|   | 
Details
   web
Records
Author Van der Paal, J.; Verlackt, C.C.; Yusupov, M.; Neyts, E.C.; Bogaerts, A.
Title Structural modification of the skin barrier by OH radicals : a reactive molecular dynamics study for plasma medicine Type A1 Journal article
Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 48 Issue (up) 48 Pages 155202
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract While plasma treatment of skin diseases and wound healing has been proven highly effective, the underlying mechanisms, and more generally the effect of plasma radicals on skin tissue, are not yet completely understood. In this paper, we perform ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of plasma generated OH radicals with a model system composed of free fatty acids, ceramides, and cholesterol molecules. This model system is an approximation of the upper layer of the skin (stratum corneum). All interaction mechanisms observed in our simulations are initiated by H-abstraction from one of the ceramides. This reaction, in turn, often starts a cascade of other reactions, which eventually lead to the formation of aldehydes, the dissociation of ceramides or the elimination of formaldehyde, and thus eventually to the degradation of the skin barrier function.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000351856600007 Publication Date 2015-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 20 Open Access
Notes Approved Most recent IF: 2.588; 2015 IF: 2.721
Call Number c:irua:124230 Serial 3242
Permanent link to this record
 

 
Author Kerkhofs, S.; Leroux, F.; Allouche, L.; Mellaerts, R.; Jammaer, J.; Aerts, A.; Kirschhock, C.E.A.; Magusin, P.C.M.M.; Taulelle, F.; Bals, S.; Van Tendeloo, G.; Martens, J.A.;
Title Single-step alcohol-free synthesis of coreshell nanoparticles of \gamma-casein micelles and silica Type A1 Journal article
Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 4 Issue (up) 49 Pages 25650-25657
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new, single-step protocol for wrapping individual nanosized β-casein micelles with silica is presented. This biomolecule-friendly synthesis proceeds at low protein concentration at almost neutral pH, and makes use of sodium silicate instead of the common silicon alkoxides. This way, formation of potentially protein-denaturizing alcohols can be avoided. The pH of the citrate-buffered synthesis medium is close to the isoelectric point of β-casein, which favours micelle formation. A limited amount of sodium silicate is added to the protein micelle suspension, to form a thin silica coating around the β-casein micelles. The size distribution of the resulting proteinsilica structures was characterized using DLS and SAXS, as well as 1H NMR DOSY with a dedicated pulsed-field gradient cryo-probehead to cope with the low protein concentration. The degree of silica-condensation was investigated by 29Si MAS NMR, and the nanostructure was revealed by advanced electron microscopy techniques such as ESEM and HAADF-STEM. As indicated by the combined characterization results, a silica shell of 2 nm is formed around individual β-casein micelles giving rise to separate protein coresilica shell nanoparticles of 17 nm diameter. This alcohol-free method at mild temperature and pH is potentially suited for packing protein molecules into bio-compatible silica nanocapsules for a variety of applications in biosensing, therapeutic protein delivery and biocatalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000338434500025 Publication Date 2014-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 3 Open Access OpenAccess
Notes Fwo; 262348 Esmi; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:125382 Serial 3027
Permanent link to this record
 

 
Author Bogaerts, A.; Khosravian, N.; Van der Paal, J.; Verlackt, C.C.W.; Yusupov, M.; Kamaraj, B.; Neyts, E.C.
Title Multi-level molecular modelling for plasma medicine Type A1 Journal article
Year 2016 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 49 Issue (up) 49 Pages 054002
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Modelling at the molecular or atomic scale can be very useful for obtaining a better insight in plasma medicine. This paper gives an overview of different atomic/molecular scale modelling approaches that can be used to study the direct interaction of plasma species with biomolecules or the consequences of these interactions for the biomolecules on a somewhat longer time-scale. These approaches include density functional theory (DFT), density functional based tight binding (DFTB), classical reactive and non-reactive molecular dynamics (MD) and united-atom or coarse-grained MD, as well as hybrid quantum mechanics/molecular mechanics (QM/MM) methods. Specific examples will be given for three important types of biomolecules, present in human cells, i.e. proteins, DNA and phospholipids found in the cell membrane. The results show that each of these modelling approaches has its specific strengths and limitations, and is particularly useful for certain applications. A multi-level approach is therefore most suitable for obtaining a global picture of the plasma–biomolecule interactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000368944100003 Publication Date 2015-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 11 Open Access
Notes This work is financially supported by the Fund for Scientific Research Flanders (FWO) and the Francqui Foundation. The calculations were carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. Approved Most recent IF: 2.588
Call Number c:irua:131571 Serial 3985
Permanent link to this record
 

