho, K.-M.; Hadermann, J.; Zaikina, J., V pdf  doi
openurl 
  Title Topochemical deintercalation of Li from layered LiNiB : toward 2D MBene Type A1 Journal article
  Year 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 143 Issue 11 Pages 4213-4223  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li similar to 0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state Li-7 and B-1(1) NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of (Li similar to 0.5NiB) and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a “zip-lock” mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li[NiB](2) and Li[NiB](3) compositions. The crystal structure of Li similar to 0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB](2), or triple [NiB](3) layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li similar to 0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634761500021 Publication Date 2021-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 13.858  
  Call Number UA @ admin @ c:irua:177697 Serial 6790  
Permanent link to this record
 

 
Author Feng, H.L.; Kang, C.-J.; Manuel, P.; Orlandi, F.; Su, Y.; Chen, J.; Tsujimoto, Y.; Hadermann, J.; Kotliar, G.; Yamaura, K.; McCabe, E.E.; Greenblatt, M. pdf  url
doi  openurl
  Title Antiferromagnetic order breaks inversion symmetry in a metallic double perovskite, Pb₂NiOsO₆ Type A1 Journal article
  Year 2021 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume 33 Issue 11 Pages 4188-4195  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A polycrystalline sample of Pb2NiOsO6 was synthesized under high-pressure (6 GPa) and high-temperature (1575 K) conditions. Pb2NiOsO6 crystallizes in a monoclinic double perovskite structure with a centrosymmetric space group P2(1)/n at room temperature. Pb2NiOsO6 is metallic down to 2 K and shows a single antiferromagnetic (AFM) transition at T-N = 58 K. Pb2NiOsO6 is a new example of a metallic and AFM oxide with three-dimensional connectivity. Neutron powder diffraction and first-principles calculation studies indicate that both Ni and Os moments are ordered below T-N and the AFM magnetic order breaks inversion symmetry. This loss of inversion symmetry driven by AFM order is unusual in metallic systems, and the 3d-Sd double-perovskite oxides represent a new class of noncentrosymmetric AFM metallic oxides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000661521800032 Publication Date 2021-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:179679 Serial 6854  
Permanent link to this record
 

 
Author Mallick, S.; Khalsa, G.; Kaaret, J.Z.; Zhang, W.; Batuk, M.; Gibbs, A.S.; Hadermann, J.; Halasyamani, P.S.; Benedek, N.A.; Hayward, M.A. url  doi
openurl 
  Title The influence of the 6s² configuration of Bi³+ on the structures of A ' BiNb₂O₇ (A ' = Rb, Na, Li) layered perovskite oxides Type A1 Journal article
  Year 2021 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal  
  Volume 50 Issue 42 Pages 15359-15369  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Solid state compounds which exhibit non-centrosymmetric crystal structures are of great interest due to the physical properties they can exhibit. The 'hybrid improper' mechanism – in which two non-polar distortion modes couple to, and stabilize, a further polar distortion mode, yielding an acentric crystal structure – offers opportunities to prepare a range of novel non-centrosymmetric solids, but examples of compounds exhibiting acentric crystal structures stabilized by this mechanism are still relatively rare. Here we describe a series of bismuth-containing layered perovskite oxide phases, RbBiNb2O7, LiBiNb2O7 and NaBiNb2O7, which have structural frameworks compatible with hybrid-improper ferroelectricity, but also contain Bi3+ cations which are often observed to stabilize acentric crystal structures due to their 6s(2) electronic configurations. Neutron powder diffraction analysis reveals that RbBiNb2O7 and LiBiNb2O7 adopt polar crystal structures (space groups I2cm and B2cm respectively), compatible with stabilization by a trilinear coupling of non-polar and polar modes. The Bi3+ cations present are observed to enhance the magnitude of the polar distortions of these phases, but are not the primary driver for the acentric structure, as evidenced by the observation that replacing the Bi3+ cations with Nd3+ cations does not change the structural symmetry of the compounds. In contrast the non-centrosymmetric, but non-polar structure of NaBiNb2O7 (space group P2(1)2(1)2(1)) differs significantly from the centrosymmetric structure of NaNdNb2O7, which is attributed to a second-order Jahn-Teller distortion associated with the presence of the Bi3+ cations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000706651100001 Publication Date 2021-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9234 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182584 Serial 6893  
Permanent link to this record
 

 
Author Mallick, S.; Zhang, W.; Batuk, M.; Gibbs, A.S.; Hadermann, J.; Halasyamani, P.S.; Hayward, M.A. url  doi
openurl 
  Title The crystal and defect structures of polar KBiNb2O7 Type A1 Journal article
  Year 2022 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 51 Issue 5 Pages 1866-1873  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract KBiNb2O7 was prepared from RbBiNb2O7 by a sequence of cation exchange reactions which first convert RbBiNb2O7 to LiBiNb2O7, before KBiNb2O7 is formed by a further K-for-Li cation exchange. A combination of neutron, synchrotron X-ray and electron diffraction data reveal that KBiNb2O7 adopts a polar, layered, perovskite structure (space group A11m) in which the BiNb2O7 layers are stacked in a (0, ½, z) arrangement, with the K+ cations located in half of the available 10-coordinate interlayer cation sites. The inversion symmetry of the phase is broken by a large displacement of the Bi3+ cations parallel to the y-axis. HAADF-STEM images reveal that KBiNb2O7 exhibits frequent stacking faults which convert the (0. ½, z) layer stacking to (½, 0, z) stacking and vice versa, essentially switching the x- and y-axes of the material. By fitting the complex diffraction peak shape of the SXRD data collected from KBiNb2O7 it is estimated that each layer has approximately an ~11% chance of being defective – a high level which is attributed to the lack of cooperative NbO6 tilting in the material, which limits the lattice strain associated with each fault.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000741540300001 Publication Date 2022-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford/Warwick Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE18786). Experiments at the ISIS pulsed neutron facility were supported by a beam time allocation from the STFC (RB 2000148). SM thanks Somerville College for an Oxford Ryniker Lloyd scholarship. PSH and WZ thank the National Science Foundation (DMR-2002319) for support. Approved Most recent IF: 4  
  Call Number EMAT @ emat @c:irua:185504 Serial 6951  
Permanent link to this record
 

