|
Record |
Links |
|
Author |
Mallick, S.; Zhang, W.; Batuk, M.; Gibbs, A.S.; Hadermann, J.; Halasyamani, P.S.; Hayward, M.A. |
|
|
Title |
The crystal and defect structures of polar KBiNb2O7 |
Type |
A1 Journal article |
|
Year |
2022 |
Publication |
Journal of the Chemical Society : Dalton transactions |
Abbreviated Journal |
Dalton T |
|
|
Volume |
51 |
Issue |
5 |
Pages |
1866-1873 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
KBiNb2O7 was prepared from RbBiNb2O7 by a sequence of cation exchange reactions which first convert RbBiNb2O7 to LiBiNb2O7, before KBiNb2O7 is formed by a further K-for-Li cation exchange. A combination of neutron, synchrotron X-ray and electron diffraction data reveal that KBiNb2O7 adopts a polar, layered, perovskite structure (space group A11m) in which the BiNb2O7 layers are stacked in a (0, ½, z) arrangement, with the K+ cations located in half of the available 10-coordinate interlayer cation sites. The inversion symmetry of the phase is broken by a large displacement of the Bi3+ cations parallel to the y-axis. HAADF-STEM images reveal that KBiNb2O7 exhibits frequent stacking faults which convert the (0. ½, z) layer stacking to (½, 0, z) stacking and vice versa, essentially switching the x- and y-axes of the material. By fitting the complex diffraction peak shape of the SXRD data collected from KBiNb2O7 it is estimated that each layer has approximately an ~11% chance of being defective – a high level which is attributed to the lack of cooperative NbO6 tilting in the material, which limits the lattice strain associated with each fault. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000741540300001 |
Publication Date |
2022-01-05 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1477-9226 |
ISBN |
|
Additional Links |
UA library record; WoS full record |
|
|
Impact Factor |
4 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford/Warwick Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE18786). Experiments at the ISIS pulsed neutron facility were supported by a beam time allocation from the STFC (RB 2000148). SM thanks Somerville College for an Oxford Ryniker Lloyd scholarship. PSH and WZ thank the National Science Foundation (DMR-2002319) for support. |
Approved |
Most recent IF: 4 |
|
|
Call Number |
EMAT @ emat @c:irua:185504 |
Serial |
6951 |
|
Permanent link to this record |