 
Author Tinck, S.; Bogaerts, A.
Title Computational study of the CF4 /CHF3 / H2 /Cl2 /O2 /HBr gas phase plasma chemistry Type A1 Journal article
Year 2016 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 49 Issue (up) 49 Pages 195203
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A modelling study is performed of high-density low-pressure inductively coupled CF4/CHF3/H2/Cl2/O2/HBr plasmas under different gas mixing ratios. A reaction set describing the complete plasma chemistry is presented and discussed. The gas fraction of each component in this mixture is varied to investigate the sensitivity of the plasma properties, like electron density, plasma potential and species densities, towards the gas mixing ratios. This research is of great interest for microelectronics applications because these gases are often combined in two (or more)-component mixtures, and mixing gases or changing the fraction of a gas can sometimes yield unwanted reaction products or unexpected changes in the overall plasma properties due to the increased chemical complexity of the system. Increasing the CF4 fraction produces more F atoms for chemical etching as expected, but also more prominently lowers the density of Cl atoms, resulting in an actual drop in the etch rate under certain conditions. Furthermore, CF4 decreases the free electron density when mixed with Cl2. However, depending on the other gas components, CF4 gas can also sometimes enhance free electron density. This is the case when HBr is added to the mixture. The addition of H2 to the gas mixture will lower the sputtering process, not only due to the lower overall positive ion density at higher H2 fractions, but also because more H+, H2 + and H3 + are present and they have very low sputter yields. In contrast, a larger Cl2 fraction results in more chemical etching but also in less physical sputtering due to a smaller abundance of positive ions. Increasing the O2 fraction in the plasma will always lower the etch rate due to more oxidation of the wafer surface and due to a lower plasma density. However, it is also observed that the density of F atoms can actually increase with rising O2 gas fraction. This is relevant to note because the exact balance between fluorination and oxidation is important for fine-tuning the overall etch rate and for control of the sidewall profile. Finally, HBr is often used as a chemical etcher, but when mixed with F- or Cl-containing gases, HBr creates the same diluting effects as Ar or He, because a

higher fraction results in less chemical etching but more (physical) sputtering.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375255500017 Publication Date 2016-04-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 5 Open Access
Notes We acknowledge the Fund for Scientific Research Flanders (FWO) for financial support of this work. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 2.588
Call Number c:irua:132890 Serial 4062
Permanent link to this record
 

 
Author Tinck, S.; Bogaerts, A.
Title Role of vibrationally excited HBr in a HBr/He inductively coupled plasma used for etching of silicon Type A1 Journal article
Year 2016 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 49 Issue (up) 49 Pages 245204
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work, the role of vibrationally excited HBr (HBr(vib)) is computationally investigated for a HBr/He inductively coupled plasma applied for Si etching. It is found that at least 50% of all dissociations of HBr occur through HBr(vib). This additional dissociation pathway through HBr(vib) makes the plasma significantly more atomic. It also results in a slightly higher electron temperature (i.e. about 0.2 eV higher compared to simulation results where HBr(vib) is not included), as well as a higher gas temperature (i.e. about 50 K higher than without including HBr(vib)), due to the enhanced Franck–Condon heating through HBr(vib) dissociation,

at the conditions investigated. Most importantly, the calculated etch rate with HBr(vib) included in the model is a factor 3 higher than in the case without HBr(vib), due to the higher fluxes of etching species (i.e. H and Br), while the chemical composition of the wafer surface shows no significant difference. Our calculations clearly show the importance of including HBr(vib) for accurate modeling of HBr-containing plasmas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000377427100020 Publication Date 2016-05-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited Open Access
Notes The Fund for Scientific Research Flanders (FWO) is acknowledged for financial support of this work (Grant no. 0880.212.840). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Prof. Mark Kushner is also gratefully acknowledged for the useful discussions and for providing the HPEM code. Approved Most recent IF: 2.588
Call Number c:irua:133457 Serial 4072
Permanent link to this record
 

 
Author Tinck, S.; Tillocher, T.; Dussart, R.; Neyts, E.C.; Bogaerts, A.
Title Elucidating the effects of gas flow rate on an SF6inductively coupled plasma and on the silicon etch rate, by a combined experimental and theoretical investigation Type A1 Journal article
Year 2016 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 49 Issue (up) 49 Pages 385201
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Experiments show that the etch rate of Si with SF6 inductively coupled plasma (ICP) is significantly influenced by the absolute gas flow rate in the range of 50–600 sccm, with a maximum at around 200 sccm. Therefore, we numerically investigate the effects of the gas flow rate on the bulk plasma properties and on the etch rate, to obtain more insight in the underlying reasons of this effect. A hybrid Monte Carlo—fluid model is applied to simulate an SF6 ICP. It is found that the etch rate is influenced by two simultaneous effects: (i) the residence time of the gas and (ii) the temperature profile of the plasma in the ICP volume, resulting indeed in a maximum etch rate at 200 sccm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384095900011 Publication Date 2016-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 1 Open Access
Notes We are very grateful to Mark Kushner for providing the computational model. The Fund for Scientific Research Flanders (FWO; grant no. 0880.212.840) is acknowledged for financial support of this work. The work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 2.588
Call Number c:irua:134867 Serial 4108
Permanent link to this record
 

 
Author Janssens, K.; Bogaerts, A.; van Grieken, R.
Title Colloquium Spectroscopicum Internationale 34, Antwerp, Belgium, 4-9 September 2005: preface Type Editorial
Year 2006 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal Talanta
Volume 70 Issue (up) 5 Pages 907-908
Keywords Editorial; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Pergamon Place of Publication Oxford Editor
Language Wos 000242871900001 Publication Date 2006-11-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-9140; ISBN Additional Links UA library record; WoS full record
Impact Factor 4.162 Times cited Open Access
Notes Approved Most recent IF: 4.162; 2006 IF: 2.810
Call Number UA @ lucian @ c:irua:61094 Serial 392
Permanent link to this record
 