 
Author Missen, O.P.; Mills, S.J.; Canossa, S.; Hadermann, J.; Nenert, G.; Weil, M.; Libowitzky, E.; Housley, R.M.; Artner, W.; Kampf, A.R.; Rumsey, M.S.; Spratt, J.; Momma, K.; Dunstan, M.A. url  doi
openurl 
  Title Polytypism in mcalpineite : a study of natural and synthetic Cu₃TeO₆ Type A1 Journal article
  Year 2022 Publication Acta Crystallographica. Section B: Structural Science, Crystal Engineering and Materials (Online) Abbreviated Journal Acta Crystallogr B  
  Volume 78 Issue 1 Pages  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Synthetic and naturally occurring forms of tricopper orthotellurate, (Cu3TeO6)-Te-II-O-IV (the mineral mcalpineite) have been investigated by 3D electron diffraction (3D ED), X-ray powder diffraction (XRPD), Raman and infrared (IR) spectroscopic measurements. As a result of the diffraction analyses, (Cu3TeO6)-Te-II-O-IV is shown to occur in two polytypes. The higher-symmetric (Cu3TeO6)-Te-II-O-IV-1C polytype is cubic, space group 1a (3) over bar, with a = 9.537 (1) angstrom and V = 867.4 (3) angstrom(3) as reported in previous studies. The 1C polytype is a well characterized structure consisting of alternating layers of (CuO6)-O-II octahedra and both (CuO6)-O-II and (TeO6)-O-VI octahedra in a patchwork arrangement. The structure of the lower-symmetric orthorhombic (Cu3TeO6)-Te-II-O-IV-2O polytype was determined for the first time in this study by 3D ED and verified by Rietveld refinement. The 2O polytype crystallizes in space group Pcca, with a = 9.745 (3) angstrom, b = 9.749 (2) angstrom, c = 9.771 (2) angstrom and V = 928.3 (4) angstrom(3) . High-precision XRPD data were also collected on (Cu3TeO6)-Te-II-O-IV-2O to verify the lower-symmetric structure by performing a Rietveld refinement. The resultant structure is identical to that determined by 3D ED, with unit-cell parameters a = 9.56157 (19) angstrom, b = 9.55853 (11) angstrom, c = 9.62891 (15) angstrom and V = 880.03 (2) angstrom(3) . The lower symmetry of the 2O polytype is a consequence of a different cation ordering arrangement, which involves the movement of every second (CuO6)-O-II and (TeO6)-O-VI octahedral layer by (1/4, 1/4, 0), leading to an offset of (TeO6)-O-VI and (CuO6)-O-II octahedra in every second layer giving an ABAB* stacking arrangement. Syntheses of (Cu3TeO6)-Te-II-O-IV showed that low-temperature (473 K) hydrothermal conditions generally produce the 2O polytype. XRPD measurements in combination with Raman spectroscopic analysis showed that most natural mcalpineite is the orthorhombic 2O polytype. Both XRPD and Raman spectroscopy measurements may be used to differentiate between the two polytypes of (Cu3TeO6)-Te-II-O-IV. In Raman spectroscopy, (Cu3TeO6)-Te-II-O-IV-1C has a single strong band around 730 cm(-1), whereas (Cu3TeO6)-Te-II-O-IV-2O shows a broad double maximum with bands centred around 692 and 742 cm(-1).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000752899700003 Publication Date 2022-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-5206 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.9  
  Call Number UA @ admin @ c:irua:186529 Serial 6962  
Permanent link to this record
 

 
Author Savina, A.A.; Saiutina, V.V.; Morozov, A.V.; Boev, A.O.; Aksyonov, D.A.; Dejoie, C.; Batuk, M.; Bals, S.; Hadermann, J.; Abakumov, A.M. pdf  doi
openurl 
  Title Chemistry, local molybdenum clustering, and electrochemistry in the Li2+xMo1-xO3 solid solutions Type A1 Journal article
  Year 2022 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 61 Issue 14 Pages 5637-5652  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A broad range of cationic nonstoichiometry has been demonstratedfor the Li-rich layered rock-salt-type oxide Li2MoO3, which has generally been considered as a phase with a well-defined chemical composition. Li2+xMo1-xO3(-0.037 <= x <= 0.124) solid solutions were synthesized via hydrogen reduction ofLi2MoO4in the temperature range of 650-1100 degrees C, withxdecreasing with theincrease of the reduction temperature. The solid solutions adopt a monoclinicallydistorted O3-type layered average structure and demonstrate a robust localordering of the Li cations and Mo3triangular clusters within the mixed Li/Mocationic layers. The local structure was scrutinized in detail by electron diffractionand aberration-corrected scanning transmission electron microcopy (STEM),resulting in an ordering model comprising a uniform distribution of the Mo3clusters compatible with local electroneutrality and chemical composition. The geometry of the triangular clusters with their oxygenenvironment (Mo3O13groups) has been directly visualized using differential phase contrast STEM imaging. The established localstructure was used as input for density functional theory (DFT)-based calculations; they support the proposed atomic arrangementand provide a plausible explanation for the staircase galvanostatic charge profiles upon electrochemical Li+extraction fromLi2+xMo1-xO3in Li cells. According to DFT, all electrochemical capacity in Li2+xMo1-xO3solely originates from the cationic Moredox process, which proceeds via oxidation of the Mo3triangular clusters into bent Mo3chains where the electronic capacity of the clusters depends on the initial chemical composition and Mo oxidation state defining the width of the first charge low-voltageplateau. Further oxidation at the high-voltage plateau proceeds through decomposition of the Mo3chains into Mo2dimers and further into individual Mo6+cations  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000789034200023 Publication Date 2022-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited 3 Open Access Not_Open_Access  
  Notes The authors acknowledge Russian Science Foundation (grant 20-43-01012) and Research Foundation Flanders (FWO Vlaanderen, project number G0F1320N) for financial support. The authors are grateful to AICF of Skoltech for providing access to electron microscopy equipment. The authors are grateful to Prof. G. Van Tendeloo for discussing the results. Approved Most recent IF: 4.6  
  Call Number UA @ admin @ c:irua:188631 Serial 7079  
Permanent link to this record
 

 
Author Poppe, R.; Vandemeulebroucke, D.; Neder, R.B.; Hadermann, J. pdf  url
doi  openurl
  Title Quantitative analysis of diffuse electron scattering in the lithium-ion battery cathode material Li1.2Ni0.13Mn0.54Co0.13O2 Type A1 Journal article
  Year 2022 Publication IUCrJ Abbreviated Journal Iucrj  
  Volume 9 Issue 5 Pages 695-704  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In contrast to perfectly periodic crystals, materials with short-range order produce diffraction patterns that contain both Bragg reflections and diffuse scattering. To understand the influence of short-range order on material properties, current research focuses increasingly on the analysis of diffuse scattering. This article verifies the possibility to refine the short-range order parameters in submicrometre-sized crystals from diffuse scattering in single-crystal electron diffraction data. The approach was demonstrated on Li<sub>1.2</sub>Ni<sub>0.13</sub>Mn<sub>0.54</sub>Co<sub>0.13</sub>O<sub>2</sub>, which is a state-of-the-art cathode material for lithium-ion batteries. The intensity distribution of the 1D diffuse scattering in the electron diffraction patterns of Li<sub>1.2</sub>Ni<sub>0.13</sub>Mn<sub>0.54</sub>Co<sub>0.13</sub>O<sub>2</sub>depends on the number of stacking faults and twins in the crystal. A model of the disorder in Li<sub>1.2</sub>Ni<sub>0.13</sub>Mn<sub>0.54</sub>Co<sub>0.13</sub>O<sub>2</sub>was developed and both the stacking fault probability and the percentage of the different twins in the crystal were refined using an evolutionary algorithm in<italic>DISCUS</italic>. The approach was applied on reciprocal space sections reconstructed from 3D electron diffraction data since they exhibit less dynamical effects compared with in-zone electron diffraction patterns. A good agreement was achieved between the calculated and the experimental intensity distribution of the diffuse scattering. The short-range order parameters in submicrometre-sized crystals can thus successfully be refined from the diffuse scattering in single-crystal electron diffraction data using an evolutionary algorithm in<italic>DISCUS</italic>.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000852551800018 Publication Date 2022-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-2525 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited Open Access OpenAccess  
  Notes The research leading to these results has received funding from the Research Foundation Flanders, G035619N G040116N ; Approved Most recent IF: 3.9  
  Call Number EMAT @ emat @c:irua:190647 Serial 7105  
Permanent link to this record
 

