|
Record |
Links |
|
Author |
Tinck, S.; Bogaerts, A. |
|
|
Title |
Role of vibrationally excited HBr in a HBr/He inductively coupled plasma used for etching of silicon |
Type |
A1 Journal article |
|
Year |
2016 |
Publication |
Journal of physics: D: applied physics |
Abbreviated Journal |
J Phys D Appl Phys |
|
|
Volume |
49 |
Issue |
49 |
Pages |
245204 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
In this work, the role of vibrationally excited HBr (HBr(vib)) is computationally investigated for a HBr/He inductively coupled plasma applied for Si etching. It is found that at least 50% of all dissociations of HBr occur through HBr(vib). This additional dissociation pathway through HBr(vib) makes the plasma significantly more atomic. It also results in a slightly higher electron temperature (i.e. about 0.2 eV higher compared to simulation results where HBr(vib) is not included), as well as a higher gas temperature (i.e. about 50 K higher than without including HBr(vib)), due to the enhanced Franck–Condon heating through HBr(vib) dissociation,
at the conditions investigated. Most importantly, the calculated etch rate with HBr(vib) included in the model is a factor 3 higher than in the case without HBr(vib), due to the higher fluxes of etching species (i.e. H and Br), while the chemical composition of the wafer surface shows no significant difference. Our calculations clearly show the importance of including HBr(vib) for accurate modeling of HBr-containing plasmas. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000377427100020 |
Publication Date |
2016-05-17 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-3727 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.588 |
Times cited |
|
Open Access |
|
|
|
Notes |
The Fund for Scientific Research Flanders (FWO) is acknowledged for financial support of this work (Grant no. 0880.212.840). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Prof. Mark Kushner is also gratefully acknowledged for the useful discussions and for providing the HPEM code. |
Approved |
Most recent IF: 2.588 |
|
|
Call Number |
c:irua:133457 |
Serial |
4072 |
|
Permanent link to this record |