 
Author Hoon Park, J.; Kumar, N.; Hoon Park, D.; Yusupov, M.; Neyts, E.C.; Verlackt, C.C.W.; Bogaerts, A.; Ho Kang, M.; Sup Uhm, H.; Ha Choi, E.; Attri, P.;
Title A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma Type A1 Journal article
Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 5 Issue (up) 5 Pages 13849
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000360909000001 Publication Date 2015-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 32 Open Access
Notes Approved Most recent IF: 4.259; 2015 IF: 5.578
Call Number c:irua:127410 Serial 419
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Comparison of argon and neon as discharge gases in a direct current glow discharge: a mathematical simulation Type A1 Journal article
Year 1997 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 52 Issue (up) 5 Pages 553-566
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos A1997XG74100002 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; 0038-6987 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 13 Open Access
Notes Approved Most recent IF: 3.241; 1997 IF: 2.448
Call Number UA @ lucian @ c:irua:19601 Serial 426
Permanent link to this record
 

 
Author Bogaerts, A.; Bultinck, E.; Eckert, M.; Georgieva, V.; Mao, M.; Neyts, E.; Schwaederlé, L.
Title Computer modeling of plasmas and plasma-surface interactions Type A1 Journal article
Year 2009 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 6 Issue (up) 5 Pages 295-307
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, an overview is given of different modeling approaches used for describing gas discharge plasmas, as well as plasma-surface interactions. A fluid model is illustrated for describing the detailed plasma chemistry in capacitively coupled rf discharges. The strengths and limitations of Monte Carlo simulations and of a particle-in-cell-Monte Carlo collisions model are explained for a magnetron discharge, whereas the capabilities of a hybrid Monte Carlo-fluid approach are illustrated for a direct current glow discharge used for spectrochemical analysis of materials. Finally, some examples of molecular dynamics simulations, for the purpose of plasma-deposition, are given.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000266471800003 Publication Date 2009-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850;1612-8869; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 18 Open Access
Notes Approved Most recent IF: 2.846; 2009 IF: 4.037
Call Number UA @ lucian @ c:irua:76833 Serial 461
Permanent link to this record
 

 
Author van Grieken, R.; Bogaerts, A.; Janssens, K.
Title Editorial Type Editorial
Year 2006 Publication Spectrochimica acta: part A: molecular spectroscopy Abbreviated Journal Spectrochim Acta A
Volume 64 Issue (up) 5 Pages 1089
Keywords Editorial; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000240093100001 Publication Date 2006-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-1425; ISBN Additional Links UA library record; WoS full record
Impact Factor 2.536 Times cited Open Access
Notes Approved Most recent IF: 2.536; 2006 IF: 1.270
Call Number UA @ lucian @ c:irua:58915 Serial 788
Permanent link to this record
 

 
Author Herrebout, D.; Bogaerts, A.; Yan, M.; Gijbels, R.; Goedheer, W.; Vanhulsel, A.
Title Modeling of a capacitively coupled radio-frequency methane plasma: comparison between a one-dimensional and a two-dimensional fluid model Type A1 Journal article
Year 2002 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 92 Issue (up) 5 Pages 2290-2295
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000177548500011 Publication Date 2002-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 15 Open Access
Notes Approved Most recent IF: 2.068; 2002 IF: 2.281
Call Number UA @ lucian @ c:irua:40188 Serial 2113
Permanent link to this record
 

 
Author Tinck, S.; Bogaerts, A.
Title Modeling SiH4/O2/Ar inductively coupled plasmas used for filling of microtrenches in shallow trench isolation (STI) Type A1 Journal article
Year 2012 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 9 Issue (up) 5 Pages 522-539
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Modeling results are presented to gain a better insight in the properties of a SiH4/O2/Ar inductively coupled plasma (ICP) and how it interacts with a silicon substrate (wafer), as applied in the microelectronics industry for the fabrication of electronic devices. The SiH4/O2/Ar ICP is used for the filling of microtrenches with isolating material (SiO2), as applied in shallow trench isolation (STI). In this article, a detailed reaction set that describes the plasma chemistry of SiH4/O2/Ar discharges as well as surface processes, such as sputtering, oxidation, and deposition, is presented. Results are presented on the plasma properties during the plasma enhanced chemical vapor deposition process (PECVD) for different gas ratios, as well as on the shape of the filled trenches and the surface compositions of the deposited layers. For the operating conditions under study it is found that the most important species accounting for deposition are SiH2, SiH3O, SiH3 and SiH2O, while SiH+2, SiH+3, O+2 and Ar+ are the dominant species for sputtering of the surface. By diluting the precursor gas (SiH4) in the mixture, the deposition rate versus sputtering rate can be controlled for a desired trench filling process. From the calculation results it is clear that a high deposition rate will result in undesired void formation during the trench filling, while a small deposition rate will result in undesired trench bottom and mask damage by sputtering. By varying the SiH4/O2 ratio, the chemical composition of the deposited layer will be influenced. However, even at the highest SiH4/O2 ratio investigated (i.e., 3.2:1; low oxygen content), the bulk deposited layer consists mainly of SiO2, suggesting that low-volatile silane species deposit first and subsequently become oxidized instead of being oxidized first in the plasma before deposition. Finally, it was found that the top surface of the deposited layer contained less oxygen due to preferential sputtering of O atoms, making the top layer more Si-rich. However, this effect is negligible at a SiH4/O2 ratio of 2:1 or lower.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000303858100010 Publication Date 2012-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 5 Open Access
Notes Approved Most recent IF: 2.846; 2012 IF: 3.730
Call Number UA @ lucian @ c:irua:99127 Serial 2142
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Monte Carlo model for the argon ions and fast argon atoms in a radio-frequency discharge Type A1 Journal article
Year 1999 Publication IEEE transactions on plasma science Abbreviated Journal Ieee T Plasma Sci
Volume 27 Issue (up) 5 Pages 1406-1415
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000083453000023 Publication Date 2002-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0093-3813; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.052 Times cited 15 Open Access
Notes Approved Most recent IF: 1.052; 1999 IF: 1.085
Call Number UA @ lucian @ c:irua:28321 Serial 2197
Permanent link to this record
 