 
Author Lopez-Garcia, C.; Canossa, S.; Hadermann, J.; Gorni, G.; Oropeza, F.E.; de la Pena O'Shea, V.A.; Iglesias, M.; Monge, M.A.; Gutierrez-Puebla, E.; Gandara, F. url  doi
openurl 
  Title Heterometallic molecular complexes act as messenger building units to encode desired metal-atom combinations to multivariate metal-organic frameworks Type A1 Journal article
  Year 2022 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 144 Issue 36 Pages 16262-16266  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A novel synthetic approach is described for the targeted preparation of multivariate metal-organic frameworks (MTV-MOFs) with specific combinations of metal elements. This methodology is based on the use of molecular complexes that already comprise desired metal-atom combinations, as building units for the MTV-MOF synthesis. These units are transformed into the MOF structural constituents through a ligand/linker exchange process that involves structural modifications while preserving their origina l l y encoded atomic combination. Thus, through the use of heterometalli c ring-shaped molecules combining gallium and nickel or cobalt, we have obtained MOFs with identical combinations of the metal elements, now incorporated in the rod-shaped secondary building unit, as confirmed with a combination of X-ray and electron diffraction, electron microscopy, and X-ray absorption spectroscopy techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000841435900001 Publication Date 2022-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 15  
  Call Number UA @ admin @ c:irua:190023 Serial 7169  
Permanent link to this record
 

 
Author Sheath, B.C.; Xu, X.; Manuel, P.; Hadermann, J.; Batuk, M.; O'Sullivan, J.; Bonilla, R.S.; Clarke, S.J. url  doi
openurl 
  Title Structures and magnetic ordering in layered Cr oxide arsenides Sr₂CrO₂Cr₂OAs₂ and Sr₂CrO₃CrAs Type A1 Journal article
  Year 2022 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 61 Issue 31 Pages 10-12385  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Two novel chromium oxide arsenide materials have been synthesized, Sr2CrO2Cr2OAs2 (i.e., Sr2Cr3As2O3) and Sr2CrO3CrAs (i.e., Sr2Cr2AsO3), both of which contain chromium ions in two distinct layers. Sr2CrO2Cr2OAs2 was targeted following electron microscopy measurements on a related phase. It crystallizes in the space group P4/mmm and accommodates distorted CrO4As2 octahedra containing Cr2+ and distorted CrO(2)As(4 )octahedra containing Cr3+. In contrast, Sr2CrO3CrAs incorporates Cr3+ in CrO5 square-pyramidal coordination in [Sr2CrO3](+) layers and Cr2+ ions in CrAs(4 )tetrahedra in [CrAs](-) layers and crystallizes in the space group P4/nmm. Powder neutron diffraction data reveal antiferromagnetic ordering in both compounds. In Sr2CrO3CrAs the Cr2+ moments in the [CrAs](-) layers exhibit long-range ordering, while the Cr3+ moments in the [Sr2CrO3](+) layers only exhibit short-range ordering. However, in Sr2CrO2Cr2OAs2, both the Cr(2+ )moments in the CrO4As2 environments and the Cr3+ moments in the CrO2As4 polyhedra are long-range-ordered below 530(10) K. Above this temperature, only the Cr3+ moments are ordered with a Neel temperature slightly in excess of 600 K. A subtle structural change is evident in Sr2CrO2Cr2OAs2 below the magnetic ordering transitions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000841943600001 Publication Date 2022-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.6  
  Call Number UA @ admin @ c:irua:190007 Serial 7215  
Permanent link to this record
 

 
Author Posokhova, S.M.M.; Morozov, V.A.; Deyneko, D.V.V.; Redkin, B.S.S.; Spassky, D.A.A.; Nagirnyi, V.; Belik, A.A.A.; Hadermann, J.; Pavlova, E.T.T.; Lazoryak, B.I.I. doi  openurl
  Title K₅Eu(MoO₄)₄ red phosphor for solid state lighting applications, prepared by different techniques Type A1 Journal article
  Year 2023 Publication CrystEngComm Abbreviated Journal Crystengcomm  
  Volume 25 Issue 5 Pages 835-847  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The influence of preparation techniques on the structure and luminescent properties of K5Eu(MoO4)(4) (KEMO) was investigated. KEMO phosphors were synthesized by three different techniques: solid state and sol-gel (sg) methods as well as the Czochralski (CZ) crystal growth technique. Laboratory powder X-ray diffraction (PXRD) studies revealed that all KEMO samples had a structure analogous to that of other high temperature alpha-K5R(MoO4)(4) palmierite-type phases (space group (SG) R3m). Contrary to laboratory PXRD data, electron diffraction revealed that the KEMO crystal grown by the CZ technique had a (3 + 1)D incommensurately modulated structure (super space group (SSG) C2/m(0 beta 0)00) with the modulation vector q = 0.689b*. A detailed analysis of electron diffraction patterns has shown formation of three twin domains rotated along the c axis of the R-subcell at 60 degrees with respect to each other. Synchrotron XRD patterns showed additional ultra-wide reflexes in addition to reflections of the R-subcell of the palmierite. However, the insufficient number of reflections, their low intensity and large width in the synchrotron X-ray diffraction patterns made it impossible to refine the structure as incommensurately modulated C2/m(0 beta 0)00. An average structure was refined in the C2/m space group with random distribution of K1 and Eu1 in [M1A(2)O(8)]-layers of the palmierite-type structure. The dependence of luminescent properties on utilized synthesis techniques was studied. The emission spectra of all samples exhibit intense red emission originating from the D-5(0) -> F-7(2) Eu3+ transition. The integrated intensity of the emission from the Eu3+ 5D0 term was found to be the highest in the crystal grown by the CZ technique. The quantum yield measured for KEMO crystals demonstrates a very high value of 66.5%. This fact confirms that KEMO crystals are exceptionally attractive for applications as a near-UV converting red phosphor for LEDs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000912021300001 Publication Date 2023-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-8033 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.1 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.1; 2023 IF: 3.474  
  Call Number UA @ admin @ c:irua:194320 Serial 7317  
Permanent link to this record
 

 
Author Vladimirova, N.V.; Frolov, A.S.; Sanchez-Barriga, J.; Clark, O.J.; Matsui, F.; Usachov, D.Y.; Muntwiler, M.; Callaert, C.; Hadermann, J.; Neudachina, V.S.; Tamm, M.E.; Yashina, L.V. pdf  url
doi  openurl
  Title Occupancy of lattice positions probed by X-ray photoelectron diffraction : a case study of tetradymite topological insulators Type A1 Journal article
  Year 2023 Publication Surfaces and interfaces Abbreviated Journal  
  Volume 36 Issue Pages 102516-10  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Occupancy of different structural positions in a crystal lattice often seems to play a key role in material prop-erties. Several experimental techniques have been developed to uncover this issue, all of them being mostly bulk sensitive. However, many materials including topological insulators (TIs), which are among the most intriguing modern materials, are intended to be used in devices as thin films, for which the sublattice occupancy may differ from the bulk. One of the possible approaches to occupancy analysis is X-ray Photoelectron Diffraction (XPD), a structural method in surface science with chemical sensitivity. We applied this method in a case study of Sb2(Te1-xSex)3 mixed crystals, which belong to prototypical TIs. We used high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) as a reference method to verify our analysis. We revealed that the XPD data for vacuum cleaved bulk crystals are in excellent agreement with the reference ones. Also, we demonstrate that the anion occupancy near a naturally formed surface can be rather different from that of the bulk. The present results are relevant for a wide range of compositions where the system remains a topological phase, as we ultimately show by probing the transiently occupied topological surface state above the Fermi level by ultrafast photoemission.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000901694900001 Publication Date 2022-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.2; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:193502 Serial 7327  
Permanent link to this record
 

 
Author Sanchez-Barriga, J.; Aguilera, I.; Yashina, L., V; Tsukanova, D.Y.; Freyse, F.; Chaika, A.N.; Callaert, C.; Abakumov, A.M.; Hadermann, J.; Varykhalov, A.; Rienks, E.D.L.; Bihlmayer, G.; Blugel, S.; Rader, O. url  doi
openurl 
  Title Anomalous behavior of the electronic structure of (Bi1-xInx)2Se3across the quantum phase transition from topological to trivial insulator Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal  
  Volume 98 Issue 23 Pages 235110  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Using spin- and angle-resolved photoemission spectroscopy and relativistic many-body calculations, we investigate the evolution of the electronic structure of (Bi1-xInx)(2)Se-3)(2)Se-3 bulk single crystals around the critical point of the trivial to topological insulator quantum-phase transition. By increasing x, we observe how a surface gap opens at the Dirac point of the initially gapless topological surface state of Bi2Se3, leading to the existence of massive fermions. The surface gap monotonically increases for a wide range of x values across the topological and trivial sides of the quantum-phase transition. By means of photon-energy-dependent measurements, we demonstrate that the gapped surface state survives the inversion of the bulk bands which occurs at a critical point near x = 0.055. The surface state exhibits a nonzero in-plane spin polarization which decays exponentially with increasing x, and which persists in both the topological and trivial insulator phases. Our calculations reveal qualitative agreement with the experimental results all across the quantum-phase transition upon the systematic variation of the spin-orbit coupling strength. A non-time-reversal symmetry-breaking mechanism of bulk-mediated scattering processes that increase with decreasing spin-orbit coupling strength is proposed as explanation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000452322800003 Publication Date 2018-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156240 Serial 7462  
Permanent link to this record
 

 
Author Marikutsa, A.; Yang, L.; Rumyantseva, M.; Batuk, M.; Hadermann, J.; Gaskov, A. pdf  url
doi  openurl
  Title Sensitivity of nanocrystalline tungsten oxide to CO and ammonia gas determined by surface catalysts Type A1 Journal article
  Year 2018 Publication Sensors and actuators : B : chemical Abbreviated Journal  
  Volume 277 Issue Pages 336-346  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline tungsten oxide with variable particle size and surface area was synthesized by aqueous deposition and heat treatment for use in resistive gas sensors. Surface modification with 1 wt.% Pd and Ru was performed by impregnation to improve the sensitivity to CO and ammonia. Acid and oxidation surface sites were evaluated by temperature-programmed techniques using probe molecules. The surface acidity dropped with increasing particle size, and was weakly affected by additives. Lower crystallinity of WO3 and the presence of Ru species favoured temperature-programmed reduction of the materials. Modifying WO3 increased its sensitivity, to CO at ambient condition for modification by Pd and to NH3 at elevated temperature for Ru modification. An in situ infrared study of the gas – solid interaction showed that the catalytic additives change the interaction route of tungsten oxide with the target gases and make the reception of detected molecules independent of the semiconductor oxide matrix.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453066700042 Publication Date 2018-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156219 Serial 8513  
Permanent link to this record
 

 
Author Gamon, J.; Bassat, J.-M.; Villesuzanne, A.; Duttine, M.; Batuk, M.; Vandemeulebroucke, D.; Hadermann, J.; Alassani, F.; Weill, F.; Durand, E.; Demourgues, A. pdf  doi
openurl 
  Title Impact of anionic ordering on the iron site distribution and valence states in oxyfluoride Sr2FeO3+xF1-x(x=0.08, 0.2) with a layered Perovskite network Type A1 Journal article
  Year 2023 Publication Inorganic chemistry Abbreviated Journal  
  Volume 62 Issue 27 Pages 10822-10832  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sr2FeO3+x F1-x (x = 0.08, 0.2), an n = 1 Ruddlesden-Popperphase, was synthesized from the oxidationof Sr2FeO3F in air at high temperature followinga fluorine for oxygen substitution and Fe3+ to Fe4+ oxidation. A structural investigation of both compounds was performedusing complementary and high-resolution techniques (Synchrotron X-rayand electron diffraction, Mo''ssbauer spectroscopy, HR-STEM)coupled to DFT calculation. This study reveals that oxidation leadsto a high degree of apical anion disorder coupled to antiphase boundaries. Sr2FeO3F, an oxyfluoride compoundwith an n = 1 Ruddlesden-Popper structure,was identifiedas a potential interesting mixed ionic and electronic conductor (MIEC).The phase can be synthesized under a range of different pO(2) atmospheres, leading to various degrees of fluorinefor oxygen substitution and Fe4+ content. A structuralinvestigation and thorough comparison of both argon- and air-synthesizedcompounds were performed by combining high-resolution X-ray and electrondiffraction, high-resolution scanning transmission electron microscopy,Mo''ssbauer spectroscopy, and DFT calculations. While the argon-synthesizedphase shows a well-behaved O/F ordered structure, this study revealedthat oxidation leads to averaged large-scale anionic disorder on theapical site. In the more oxidized Sr2FeO3.2F0.8 oxyfluoride, containing 20% of Fe4+, two differentFe positions can be identified with a 32%/68% occupancy (P4/nmm space group). This originates due to the presenceof antiphase boundaries between ordered domains within the grains.Relations between site distortion and valence states as well as stabilityof apical anionic sites (O vs F) are discussed. This study paves theway for further studies on both ionic and electronic transport propertiesof Sr2FeO3.2F0.8 and its use in MIEC-baseddevices, such as solid oxide fuel cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001018974700001 Publication Date 2023-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.6 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.6; 2023 IF: 4.857  
  Call Number UA @ admin @ c:irua:197789 Serial 8881  
Permanent link to this record
 