 
Author Snoeckx, R.; Zeng, Y.X.; Tu, X.; Bogaerts, A.
Title Plasma-based dry reforming : improving the conversion and energy efficiency in a dielectric barrier discharge Type A1 Journal article
Year 2015 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 5 Issue (up) 5 Pages 29799-29808
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Dry reforming of methane has gained significant interest over the years. A novel reforming technique with great potential is plasma technology. One of its drawbacks, however, is energy consumption. Therefore, we performed an extensive computational study, supported by experiments, aiming to identify the influence of the operating parameters (gas mixture, power, residence time and frequency) of a dielectric barrier discharge plasma on the conversion and energy efficiency, and to investigate which of these parameters lead to the most promising results and whether these are eventually sufficient for industrial implementation. The best results, in terms of both energy efficiency and conversion, are obtained at a specific energy input (SEI) of 100 J cm−3, a 1090 CH4CO2 ratio, 10 Hz, a residence time of 1 ms, resulting in a total conversion of 84% and an energy efficiency of 8.5%. In general, increasing the CO2 content in the gas mixture leads to a higher conversion and energy efficiency. The SEI couples the effect of the power and residence time, and increasing the SEI always results in a higher conversion, but somewhat lower energy efficiencies. The effect of the frequency is more complicated: we observed that the product of frequency (f) and residence time (τ), being a measure for the total number of micro-discharge filaments which the gas molecules experience when passing through the reactor, was critical. For most cases, a higher number of filaments yields higher values for conversion and energy efficiency. To benchmark our model predictions, we also give an overview of measured conversions and energy efficiencies reported in the literature, to indicate the potential for improvement compared to the state-of-the art. Finally, we identify the limitations as well as the benefits and future possibilities of plasma technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000352789500026 Publication Date 2015-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 67 Open Access
Notes Approved Most recent IF: 3.108; 2015 IF: 3.840
Call Number c:irua:132577 Serial 2629
Permanent link to this record
 

 
Author Wendelen, W.; Autrique, D.; Bogaerts, A.
Title Space charge limited electron emission from a Cu surface under ultrashort pulsed laser irradiation Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 96 Issue (up) 5 Pages 1-3
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this theoretical study, the electron emission from a copper surface under ultrashort pulsed laser irradiation is investigated using a one-dimensional particle in cell model. Thermionic emission as well as multiphoton photoelectron emission were taken into account. The emitted electrons create a negative space charge above the target; consequently the generated electric field reduces the electron emission by several orders of magnitude. The simulations indicate that the space charge effect should be considered when investigating electron emission related phenomena in materials under ultrashort pulsed laser irradiation of metals.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000274319500021 Publication Date 2010-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 22 Open Access
Notes Approved Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:80995 Serial 3059
Permanent link to this record
 

 
Author Bogaerts, A.; Khosravian, N.; Van der Paal, J.; Verlackt, C.C.W.; Yusupov, M.; Kamaraj, B.; Neyts, E.C.
Title Multi-level molecular modelling for plasma medicine Type A1 Journal article
Year 2016 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 49 Issue (up) 5 Pages 054002-54019
Keywords A1 Journal article; Plasma, laser ablation and surface modeling – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record
Impact Factor 2.588 Times cited Open Access
Notes Approved Most recent IF: 2.588
Call Number UA @ lucian @ c:irua:129798 Serial 4467
Permanent link to this record
 

 
Author Navarrete, A.; Centi, G.; Bogaerts, A.; Mart?n,?ngel; York, A.; Stefanidis, G.D.
Title Harvesting Renewable Energy for Carbon Dioxide Catalysis Type A1 Journal article
Year 2017 Publication Energy technology Abbreviated Journal Energy Technol-Ger
Volume 5 Issue (up) 5 Pages 796-811
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The use of renewable energy (RE) to transform carbon dioxide into commodities (i.e., CO2 valorization) will pave the way towards a more sustainable economy in the coming years. But how can we efficiently use this energy (mostly available as electricity or solar light) to drive the necessary (catalytic) transformations? This paper presents a review of the technological advances in the transformation of carbon dioxide by means of RE. The socioeconomic implications and chemical basis of the transformation of carbon dioxide with RE are discussed. Then a general view of the use of RE to activate the (catalytic) transformations of carbon dioxide with microwaves, plasmas, and light is presented. The fundamental phenomena involved are introduced from a catalytic and reaction device perspective to present the advantages of this energy form as well as the inherent limitations of the present state-of-the-art. It is shown that efficient use of RE requires the redesign of current catalytic concepts. In this context, a new kind of reaction system, an energy-harvesting device, is proposed as a new conceptual approach for this endeavor. Finally, the challenges that lie ahead for the efficient and economical use of RE for carbon dioxide conversion are exposed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451619500001 Publication Date 2017-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2194-4288 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.789 Times cited 15 Open Access Not_Open_Access
Notes Fund for Scientific Research Flanders, G.0254.14 N, G.0217.14 N and G.0383.16 N ; Spanish Ministry of Economy and Competitiveness, ENE2014-53459-R ; Approved Most recent IF: 2.789
Call Number PLASMANT @ plasmant @ c:irua:144217 Serial 4615
Permanent link to this record
 

 
Author Zhang, Y.-R.; Neyts, E.C.; Bogaerts, A.
Title Enhancement of plasma generation in catalyst pores with different shapes Type A1 Journal article
Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 27 Issue (up) 5 Pages 055008
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma generation inside catalyst pores is of utmost importance for plasma catalysis, as the existence of plasma species inside the pores affects the active surface area of the catalyst available to the plasma species for catalytic reactions. In this paper, the electric field enhancement, and thus the plasma production inside catalyst pores with different pore shapes is studied with a two-dimensional fluid model. The results indicate that the electric field will be significantly enhanced near tip-like structures. In a conical pore with small opening, the strongest electric field appears at the opening and bottom corners of the pore, giving rise to a prominent ionization rate throughout the pore. For a cylindrical pore, the electric field is only enhanced at the bottom corners of the pore, with lower absolute value, and thus the ionization rate inside the pore is only slightly enhanced. Finally, in a conical pore with large opening, the electric field is characterized by a maximum at the bottom of the pore, yielding a similar behavior for the ionization rate. These results demonstrate that the shape of the pore has a significantly influence on the electric field enhancement, and thus modifies the plasma properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000432351700002 Publication Date 2018-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 11 Open Access OpenAccess
Notes This work was supported by the Fund for Scientific Research Flanders (FWO) (Grant No. G.0217.14N) and the Fundamental Research Funds for the Central Universities (Grant No. DUT17LK52). Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:151546 Serial 4998
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Meynen, V.; Cool, P.; Bogaerts, A.
Title The Potential Use of Core-Shell Structured Spheres in a Packed-Bed DBD Plasma Reactor for CO2 Conversion Type A1 Journal article
Year 2020 Publication Catalysts Abbreviated Journal Catalysts
Volume 10 Issue (up) 5 Pages 530
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This work proposes to use core-shell structured spheres to evaluate whether it allows to individually optimize bulk and surface effects of a packing material, in order to optimize conversion and energy efficiency. Different core-shell materials have been prepared by spray coating, using dense spheres (as core) and powders (as shell) of SiO2, Al2O3, and BaTiO3. The materials are investigated for their performance in CO2 dissociation and compared against a benchmark consisting of a packed-bed reactor with the pure dense spheres, as well as an empty reactor. The results in terms of CO2 conversion and energy efficiency show various interactions between the core and shell material, depending on their combination. Al2O3 was found as the best core material under the applied conditions here, followed by BaTiO3 and SiO2, in agreement with their behaviour for the pure spheres. Applying a thin shell layer on the cores showed equal performance between the different shell materials. Increasing the layer thickness shifts this behaviour, and strong combination effects were observed depending on the specific material. Therefore, this method of core-shell spheres has the potential to allow tuning of the packing properties more closely to the application by designing an optimal combination of core and shell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000546007000092 Publication Date 2020-05-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited Open Access
Notes Interreg, Project EnOp ; Fonds Wetenschappelijk Onderzoek, G.0254.14N ; Universiteit Antwerpen, Project SynCO2Chem ; We want to thank Jasper Lefevre (VITO) for assistance in the development of the coating suspension for the core-shell spheres. Approved Most recent IF: 3.9; 2020 IF: 3.082
Call Number PLASMANT @ plasmant @c:irua:169222 Serial 6364
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Wang, W.Z.; Thille, C.; Bogaerts, A.
Title H2S Decomposition into H2 and S2 by Plasma Technology: Comparison of Gliding Arc and Microwave Plasma Type A1 Journal article
Year 2020 Publication Plasma Chemistry And Plasma Processing Abbreviated Journal Plasma Chem Plasma P
Volume 40 Issue (up) 5 Pages 1163-1187
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We studied hydrogen sulfide (H2S) decomposition into hydrogen (H2) and sulfur (S2) in a gliding arc plasmatron (GAP) and microwave (MW) plasma by a combination of 0D and 2D models. The conversion, energy efficiency, and plasma distribution are examined for different discharge conditions, and validated with available experiments from literature. Furthermore, a comparison is made between GAP and MW plasma. The GAP operates at atmospheric pressure, while the MW plasma experiments to which comparison is made were performed at reduced pressure. Indeed, the MW discharge region becomes very much contracted near atmospheric pressure, at the conditions under study, as revealed by our 2D model. The models predict that thermal reactions play the most important role in H2S decomposition in both plasma types. The GAP has a higher energy efficiency but lower conversion than the MW plasma at their typical conditions. When compared at the same conversion, the GAP exhibits a higher energy efficiency and lower energy cost than the MW plasma.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000543012200001 Publication Date 2020-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.6 Times cited Open Access
Notes This work was supported by the Scientific Research Foundation from Dalian University of Technology, DUT19RC(3)045. We gratefully acknowledge T. Godfroid (Materia Nova) for sharing the experimental data about the MW plasma. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.6; 2020 IF: 2.355
Call Number PLASMANT @ plasmant @c:irua:172490 Serial 6409
Permanent link to this record
 

 
Author Loenders, B.; Engelmann, Y.; Bogaerts, A.
Title Plasma-Catalytic Partial Oxidation of Methane on Pt(111): A Microkinetic Study on the Role of Different Plasma Species Type A1 Journal article
Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 125 Issue (up) 5 Pages 2966-2983
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
Abstract We use microkinetic modeling to examine the potential of plasma-catalytic partial oxidation (POX) of CH4 as a promising new approach to produce oxygenates. We study how different plasma species affect POX of CH4 on the Pt(111) surface, and we discuss the associated kinetic and mechanistic changes. We discuss the effect of vibrationally excited CH4 and O2, as well as plasma-generated radicals and stable intermediates. Our results show that vibrational excitation enhances the turnover frequency (TOF) of catalytic CH4 dissociation and has good potential for improving the selectivities toward CH3OH, HCOOH, and C2 hydrocarbons. Nevertheless, when also considering plasma-generated radicals, we find that these species mainly govern the surface chemistry. Additionally, we find that plasma-generated radicals and stable intermediates enhance the TOFs of COx and oxygenates, increase the selectivity toward oxygenates, and make the formation of HCOOH more significant on Pt(111). We also briefly illustrate the potential impact of Eley−Rideal reactions that involve plasma-generated radicals. Finally, we reveal how various radicals affect the catalyst surface chemistry and we link this to the formation of different products. This allows us to make suggestions on how the plasma composition should be altered to improve the formation of desired products.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000619760700017 Publication Date 2021-02-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access OpenAccess
Notes Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, S001619N ; H2020 European Research Council, 810182 ; We thank Tom Butterworth for the interesting discussions regarding the calculation of the vibrational populations of methane and for taking the time to share his thoughts and experiences on the matter. This research is supported by the FWO-SBO project PLASMACATDesign (grant number S001619N). We also acknowledge financial support from the TOP-BOF project of the University of Antwerp and from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement no. 810182SCOPE ERC Synergy project). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and the University of Antwerp. Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:175873 Serial 6672
Permanent link to this record
 

 
Author Li, S.; Ahmed, R.; Yi, Y.; Bogaerts, A.
Title Methane to Methanol through Heterogeneous Catalysis and Plasma Catalysis Type A1 Journal article
Year 2021 Publication Catalysts Abbreviated Journal Catalysts
Volume 11 Issue (up) 5 Pages 590
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Direct oxidation of methane to methanol (DOMTM) is attractive for the increasing industrial demand of feedstock. In this review, the latest advances in heterogeneous catalysis and plasma catalysis for DOMTM are summarized, with the aim to pinpoint the differences between both, and to provide some insights into their reaction mechanisms, as well as the implications for future development of highly selective catalysts for DOMTM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000653609900001 Publication Date 2021-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.082 Times cited Open Access OpenAccess
Notes Fundamental Research Funds for the Central Universities of China, DUT18JC42 ; National Natural Science Foundation of China, 21503032 ; PetroChina Innovation Foundation, 2018D-5007-0501 ; TOP-BOF research project of the Research Council of the University of Antwerp, 32249 ; This research was funded by the Fundamental Research Funds for the Central Universities of China (DUT18JC42), the National Natural Science Foundation of China (21503032) PetroChina Innovation Foundation (2018D-5007-0501) and the TOP-BOF research project of the Research Council of the University of Antwerp (grant ID 32249). This research was supported by the China Scholarship Council (CSC). The authors warmly acknowledge CSC for their support. Approved Most recent IF: 3.082
Call Number PLASMANT @ plasmant @c:irua:177851 Serial 6753
Permanent link to this record
 