 
Author Nakazato, R.; Matsumoto, K.; Yamaguchi, N.; Cavallo, M.; Crocella, V.; Bonino, F.; Quintelier, M.; Hadermann, J.; Rosero-navarro, N.C.; Miura, A.; Tadanaga, K. doi  openurl
  Title CO₂ electrochemical reduction with Zn-Al layered double hydroxide-loaded gas-diffusion electrode Type A1 Journal article
  Year 2023 Publication Electrochemistry Abbreviated Journal  
  Volume 91 Issue 9 Pages 097003-97007  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Carbon dioxide electrochemical reduction (CO2ER) has attracted considerable attention as a technology to recycle CO2 into raw materials for chemicals using renewable energies. We recently found that Zn-Al layered double hydroxides (Zn-Al LDH) have the CO-forming CO2ER activity. However, the activity was only evaluated by using the liquid-phase CO2ER. In this study, Ni-Al and Ni-Fe LDHs as well as Zn-Al LDH were synthesized using a facile coprecipitation process and the gas-phase CO2ER with the LDH-loaded gas-diffusion electrode (GDE) was examined. The products were characterized by XRD, STEM-EDX, BF-TEM and ATR-IR spectroscopy. In the ATR-IR results, the interaction of CO2 with Zn-Al LDH showed a different carbonates evolution with respect to other LDHs, suggesting a different electrocatalytic activity. The LDH-loaded GDE was prepared by simple drop-casting of a catalyst ink onto carbon paper. For gas-phase CO2ER, only Zn-Al LDH exhibited the CO2ER activity for carbon monoxide (CO) formation. By using different potassium salt electrolytes affording neutral to strongly basic conditions, such as KCl, KHCO3 and KOH, the gas-phase CO2ER with Zn-Al LDH-loaded GDE showed 1.3 to 2.1 times higher partial current density for CO formation than the liquid-phase CO2ER.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001082818000001 Publication Date 2023-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200340 Serial 9009  
Permanent link to this record
 

 
Author Liang, Z.; Batuk, M.; Orlandi, F.; Manuel, P.; Hadermann, J.; Hayward, M.A. url  doi
openurl 
  Title Disproportionation of Co2+ in the topochemically reduced oxide LaSrCoRuO₅ Type A1 Journal article
  Year 2024 Publication Angewandte Chemie: international edition in English Abbreviated Journal  
  Volume 63 Issue 6 Pages e202313067-5  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Complex transition-metal oxides exhibit a wide variety of chemical and physical properties which are a strong function the local electronic states of the transition-metal centres, as determined by a combination of metal oxidation state and local coordination environment. Topochemical reduction of the double perovskite oxide, LaSrCoRuO6, using Zr, yields LaSrCoRuO5. This reduced phase contains an ordered array of apex-linked square-based pyramidal Ru3+O5, square-planar Co1+O4 and octahedral Co3+O6 units, consistent with the coordination-geometry driven disproportionation of Co2+. Coordination-geometry driven disproportionation of d(7) transition-metal cations (e.g. Rh2+, Pd3+, Pt3+) is common in complex oxides containing 4d and 5d metals. However, the weak ligand field experienced by a 3d transition-metal such as cobalt leads to the expectation that d(7+) Co2+ should be stable to disproportionation in oxide environments, so the presence of Co1+O4 and Co3+O6 units in LaSrCoRuO5 is surprising. Low-temperature measurements indicate LaSrCoRuO5 adopts a ferromagnetically ordered state below 120 K due to couplings between S=(1)/(2) Ru3+ and S=1 Co1+.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001136579700001 Publication Date 2023-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202801 Serial 9023  
Permanent link to this record
 

 
Author Ulu Okudur, F.; Batuk, M.; Hadermann, J.; Safari, M.; De Sloovere, D.; Kumar Mylavarapu, S.; Joos, B.; D'Haen, J.; Van Bael, M.K.; Hardy, A. url  doi
openurl 
  Title Solution-gel-based surface modification of LiNi0.5Mn1.5O4-δ with amorphous Li-Ti-O coating Type A1 Journal article
  Year 2023 Publication RSC advances Abbreviated Journal  
  Volume 13 Issue 47 Pages 33146-33158  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract LNMO (LiNi0.5Mn1.5O4-delta) is a high-energy density positive electrode material for lithium ion batteries. Unfortunately, it suffers from capacity loss and impedance rise during cycling due to electrolyte oxidation and electrode/electrolyte interface instabilities at high operating voltages. Here, a solution-gel synthesis route was used to coat 0.5-2.5 mu m LNMO particles with amorphous Li-Ti-O (LTO) for improved Li conduction, surface structural stability and cyclability. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) analysis coupled with energy dispersive X-ray (EDX) showed Ti-rich amorphous coatings/islands or Ti-rich spinel layers on many of the LTO-modified LNMO facets, with a thickness varying from about 1 to 10 nm. The surface modification in the form of amorphous islands was mostly possible on high-energy crystal facets. Physicochemical observations were used to propose a molecular mechanism for the surface modification, combining insights from metalorganic chemistry with the crystallographic properties of LNMO. The improvements in functional properties were investigated in half cells. The cell impedance increased faster for the bare LNMO compared to amorphous LTO modified LNMO, resulting in R-ct values as high as 1247 Omega (after 1000 cycles) for bare LNMO, against 216 Omega for the modified material. At 10C, the modified material boosted a 15% increase in average discharge capacity. The improvements in electrochemical performance were attributed to the increase in electrochemically active surface area, as well as to improved HF-scavenging, resulting in the formation of protective byproducts, generating a more stable interface during prolonged cycling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001102666700001 Publication Date 2023-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202091 Serial 9096  
Permanent link to this record
 

 
Author Saniz, R.; Sarmadian, N.; Partoens, B.; Batuk, M.; Hadermann, J.; Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Lamoen, D. pdf  url
doi  openurl
  Title First-principles study of CO and OH adsorption on in-doped ZnO surfaces Type A1 Journal article
  Year 2019 Publication The journal of physics and chemistry of solids Abbreviated Journal J Phys Chem Solids  
  Volume 132 Issue Pages 172-181  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present a first-principles computational study of CO and OH adsorption on non-polar ZnO (10¯10) surfaces doped with indium. The calculations were performed using a model ZnO slab. The position of the In dopants was varied from deep bulk-like layers to

the surface layers. It was established that the preferential location of the In atoms is at the surface by examining the dependence of

the defect formation energy as well as the surface energy on In location. The adsorption sites on the surface of ZnO and the energy

of adsorption of CO molecules and OH-species were determined in connection to In doping. It was found that OH has higher

bonding energy to the surface than CO. The presence of In atoms at the surface of ZnO is favorable for CO adsorption, resulting

in an elongation of the C-O bond and in charge transfer to the surface. The effect of CO and OH adsorption on the electronic

and conduction properties of surfaces was assessed. We conclude that In-doped ZnO surfaces should present a higher electronic

response upon adsorption of CO.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472124700023 Publication Date 2019-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3697 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.059 Times cited 7 Open Access Not_Open_Access: Available from 26.04.2021  
  Notes FWO-Vlaanderen, G0D6515N ; ERA.Net RUS Plus, 096 ; VSC; HPC infrastructure of the University of Antwerp; FWO-Vlaanderen; Flemish Government-department EWI; Approved Most recent IF: 2.059  
  Call Number EMAT @ emat @UA @ admin @ c:irua:159656 Serial 5170  
Permanent link to this record
 

 
Author Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Batuk, M.; Hadermann, J.; Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D. url  doi
openurl 
  Title Effect of zinc oxide modification by indium oxide on microstructure, adsorbed surface species, and sensitivity to CO Type A1 Journal article
  Year 2019 Publication Frontiers in materials Abbreviated Journal  
  Volume 6 Issue 6 Pages  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Additives in semiconductor metal oxides are commonly used to improve sensing behavior of gas sensors. Due to complicated effects of additives on the materials microstructure, adsorption sites and reactivity to target gases the sensing mechanism with modified metal oxides is a matter of thorough research. Herein, we establish the promoting effect of nanocrystalline zinc oxide modification by 1-7 at.% of indium on the sensitivity to CO gas due to improved nanostructure dispersion and concentration of active sites. The sensing materials were synthesized via an aqueous coprecipitation route. Materials composition, particle size and BET area were evaluated using X-ray diffraction, nitrogen adsorption isotherms, high-resolution electron microscopy techniques and EDX-mapping. Surface species of chemisorbed oxygen, OH-groups, and acid sites were characterized by probe molecule techniques and infrared spectroscopy. It was found that particle size of zinc oxide decreased and the BET area increased with the amount of indium oxide. The additive was observed as amorphous indium oxide segregated on agglomerated ZnO nanocrystals. The measured concentration of surface species was higher on In2O3-modified zinc oxide. With the increase of indium oxide content, the sensor response of ZnO/In2O3 to CO was improved. Using in situ infrared spectroscopy, it was shown that oxidation of CO molecules was enhanced on the modified zinc oxide surface. The effect of modifier was attributed to promotion of surface OH-groups and enhancement of CO oxidation on the segregated indium ions, as suggested by DFT in previous work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461540600001 Publication Date 2019-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-8016 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access OpenAccess  
  Notes ; Research was supported by the grant from Russian Science Foundation (project No. 18-73-00071). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:158540 Serial 5205  
Permanent link to this record
 

 
Author Ciocarlan, R.-G.; Seftel, E.M.; Gavrila, R.; Suchea, M.; Batuk, M.; Mertens, M.; Hadermann, J.; Cool, P. pdf  url
doi  openurl
  Title Spinel nanoparticles on stick-like Freudenbergite nanocomposites as effective smart-removal photocatalysts for the degradation of organic pollutants under visible light Type A1 Journal article
  Year 2020 Publication Journal Of Alloys And Compounds Abbreviated Journal J Alloy Compd  
  Volume 820 Issue Pages 153403  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract A series of mixed nanocomposite materials was synthetized, containing a Ferrite phase type Zn1-xNixFe2O4 and a Freudenbergite phase type Na2Fe2Ti6O16, where x = 0; 0.2; 0.4; 0.6; 0.8; 1. The choice for this combination is based on the good adsorption properties of Freudenbergite for dye molecules, and the small bandgap energy of Ferrite spinel, allowing activation of the catalysts under visible light irradiation. A two steps synthesis protocol was used to obtain the smart-removal nanocomposites. Firstly, the spinel structure was obtained via the co-precipitation route followed by the addition of the Ti-source and formation of the Freudenbergite system. The role of cations on the formation mechanism and an interesting interchange of cations between spinel and Freudenbergite structures was clarified by a TEM study. Part of the Ti4+ penetrated the spinel structure and, at the same time, part of the Fe3+ formed the Freudenbergite system. The photocatalytic activity was studied under visible light, reaching for the best catalysts a 67% and 40% mineralization degree for methylene blue and rhodamine 6G respectively, after 6 h of irradiation. In the same conditions, the well-known commercial P25 (Degussa) managed to mineralize only 12% and 3% of methylene blue and rhodamine 6G, respectively. Due to the remarkable magnetic properties of Ferrites, a convenient recovery and reuse of the catalysts is possible after the photocatalytic tests. Based on the excellent catalytic performance of the nanocomposites under visible light and their ease of separation out of the solution after the catalytic reaction, the newly developed composite catalysts are considered very effective for wastewater treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000507854700130 Publication Date 2019-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.2 Times cited Open Access OpenAccess  
  Notes The authors acknowledge the FWO-Flanders (project nr. G038215N) for financial support. Approved Most recent IF: 6.2; 2020 IF: 3.133  
  Call Number EMAT @ emat @c:irua:166447 Serial 6342  
Permanent link to this record
 

 
Author Hardy, A.; Van Elshocht, S.; De Dobbelaere, C.; Hadermann, J.; Pourtois, G.; De Gendt, S.; Afanas'ev, V.V.; Van Bael, M.K. pdf  doi
openurl 
  Title Properties and thermal stability of solution processed ultrathin, high-k bismuth titanate (Bi2Ti2O7) films Type A1 Journal article
  Year 2012 Publication Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume 47 Issue 3 Pages 511-517  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Ultrathin bismuth titanate films (Bi2Ti2O7, 5-25 nm) are deposited onto SiO2/Si substrates by aqueous chemical solution deposition and their evolution during annealing is studied. The films crystallize into a preferentially oriented, pure pyrochlore phase between 500 and 700 degrees C, depending on the film thickness and the total thermal budget. Crystallization causes a strong increase of surface roughness compared to amorphous films. An increase of the interfacial layer thickness is observed after anneal at 600 degrees C, together with intermixing of bismuth with the substrate as shown by TEM-EDX. The band gap was determined to be similar to 3 eV from photoconductivity measurements and high dielectric constants between 30 and 130 were determined from capacitance voltage measurements, depending on the processing conditions. (C) 2012 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000301994100001 Publication Date 2012-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited Open Access  
  Notes Approved Most recent IF: 2.446; 2012 IF: 1.913  
  Call Number UA @ lucian @ c:irua:97797 Serial 2727  
Permanent link to this record
 