 
Author Kelly, S.; van de Steeg, A.; Hughes, A.; van Rooij, G.; Bogaerts, A.
Title Thermal instability and volume contraction in a pulsed microwave N2plasma at sub-atmospheric pressure Type A1 Journal article
Year 2021 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 30 Issue (up) 5 Pages 055005
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We studied the evolution of an isolated pulsed plasma in a vortex flow stabilised microwave (MW) discharge in N2 at 25 mbar via the combination of 0D kinetics modelling, iCCD imaging and laser scattering diagnostics. Quenching of electronically excited N2 results in fast gas heating and the onset of a thermal-ionisation instability, contracting the discharge volume. The onset of a thermal-ionisation instability driven by vibrational excitation pathways is found to facilitate significantly higher N2 conversion (i.e. dissociation to atomic N2 ) compared to pre-instability conditions, emphasizing the potential utility of this dynamic in future fixation applications. The instability onset is found to be instigated by super-elastic heating of the electron energy distribution tail via vibrationally excited N2 . Radial contraction of the discharge to the skin depth is found to occur post instability, while the axial elongation is found to be temporarily contracted during the thermal instability onset. An increase in power reflection during the thermal instability onset eventually limits the destabilising effects of exothermic electronically excited N2 quenching. Translational and vibrational temperature reach a quasi-non-equilibrium after the discharge contraction, with translational temperatures reaching ∼1200 K at the pulse end, while vibrational temperatures are found in near equilibrium with the electron energy (1 eV, or ∼11 600 K). This first description of the importance of electronically excited N2 quenching in thermal instabilities gives an additional fundamental understanding of N2 plasma behaviour in pulsed MW context, and thereby brings the eventual implementation of this novel N2 fixation method one step closer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000648710900001 Publication Date 2021-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited Open Access OpenAccess
Notes Stichting voor de Technische Wetenschappen, 733.000.002 ; Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; H2020 Marie Skłodowska-Curie Actions, 813393 838181 ; SK & AB acknowledge financial support by the European Marie Skłodowska-Curie Individual Fellowship ‘PENFIX’ within Horizon 2020 (Grant No. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 810182—SCOPE ERC Synergy project), and the Excellence of Science FWO-FNRS project (FWO Grant ID GoF9618n, EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. SK and AB would like to thank Mr Luc van ’t dack, Dr Karen Leyssens and Ing. Karel Venken for their technical assistance. AvdS, AH and GvR are grateful to Ampleon for the use of their solid-state microwave amplifier units and acknowledge financial support from the Netherlands Organisation for Scientific Research (NWO Grant No. 733.000.002) in the framework of the CO2 -to-products programme with kind support from Shell, and the ENW PPP Fund for the top sectors. This project has been partially funded by the European Union’s Horizon 2020 research and innovation programme ‘Pioneer’ under the Marie Skłodowska-Curie Grant Agreement No. 813393. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:178122 Serial 6759
Permanent link to this record
 

 
Author Rouwenhorst, K.H.R.; Jardali, F.; Bogaerts, A.; Lefferts, L.
Title From the Birkeland–Eyde process towards energy-efficient plasma-based NOXsynthesis: a techno-economic analysis Type A1 Journal article
Year 2021 Publication Energy & Environmental Science Abbreviated Journal Energ Environ Sci
Volume 14 Issue (up) 5 Pages 2520-2534
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-based NO<sub>X</sub>synthesis<italic>via</italic>the Birkeland–Eyde process was one of the first industrial nitrogen fixation methods. However, this technology never played a dominant role for nitrogen fixation, due to the invention of the Haber–Bosch process. Recently, nitrogen fixation by plasma technology has gained significant interest again, due to the emergence of low cost, renewable electricity. We first present a short historical background of plasma-based NO<sub>X</sub>synthesis. Thereafter, we discuss the reported performance for plasma-based NO<sub>X</sub>synthesis in various types of plasma reactors, along with the current understanding regarding the reaction mechanisms in the plasma phase, as well as on a catalytic surface. Finally, we benchmark the plasma-based NO<sub>X</sub>synthesis process with the electrolysis-based Haber–Bosch process combined with the Ostwald process, in terms of the investment cost and energy consumption. This analysis shows that the energy consumption for NO<sub>X</sub>synthesis with plasma technology is almost competitive with the commercial process with its current best value of 2.4 MJ mol N<sup>−1</sup>, which is required to decrease further to about 0.7 MJ mol N<sup>−1</sup>in order to become fully competitive. This may be accomplished through further plasma reactor optimization and effective plasma–catalyst coupling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000639255800001 Publication Date 2021-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1754-5692 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 29.518 Times cited Open Access OpenAccess
Notes H2020 European Research Council; Horizon 2020, 810182 ; Ministerie van Economische Zaken en Klimaat; This research was supported by the TKI-Energie from Toeslag voor Topconsortia voor Kennis en Innovatie (TKI) from the Ministry of Economic Affairs and Climate Policy, the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project). Approved Most recent IF: 29.518
Call Number PLASMANT @ plasmant @c:irua:178173 Serial 6763
Permanent link to this record
 

 
Author Zhang, L.; Heijkers, S.; Wang, W.; Martini, L.M.; Tosi, P.; Yang, D.; Fang, Z.; Bogaerts, A.
Title Dry reforming of methane in a nanosecond repetitively pulsed discharge: chemical kinetics modeling Type A1 Journal article
Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 31 Issue (up) 5 Pages 055014
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nanosecond pulsed discharge plasma shows a high degree of non-equilibrium, and exhibits relatively high conversions in the dry reforming of methane. To further improve the application, a good insight of the underlying mechanisms is desired. We developed a chemical kinetics model to explore the underlying plasma chemistry in nanosecond pulsed discharge. We compared the calculated conversions and product selectivities with experimental results, and found reasonable agreement in a wide range of specific energy input. Hence, the chemical kinetics model is able to provide insight in the underlying plasma chemistry. The modeling results predict that the most important dissociation reaction of CO<sub>2</sub>and CH<sub>4</sub>is electron impact dissociation. C<sub>2</sub>H<sub>2</sub>is the most abundant hydrocarbon product, and it is mainly formed upon reaction of two CH<sub>2</sub>radicals. Furthermore, the vibrational excitation levels of CO<sub>2</sub>contribute for 85% to the total dissociation of CO<sub>2</sub>.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000797660000001 Publication Date 2022-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.8 Times cited Open Access OpenAccess
Notes China Scholarship Council; National Natural Science Foundation of China, 11965018 ; This work is supported by the National Natural Science Foundation of China (Grant Nos. 52077026, 11965018), L Zhang was also supported by the China Scholarship Council (CSC). Data availability statement The data that support the findings of this study are available upon reasonable request from the authors. Approved Most recent IF: 3.8
Call Number PLASMANT @ plasmant @c:irua:188537 Serial 7069
Permanent link to this record
 

 
Author Tsonev, I.; O’Modhrain, C.; Bogaerts, A.; Gorbanev, Y.
Title Nitrogen Fixation by an Arc Plasma at Elevated Pressure to Increase the Energy Efficiency and Production Rate of NOx Type A1 Journal article
Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
Volume 11 Issue (up) 5 Pages 1888-1897
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-based nitrogen fixation for fertilizer production is an attractive alternative to the fossil fuel-based industrial processes. However, many factors hinder its applicability, e.g., the commonly observed inverse correlation between energy consumption and production rates or the necessity to enhance the selectivity toward NO2, the desired product for a more facile formation of nitrate-based fertilizers. In this work, we investigated the use of a rotating gliding arc plasma for nitrogen fixation at elevated pressures (up to 3 barg), at different feed gas flow rates and composition. Our results demonstrate a dramatic increase in the amount of NOx produced as a function of increasing pressure, with a record-low EC of 1.8 MJ/(mol N) while yielding a high production rate of 69 g/h and a high selectivity (94%) of NO2. We ascribe this improvement to the enhanced thermal Zeldovich mechanism and an increased rate of NO oxidation compared to the back reaction of NO with atomic oxygen, due to the elevated pressure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000924366700001 Publication Date 2023-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G0G2322N ; Horizon 2020 Framework Programme, 965546 ; Approved Most recent IF: 8.4; 2023 IF: 5.951
Call Number PLASMANT @ plasmant @c:irua:194281 Serial 7239
Permanent link to this record
 

 
Author Eshtehardi, H.A.; van 't Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A.
Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
Volume 11 Issue (up) 5 Pages 1720-1733
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is emerging for plasma-assisted gas conversion processes. However, the underlying mechanisms of plasma catalysis are poorly understood. In this work, we present a 1D heterogeneous catalysis model with axial dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in the process stream in the axial direction), for plasma-catalytic NO production from N2/O2 mixtures. We investigate the concentration and reaction rates of each species formed as a function of time and position across the catalyst, in order to determine the underlying mechanisms. To obtain insights into how the performance of the process can be further improved, we also study how changes in the postplasma gas flow composition entering the catalyst bed and in the operation conditions of the catalytic stage affect the performance of NO production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000926412800001 Publication Date 2023-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; Fonds De La Recherche Scientifique FNRS, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951
Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7241
Permanent link to this record
 

 
Author Eshtehardi, H.A.; Van ‘t Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A.
Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
Volume 11 Issue (up) 5 Pages 1720-1733
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is emerging for plasma-assisted gas conversion

processes. However, the underlying mechanisms of plasma catalysis are poorly

understood. In this work, we present a 1D heterogeneous catalysis model with axial

dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in

the process stream in the axial direction), for plasma-catalytic NO production from

N2/O2 mixtures. We investigate the concentration and reaction rates of each species

formed as a function of time and position across the catalyst, in order to determine the

underlying mechanisms. To obtain insights into how the performance of the process

can be further improved, we also study how changes in the postplasma gas flow

composition entering the catalyst bed and in the operation conditions of the catalytic

stage affect the performance of NO production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000926412800001 Publication Date 2023-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 810182 − SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 8.4; 2023 IF: 5.951
Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7257
Permanent link to this record
 

 
Author Eshtehardi, H.A.; Van ‘t Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A.
Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
Volume 11 Issue (up) 5 Pages 1720-1733
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is emerging for plasma-assisted gas conversion

processes. However, the underlying mechanisms of plasma catalysis are poorly

understood. In this work, we present a 1D heterogeneous catalysis model with axial

dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in

the process stream in the axial direction), for plasma-catalytic NO production from

N2/O2 mixtures. We investigate the concentration and reaction rates of each species

formed as a function of time and position across the catalyst, in order to determine the

underlying mechanisms. To obtain insights into how the performance of the process

can be further improved, we also study how changes in the postplasma gas flow

composition entering the catalyst bed and in the operation conditions of the catalytic

stage affect the performance of NO production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000926412800001 Publication Date 2023-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; Fonds De La Recherche Scientifique – FNRS, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951
Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7258
Permanent link to this record