 
Author Vladimirova, S.A.; Rumyantseva, M.N.; Filatova, D.G.; Chizhov, A.S.; Khmelevsky, N.O.; Konstantinova, E.A.; Kozlovsky, V.F.; Marchevsky, A.V.; Karakulina, O.M.; Hadermann, J.; Gaskov, A.M. pdf  url
doi  openurl
  Title Cobalt location in p -CoO x / n -SnO 2 nanocomposites: Correlation with gas sensor performances Type A1 Journal Article
  Year 2017 Publication Journal Of Alloys And Compounds Abbreviated Journal J Alloy Compd  
  Volume 721 Issue Pages 249-260  
  Keywords (up) A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Nanocomposites CoOx/SnO2 based on tin oxide powders with different crystallinity have been prepared by wet chemical synthesis and characterized in detail by ICP-MS, XPS, EPR, XRD, HAADF-STEM imaging and EDX-STEM mapping. It was shown that cobalt is distributed differently between the bulk and surface of SnO2 nanocrystals, which depends on the crystallinity of the SnO2 matrix. The measurements of gas sensor properties have been carried out during exposure to CO (10 ppm), and H2S (2 ppm) in dry air. The decrease of sensor signal toward CO was attributed to high catalytic activity of Co3O4 leading to oxidation of carbon monoxide entirely on the surface of catalyst particles. The formation of a p-CoOx/n-SnO2 heterojunction results in high sensitivity of nanocomposites in H2S detection. The conductance significantly changed in the presence of H2S, which was attributed to the formation of metallic cobalt sulfide and removal of the p – n junction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405252400030 Publication Date 2017-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited Open Access Not_Open_Access  
  Notes This work was supported by ERA-Net.Plus grant N 096 FONSENS. EPR experiments were performed using the facilities of the Collective Use Center at the Moscow State University. Approved Most recent IF: 3.133  
  Call Number EMAT @ emat @ Serial 4711  
Permanent link to this record
 

 
Author Kutukov, P.; Rumyantseva, M.; Krivetskiy, V.; Filatova, D.; Batuk, M.; Hadermann, J.; Khmelevsky, N.; Aksenenko, A.; Gaskov, A. url  doi
openurl 
  Title Influence of Mono- and Bimetallic PtOx, PdOx, PtPdOx Clusters on CO Sensing by SnO2 Based Gas Sensors Type A1 Journal Article
  Year 2018 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 8 Issue 11 Pages 917  
  Keywords (up) A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract To obtain a nanocrystalline SnO2 matrix and mono- and bimetallic nanocomposites SnO2/Pd, SnO2/Pt, and SnO2/PtPd, a flame spray pyrolysis with subsequent impregnation was used. The materials were characterized using X-ray diffraction (XRD), a single-point BET method, transmission electron microscopy (TEM), and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with energy dispersive X-ray (EDX) mapping. The electronic state of the metals in mono- and bimetallic clusters was determined using X-ray photoelectron spectroscopy (XPS). The active surface sites were investigated using the Fourier Transform infrared spectroscopy (FTIR) and thermo-programmed reduction with hydrogen (TPR-H-2) methods. The sensor response of blank SnO2 and nanocomposites had a carbon monoxide (CO) level of 6.7 ppm and was determined in the temperature range 60-300 degrees C in dry (Relative Humidity (RH) = 0%) and humid (RH = 20%) air. The sensor properties of the mono- and bimetallic nanocomposites were analyzed on the basis of information on the electronic state, the distribution of modifiers in SnO2 matrix, and active surface centers. For SnO2/PtPd, the combined effect of the modifiers on the electrophysical properties of SnO2 explained the inversion of sensor response from n- to p-types observed in dry conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451316100052 Publication Date 2018-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.553 Times cited 7 Open Access Not_Open_Access  
  Notes This research was funded by the Russian Ministry of Education and Sciences (Agreement No. 14.613.21.0075, RFMEFI61317X0075). Approved Most recent IF: 3.553  
  Call Number EMAT @ emat @c:irua:155767 Serial 5139  
Permanent link to this record
 

 
Author Vandemeulebroucke, D.; Batuk, M.; Hajizadeh, A.; Wastiaux, M.; Roussel, P.; Hadermann, J. url  doi
openurl 
  Title Incommensurate Modulations and Perovskite Growth in LaxSr2–xMnO4−δAffecting Solid Oxide Fuel Cell Conductivity Type A1 Journal Article
  Year 2024 Publication Chemistry of Materials Abbreviated Journal Chem. Mater.  
  Volume Issue Pages  
  Keywords (up) A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Ruddlesden-Popper La????Sr2−????MnO4−???? materials are interesting symmetric solid oxide

fuel cell electrodes due to their good redox stability, mixed ionic and electronic conducting behavior and thermal expansion that matches well with common electrolytes. In reducing environments – as at a solid oxide fuel cell anode – the x = 0.5 member, i.e. La0.5Sr1.5MnO4−????, has a much higher total conductivity than compounds with a different La/Sr ratio, although all those compositions have the same K2NiF4-type I4/mmm structure. The origin for this conductivity difference is not yet known in literature. Now, a combination of in-situ and ex-situ 3D electron diffraction, high-resolution imaging, energy-dispersive X-ray analysis and electron energy-loss spectroscopy uncovered clear differences between x=0.25 and x=0.5 in the pristine structure, as well as in the transformations upon high-temperature reduction. In La0.5Sr1.5MnO4−????, Ruddlesden-Popper n=2 layer defects and an amorphous surface layer are present, but not in La0.25Sr1.75MnO4−????. After annealing at 700°C in 5% H2/Ar, La0.25Sr1.75MnO4−???? transforms to a tetragonal 2D incommensurately modulated structure with modulation vectors ⃗????1 = 0.2848(1) · (⃗????* +⃗????*) and ⃗????2 =0.2848(1) · (⃗????* – ⃗????*), whereas La0.5Sr1.5MnO4−???? only partially transforms to an orthorhombic 1D incommensurately modulated structure,

with ⃗???? = 0.318(2) · ⃗????*. Perovskite domains grow at the crystal edge at 700°C in 5%

H2 or vacuum, due to the higher La concentration on the surface compared to the bulk, which leads to a different thermodynamic equilibrium. Since it is known that a lower degree of oxygen vacancy ordering and a higher amount of perovskite blocks enhance oxygen mobility, those differences in defect structure and structural transformation upon reduction, might all contribute to the higher conductivity of La0.5Sr1.5MnO4−???? in solid oxide fuel cell anode conditions compared to other La/Sr ratios.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos Publication Date 2024-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links  
  Impact Factor 8.6 Times cited Open Access Not_Open_Access  
  Notes Universiteit Antwerpen, BOF TOP 38689 ; Fonds Wetenschappelijk Onderzoek, I003218N ; European Commission NanED, 956099 ; Approved Most recent IF: 8.6; 2024 IF: 9.466  
  Call Number EMAT @ emat @ Serial 8997  
Permanent link to this record
 

 
Author Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J. pdf  doi
openurl 
  Title Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations Type A1 Journal article
  Year 2016 Publication Dental Materials Abbreviated Journal Dent Mater  
  Volume 32 Issue 32 Pages e327-e337  
  Keywords (up) A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract OBJECTIVE: The aim was to evaluate the optical properties, mechanical properties and aging stability of yttria-stabilized zirconia with different compositions, highlighting the influence of the alumina addition, Y2O3 content and La2O3 doping on the translucency. METHODS: Five different Y-TZP zirconia powders (3 commercially available and 2 experimentally modified) were sintered under the same conditions and characterized by X-ray diffraction with Rietveld analysis and scanning electron microscopy (SEM). Translucency (n=6/group) was measured with a color meter, allowing to calculate the translucency parameter (TP) and the contrast ratio (CR). Mechanical properties were appraised with four-point bending strength (n=10), single edge V-notched beam (SEVNB) fracture toughness (n=8) and Vickers hardness (n=10). The aging stability was evaluated by measuring the tetragonal to monoclinic transformation (n=3) after accelerated hydrothermal aging in steam at 134 degrees C, and the transformation curves were fitted by the Mehl-Avrami-Johnson (MAJ) equation. Data were analyzed by one-way ANOVA, followed by Tukey's HSD test (alpha=0.05). RESULTS: Lowering the alumina content below 0.25wt.% avoided the formation of alumina particles and therefore increased the translucency of 3Y-TZP ceramics, but the hydrothermal aging stability was reduced. A higher yttria content (5mol%) introduced about 50% cubic zirconia phase and gave rise to the most translucent and aging-resistant Y-TZP ceramics, but the fracture toughness and strength were considerably sacrificed. 0.2mol% La2O3 doping of 3Y-TZP tailored the grain boundary chemistry and significantly improved the aging resistance and translucency. Although the translucency improvement by La2O3 doping was less effective than for introducing a substantial amount of cubic zirconia, this strategy was able to maintain the mechanical properties of typical 3Y-TZP ceramics. SIGNIFICANCE: Three different approaches were compared to improve the translucency of 3Y-TZP ceramics.  
  Address KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000389516400003 Publication Date 2016-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0109-5641 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.07 Times cited Open Access  
  Notes The authors acknowledge the Research Fund of KU Leu- ven under project 0T/10/052 and the Fund for Scientific Research Flanders (FWO-Vlaanderen) under grant G.0431.10N. F. Zhang thanks the Research Fund of KU Leuven for her post- doctoral fellowship (PDM/15/153). We thank M. Peumans for the translucency measurements. Approved Most recent IF: 4.07  
  Call Number EMAT @ emat @ c:irua:136821 Serial 4313  
Permanent link to this record
 

 
Author Buffière, M.; Zaghi, A.E.; Lenaers, N.; Batuk, M.; Khelifi, S.; Drijkoningen, J.; Hamon, J.; Stesmans, A.; Kepa, J.; Afanas’ev, V.V.; Hadermann, J.; D’Haen, J.; Manca, J.; Vleugels, J.; Meuris, M.; Poortmans, J.; pdf  url
doi  openurl
  Title Effect of binder content in Cu-In-Se precursor ink on the physical and electrical properties of printed CuInSe2 solar cells Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 118 Issue 47 Pages 27201-27209  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Printed chalcopyrite thin films have attracted considerable attention in recent years due to their potential in the high-throughput production of photovoltaic devices. To improve the homogeneity of printed CuInSe2 (CISe) layers, chemical additives such as binder can be added to the precursor ink. In this contribution, we investigate the influence of the dicyandiamide (DCDA) content, used as a binder in the precursor ink, on the physical and electrical properties of printed CISe solar cells. It is shown that the use of the binder leads to a dense absorber, composed of large CISe grains close to the surface, while the bulk of the layer consists of CISe crystallites embedded in a CuxS particle based matrix, resulting from the limited sintering of the precursor in this region. The expected additional carbon contamination of the CISe layer due to the addition of the binder appears to be limited, and the optical properties of the CISe layer are similar to the reference sample without additive. The electrical characterization of the corresponding CISe/CdS solar cells shows a degradation of the efficiency of the devices, due to a modification in the predominant recombination mechanisms and a limitation of the space charge region width when using the binder; both effects could be explained by the inhomogeneity of the bulk of the CISe absorber and high defect density at the CISe/CuxS-based matrix interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000345722400003 Publication Date 2014-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 4 Open Access  
  Notes Approved Most recent IF: 4.536; 2014 IF: 4.772  
  Call Number UA @ lucian @ c:irua:121332 Serial 801  
Permanent link to this record
 

 
Author Kelchtermans, A.; Adriaensens, P.; Slocombe, D.; Kuznetsov, V.L.; Hadermann, J.; Riskin, A.; Elen, K.; Edwards, P.P.; Hardy, A.; Van Bael, M.K. pdf  url
doi  openurl
  Title Increasing the solubility limit for tetrahedral aluminium in ZnO:Al nanorods by variation in synthesis parameters Type A1 Journal article
  Year 2015 Publication Journal of nanomaterials Abbreviated Journal J Nanomater  
  Volume 2015 Issue 2015 Pages 1-8  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline ZnO:Al nanoparticles are suitable building blocks for transparent conductive layers. As the concentration of substitutional tetrahedral Al is an important factor for improving conductivity, here we aim to increase the fraction of substitutional Al. To this end, synthesis parameters of a solvothermal reaction yielding ZnO:Al nanorods were varied. A unique set of complementary techniques was combined to reveal the exact position of the aluminium ions in the ZnO lattice and demonstrated its importance in order to evaluate the potential of ZnO:Al nanocrystals as optimal building blocks for solution deposited transparent conductive oxide layers. Both an extension of the solvothermal reaction time and stirring during solvothermal treatment result in a higher total tetrahedral aluminium content in the ZnO lattice. However, only the longer solvothermal treatment effectively results in an increase of the substitutional positions aimed for.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000358516300001 Publication Date 2015-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-4110;1687-4129; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.871 Times cited 2 Open Access  
  Notes FWO; Methusalem Approved Most recent IF: 1.871; 2015 IF: 1.644  
  Call Number c:irua:124426 Serial 1600  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: