toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jafarzadeh, A.; Bal, K.M.; Bogaerts, A.; Neyts, E.C. pdf  url
doi  openurl
  Title Activation of CO2on Copper Surfaces: The Synergy between Electric Field, Surface Morphology, and Excess Electrons Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue (down) 12 Pages 6747-6755  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, we use density functional theory calculations to study the combined effect of external electric fields, surface morphology, and surface charge on CO2 activation over Cu(111), Cu(211), Cu(110), and Cu(001) surfaces. We observe that the binding energy of the CO2 molecule on Cu surfaces increases significantly upon increasing the applied electric field strength. In addition, rougher surfaces respond more effectively to the presence of the external electric field toward facilitating the formation of a carbonate-like CO2 structure and the transformation of the most stable adsorption mode from physisorption to chemisorption. The presence of surface charges further strengthens the electric field effect and consequently causes an improved bending of the CO2 molecule and C−O bond length elongation. On the other hand, a net charge in the absence of an externally applied electric field shows only a marginal effect on CO2 binding. The chemisorbed CO2 is more stable and further activated when the effects of an external electric field, rough surface, and surface charge are combined. These results can help to elucidate the underlying factors that control CO2 activation in heterogeneous and plasma catalysis, as well as in electrochemical processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526396900030 Publication Date 2020-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Bijzonder Onderzoeksfonds, 32249 ; The financial support from the TOP research project of the Research Fund of the University of Antwerp (grant ID: 32249) is highly acknowledged by the authors. The computational resources used in this study were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Governmentdepartment EWI. Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:168606 Serial 6361  
Permanent link to this record
 

 
Author Mehta, P.; Barboun, P.M.; Engelmann, Y.; Go, D.B.; Bogaerts, A.; Schneider, W.F.; Hicks, J.C. pdf  url
doi  openurl
  Title Plasma-Catalytic Ammonia Synthesis beyond the Equilibrium Limit Type A1 Journal article
  Year 2020 Publication Acs Catalysis Abbreviated Journal Acs Catal  
  Volume 10 Issue (down) 12 Pages 6726-6734  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We explore the consequences of nonthermal plasma-activation on product yields in catalytic ammonia synthesis, a reaction that is equilibrium-limited at elevated temperatures. We employ a minimal microkinetic model that incorporates the influence of plasma-activation on N2 dissociation rates to predict NH3 yields into and across the equilibrium-limited regime. NH3 yields are predicted to exceed bulk thermodynamic equilibrium limits on materials that are thermal-rate-limited by N2 dissociation. In all cases, yields revert to bulk equilibrium at temperatures at which thermal reaction rates exceed plasma-activated ones. Beyond-equilibrium NH3 yields are observed in a packed bed dielectric barrier discharge reactor and exhibit sensitivity to catalytic material choice in a way consistent with model predictions. The approach and results highlight the opportunity to exploit synergies between nonthermal plasmas and catalysts to affect transformations at conditions inaccessible through thermal routes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000543663800015 Publication Date 2020-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited Open Access  
  Notes University of Notre Dame; Basic Energy Sciences, DE-SC-0016543 ; Air Force Office of Scientific Research, FA9550-18-1- 0157 ; This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Sustainable Ammonia Synthesis Program, under Award DE-SC-0016543 and by the U.S. Air Force Office of Scientific Research, under Award FA9550-18-1-0157. P.M. acknowledges support through the Eilers Graduate Fellowship for Energy Related Research from the University of Notre Dame. Computational resources were provided by the Notre Dame Center for Research Computing. We thank the Notre Dame Energy Materials Characterization Facility and the Notre Dame Integrated Imaging Facility for the use of the X-ray diffractometer and the transmission electron microscope, respectively. Approved Most recent IF: 12.9; 2020 IF: 10.614  
  Call Number PLASMANT @ plasmant @c:irua:170713 Serial 6405  
Permanent link to this record
 

 
Author Van Loenhout, J.; Peeters, M.; Bogaerts, A.; Smits, E.; Deben, C. pdf  url
doi  openurl
  Title Oxidative Stress-Inducing Anticancer Therapies: Taking a Closer Look at Their Immunomodulating Effects Type A1 Journal article
  Year 2020 Publication Antioxidants Abbreviated Journal Antioxidants  
  Volume 9 Issue (down) 12 Pages 1188  
  Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Cancer cells are characterized by higher levels of reactive oxygen species (ROS) compared to normal cells as a result of an imbalance between oxidants and antioxidants. However, cancer cells maintain their redox balance due to their high antioxidant capacity. Recently, a high level of oxidative stress is considered a novel target for anticancer therapy. This can be induced by increasing exogenous ROS and/or inhibiting the endogenous protective antioxidant system. Additionally, the immune system has been shown to be a significant ally in the fight against cancer. Since ROS levels are important to modulate the antitumor immune response, it is essential to consider the effects of oxidative stress-inducing treatments on this response. In this review, we provide an overview of the mechanistic cellular responses of cancer cells towards exogenous and endogenous ROS-inducing treatments, as well as the indirect and direct antitumoral immune effects, which can be both immunostimulatory and/or immunosuppressive. For future perspectives, there is a clear need for comprehensive investigations of different oxidative stress-inducing treatment strategies and their specific immunomodulating effects, since the effects cannot be generalized over different treatment modalities. It is essential to elucidate all these underlying immune effects to make oxidative stress-inducing treatments effective anticancer therapy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000602288600001 Publication Date 2020-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3921 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7 Times cited Open Access  
  Notes This research was funded by the Olivia Hendrickx Research Fund (21OCL06) and the University of Antwerp (FFB160231). Approved Most recent IF: 7; 2020 IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:173865 Serial 6441  
Permanent link to this record
 

 
Author Clemen, R.; Heirman, P.; Lin, A.; Bogaerts, A.; Bekeschus, S. pdf  url
doi  openurl
  Title Physical Plasma-Treated Skin Cancer Cells Amplify Tumor Cytotoxicity of Human Natural Killer (NK) Cells Type A1 Journal article
  Year 2020 Publication Cancers Abbreviated Journal Cancers  
  Volume 12 Issue (down) 12 Pages 3575  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Skin cancers have the highest prevalence of all human cancers, with the most lethal forms being squamous cell carcinoma and malignant melanoma. Besides the conventional local treatment approaches like surgery and radiotherapy, cold physical plasmas are emerging anticancer tools. Plasma technology is used as a therapeutic agent by generating reactive oxygen species (ROS). Evidence shows that inflammation and adaptive immunity are involved in cancer-reducing effects of plasma treatment, but the role of innate immune cells is still unclear. Natural killer (NK)-cells interact with target cells via activating and inhibiting surface receptors and kill in case of dominating activating signals. In this study, we investigated the effect of cold physical plasma (kINPen) on two skin cancer cell lines (A375 and A431), with non-malignant HaCaT keratinocytes as control, and identified a plasma treatment time-dependent toxicity that was more pronounced in the cancer cells. Plasma treatment also modulated the expression of activating and inhibiting receptors more profoundly in skin cancer cells compared to HaCaT cells, leading to significantly higher NK-cell killing rates in the tumor cells. Together with increased pro-inflammatory mediators such as IL-6 and IL-8, we conclude that plasma treatment spurs stress responses in skin cancer cells, eventually augmenting NK-cell activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000601901900001 Publication Date 2020-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes This work was funded by the German Federal Ministry of Education and Research (BMBF), grant numbers 03Z22DN11 and 03Z22Di1; The authors acknowledge the technical assistance of Eric Freund, Julia Berner, Sanjeev Kumar Sagwal, Christina Wolff, Felix Niessner, Walison Brito, and Lea Miebach. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:173863 Serial 6442  
Permanent link to this record
 

 
Author Kenawy, A.; Magnus, W.; Milošević, M.V.; Sorée, B. pdf  doi
openurl 
  Title Electronically tunable quantum phase slips in voltage-biased superconducting rings as a base for phase-slip flux qubits Type A1 Journal article
  Year 2020 Publication Superconductor Science & Technology Abbreviated Journal Supercond Sci Tech  
  Volume 33 Issue (down) 12 Pages 125002  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quantum phase slips represent a coherent mechanism to couple flux states of a superconducting loop. Since their first direct observation, there have been substantial developments in building charge-insensitive quantum phase-slip circuits. At the heart of these devices is a weak link, often a nanowire, interrupting a superconducting loop. Owing to the very small cross-sectional area of such a nanowire, quantum phase slip rates in the gigahertz range can be achieved. Instead, here we present the use of a bias voltage across a superconducting loop to electrostatically induce a weak link, thereby amplifying the rate of quantum phase slips without physically interrupting the loop. Our simulations reveal that the bias voltage modulates the free energy barrier between subsequent flux states in a very controllable fashion, providing a route towards a phase-slip flux qubit with a broadly tunable transition frequency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000577207000001 Publication Date 2020-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.6 Times cited 4 Open Access  
  Notes ; ; Approved Most recent IF: 3.6; 2020 IF: 2.878  
  Call Number UA @ admin @ c:irua:172643 Serial 6503  
Permanent link to this record
 

 
Author Van der Donck, M.; Zarenia, M.; Peeters, F.M. url  doi
openurl 
  Title Reply to “Comment on `Excitons, trions, and biexcitons in transition-metal dichalcogenides: Magnetic-field dependence'” Type Editorial
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue (down) 12 Pages 127402  
  Keywords Editorial; Condensed Matter Theory (CMT)  
  Abstract In the Comment, the authors state that the separation of the relative and center of mass variables in our work is not correct. Here we point out that there is a typographical error, i.e., qi instead of -e, in two of our equations which, when corrected, makes the Comment redundant. Within the ansatzes mentioned in our paper all our results are correct, in contrast to the claims of the Comment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000519990800011 Publication Date 2020-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:167680 Serial 6594  
Permanent link to this record
 

 
Author Osca, J.; Sorée, B. doi  openurl
  Title Skyrmion spin transfer torque due to current confined in a nanowire Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 102 Issue (down) 12 Pages 125436  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this work we compute the torque field present in a ferromagnet in contact with a metallic nanowire when a skyrmion is present. If the nanowire is narrow enough, then the current is carried by a single conduction band. In this regime the classical torque model breaks down and we show that a skyrmion driven by spin transfer torque moves in a different direction than predicted by the classical model. However, the amount of charge current required to move a skyrmion with a certain velocity in the single-band regime is similar to a classical model of torque where it is implicitly assumed current transport by many conduction bands. The single-band regime is more efficient creating spin current from charge current because of the perfect polarization of the single band but is less efficient creating torque from spin current. Nevertheless, it is possible to take profit of the single-band regime to move skyrmions even with no net charge or spin current flowing between the device contacts. We have also been able to recover the classical limit considering an ensemble of only a few electronic states. In this limit we have discovered that electron diffusion needs to be considered even in ballistic nanowires due the effect of the skyrmion structure on the electron current.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000573775300004 Publication Date 2020-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes ; The authors thanks Llorenc Serra for useful discussion on the conduction electron quantum model. We also want to show gratitude to Dimitrios Andrikopoulos for sharing his knowledge about the available bibliography and to F. J. P. van Duijn for his comments on earlier versions of this manuscript. We acknowledge the Horizon 2020 project SKYTOP “Skyrmion-Topological Insulator and Weyl Semimetal Technology” (FETPROACT-2018-01, No. 824123). Finally, J.O. also acknowledges the postdoctoral fellowship provided by KU Leuven. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:172727 Serial 6604  
Permanent link to this record
 

 
Author Chaves, A.; Moura, V.N.; Linard, F.J.A.; Covaci, L.; Milošević, M.V. doi  openurl
  Title Tunable magnetic focusing using Andreev scattering in superconductor-graphene hybrid devices Type A1 Journal article
  Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 128 Issue (down) 12 Pages 124303  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We perform the wavepacket dynamics simulation of a graphene-based device where propagating electron trajectories are tamed by an applied magnetic field toward a normal/superconductor interface. The magnetic field controls the incidence angle of the incoming electronic wavepacket at the interface, which results in the tunable electron-hole ratio in the reflected wave function due to the angular dependence of the Andreev reflection. Here, mapped control of the quasiparticle trajectories by the external magnetic field not only defines an experimental probe for fundamental studies of the Andreev reflection in graphene but also lays the foundation for further development of magnetic focusing devices based on nanoengineered superconducting two-dimensional materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000576393200002 Publication Date 2020-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.2 Times cited 1 Open Access Not_Open_Access  
  Notes ; This work was supported by the Brazilian Council for Research (CNPq) through the PRONEX/FUNCAP and PQ programs and by the Research Foundation-Flanders (FWO). ; Approved Most recent IF: 3.2; 2020 IF: 2.068  
  Call Number UA @ admin @ c:irua:172730 Serial 6639  
Permanent link to this record
 

 
Author Wang, H.; Su, L.; Yagmurcukardes, M.; Chen, J.; Jiang, Y.; Li, Z.; Quan, A.; Peeters, F.M.; Wang, C.; Geim, A.K.; Hu, S. pdf  doi
openurl 
  Title Blue energy conversion from holey-graphene-like membranes with a high density of subnanometer pores Type A1 Journal article
  Year 2020 Publication Nano Letters Abbreviated Journal Nano Lett  
  Volume 20 Issue (down) 12 Pages 8634-8639  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Blue energy converts the chemical potential difference from salinity gradients into electricity via reverse electrodialysis and provides a renewable source of clean energy. To achieve high energy conversion efficiency and power density, nanoporous membrane materials with both high ionic conductivity and ion selectivity are required. Here, we report ion transport through a network of holey-graphene-like sheets made by bottom-up polymerization. The resulting ultrathin membranes provide controlled pores of <10 angstrom in diameter with an estimated density of about 10(12) cm(-2). The pores' interior contains NH2 groups that become electrically charged with varying pH and allow tunable ion selectivity. Using the holey-graphene-like membranes, we demonstrate power outputs reaching hundreds of watts per square meter. The work shows a viable route toward creating membranes with high-density angstrom-scale pores, which can be used for energy generation, ion separation, and related technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000599507100032 Publication Date 2020-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.8 Times cited 29 Open Access  
  Notes ; The authors acknowledge supported from National Key Research and Development Program of China (2019YFA0705400, 2018YFA0209500), and National Natural Science Foundation of China (21972121, 21671162). M. Y. acknowledges the Flemish Science Foundation (FWO-Vl) postdoctoral fellowship. ; Approved Most recent IF: 10.8; 2020 IF: 12.712  
  Call Number UA @ admin @ c:irua:175048 Serial 6685  
Permanent link to this record
 

 
Author Sabzalipour, A.; Mir, M.; Zarenia, M.; Partoens, B. url  doi
openurl 
  Title Two distinctive regimes in the charge transport of a magnetic topological ultra thin film Type A1 Journal article
  Year 2020 Publication New Journal Of Physics Abbreviated Journal New J Phys  
  Volume 22 Issue (down) 12 Pages 123004  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of the magnetic impurities on the charge transport in a magnetic topological ultra-thin film (MTF) is analytically investigated by applying the semi-classical Boltzmann framework through a modified relaxation-time approximation. Our results for the relaxation time of electrons as well as the charge conductivity of the system exhibit two distinct regimes of transport. We show that the generated charge current in a MTF is always dissipative and anisotropic when both conduction bands are involved in the charge transport. The magnetic impurities induce a chirality selection rule for the transitions of electrons which can be altered by changing the orientation of the magnetic impurities. On the other hand, when a single conduction band participates in the charge transport, the resistivity is isotropic and can be entirely suppressed due to the corresponding chirality selection rule. Our findings propose a method to determine an onset thickness at which a crossover from a three-dimensional magnetic topological insulator to a (two-dimensional) MTF occurs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000596436300001 Publication Date 2020-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited 2 Open Access  
  Notes ; MZ acknowledges support from the U.S. Department of Energy (Office of Science) under Grant No. DE-FG02- 05ER46203. ; Approved Most recent IF: 3.3; 2020 IF: 3.786  
  Call Number UA @ admin @ c:irua:174387 Serial 6701  
Permanent link to this record
 

 
Author Frolov, A.S.; Sanchez-Barriga, J.; Callaert, C.; Hadermann, J.; Fedorov, A., V; Usachov, D.Y.; Chaika, A.N.; Walls, B.C.; Zhussupbekov, K.; Shvets, I., V.; Muntwiler, M.; Amati, M.; Gregoratti, L.; Varykhalov, A.Y.; Rader, O.; Yashina, L., V. pdf  url
doi  openurl
  Title Atomic and electronic structure of a multidomain GeTe crystal Type A1 Journal article
  Year 2020 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 14 Issue (down) 12 Pages 16576-16589  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Renewed interest in the ferroelectric semi-conductor germanium telluride was recently triggered by the direct observation of a giant Rashba effect and a 30-year-old dream about a functional spin field-effect transistor. In this respect, all-electrical control of the spin texture in this material in combination with ferroelectric properties at the nanoscale would create advanced functionalities in spintronics and data information processing. Here, we investigate the atomic and electronic properties of GeTe bulk single crystals and their (111) surfaces. We succeeded in growing crystals possessing solely inversion domains of similar to 10 nm thickness parallel to each other. Using HAADF-TEM we observe two types of domain boundaries, one of them being similar in structure to the van der Waals gap in layered materials. This structure is responsible for the formation of surface domains with preferential Te-termination (similar to 68%) as we determined using photoelectron diffraction and XPS. The lateral dimensions of the surface domains are in the range of similar to 10-100 nm, and both Ge- and Te-terminations reveal no reconstruction. Using spin-ARPES we establish an intrinsic quantitative relationship between the spin polarization of pure bulk states and the relative contribution of different terminations, a result that is consistent with a reversal of the spin texture of the bulk Rashba bands for opposite configurations of the ferroelectric polarization within individual nanodomains. Our findings are important for potential applications of ferroelectric Rashba semiconductors in nonvolatile spintronic devices with advanced memory and computing capabilities at the nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603308800022 Publication Date 2020-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 17.1; 2020 IF: 13.942  
  Call Number UA @ admin @ c:irua:175027 Serial 6716  
Permanent link to this record
 

 
Author Bacaksiz, C.; Šabani, D.; Menezes, R.M.; Milošević, M.V. url  doi
openurl 
  Title Distinctive magnetic properties of CrI3 and CrBr3 monolayers caused by spin-orbit coupling Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue (down) 12 Pages 125418  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract After the discovery of magnetism in monolayer CrI3, the magnetic properties of different 2D materials from the chromium-trihalide family are intuitively assumed to be similar, yielding magnetic anisotropy from the spin-orbit coupling on halide ligands. Here we reveal significant differences between the CrI3 and CrBr3 magnetic monolayers in their magnetic anisotropy, resulting Curie temperature, hysteresis in external magnetic field, and evolution of magnetism with strain, all predominantly attributed to distinctly different interplay of atomic contributions to spin-orbit coupling in two materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000646179300003 Publication Date 2021-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek; Universiteit Antwerpen; Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @c:irua:177506 Serial 6756  
Permanent link to this record
 

 
Author van Thiel, T. c.; Brzezicki, W.; Autieri, C.; Hortensius, J. r.; Afanasiev, D.; Gauquelin, N.; Jannis, D.; Janssen, N.; Groenendijk, D. j.; Fatermans, J.; Van Aert, S.; Verbeeck, J.; Cuoco, M.; Caviglia, A. d. url  doi
openurl 
  Title Coupling Charge and Topological Reconstructions at Polar Oxide Interfaces Type A1 Journal article
  Year 2021 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett  
  Volume 127 Issue (down) 12 Pages 127202  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In oxide heterostructures, different materials are integrated into a single artificial crystal, resulting in a breaking of inversion symmetry across the heterointerfaces. A notable example is the interface between polar and nonpolar materials, where valence discontinuities lead to otherwise inaccessible charge and spin states. This approach paved the way for the discovery of numerous unconventional properties absent in the bulk constituents. However, control of the geometric structure of the electronic wave functions in correlated oxides remains an open challenge. Here, we create heterostructures consisting of ultrathin SrRuO3, an itinerant ferromagnet hosting momentum-space sources of Berry curvature, and

LaAlO3, a polar wide-band-gap insulator. Transmission electron microscopy reveals an atomically sharp LaO/RuO2/SrO interface configuration, leading to excess charge being pinned near the LaAlO3/SrRuO3 interface. We demonstrate through magneto-optical characterization, theoretical calculations and transport measurements that the real-space charge reconstruction drives a reorganization of the topological charges in the band structure, thereby modifying the momentum-space Berry curvature in SrRuO3. Our results illustrate how the topological and magnetic features of oxides can be manipulated by engineering charge discontinuities at oxide interfaces.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704665000010 Publication Date 2021-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 17 Open Access OpenAccess  
  Notes The authors thank E. Lesne, M. Lee, H. Barakov, M. Matthiesen and U. Filippozzi for discussions. The authors are grateful to E.J.S. van Thiel for producing the illustration in Fig. 4a. This work was supported by the European Research Council under the European Unions Horizon 2020 programme/ERC Grant agreements No. [677458], [770887] and No. [731473] (Quantox of QuantERA ERA-NET Cofund in Quantum Technologies) and by the Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience (NanoFront) and VIDI program. The authors acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. [823717] – ESTEEM3. N. G., J. V., and S. V. A. acknowledge funding from the University of Antwerp through the Concerted Research Actions (GOA) project Solarpaint and the TOP project. C. A. and W. B. are supported by the Foundation for Polish Science through the International Research Agendas program co-financed by the European Union within the Smart Growth Operational Programme. C. A. acknowledges access to the computing facilities of the Interdisciplinary Center of Modeling at the University of Warsaw, Grant No. G73-23 and G75-10. W.B. acknowledges support from the Narodowe Centrum Nauk (NCN, National Science Centre, Poland) Project No. 2019/34/E/ST3/00404'; esteem3TA; esteem3reported Approved Most recent IF: 8.462  
  Call Number EMAT @ emat @c:irua:182595 Serial 6824  
Permanent link to this record
 

 
Author Rouwenhorst, K.H.R.; Jardali, F.; Bogaerts, A.; Lefferts, L. url  doi
openurl 
  Title Correction: From the Birkeland–Eyde process towards energy-efficient plasma-based NOXsynthesis: a techno-economic analysis Type A1 Journal Article
  Year 2023 Publication Energy & Environmental Science Abbreviated Journal Energy Environ. Sci.  
  Volume 16 Issue (down) 12 Pages 6170-6173  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Correction for ‘From the Birkeland–Eyde process towards energy-efficient plasma-based NO<sub><italic>X</italic></sub>synthesis: a techno-economic analysis’ by Kevin H. R. Rouwenhorst<italic>et al.</italic>,<italic>Energy Environ. Sci.</italic>, 2021,<bold>14</bold>, 2520–2534, https://doi.org/10.1039/D0EE03763J.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692 ISBN Additional Links  
  Impact Factor 32.5 Times cited Open Access  
  Notes H2020 European Research Council; Horizon 2020, 810182 ; Ministerie van Economische Zaken en Klimaat; Approved Most recent IF: 32.5; 2023 IF: 29.518  
  Call Number PLASMANT @ plasmant @ Serial 8980  
Permanent link to this record
 

 
Author Zou, Y.-C.; Mogg, L.; Clark, N.; Bacaksiz, C.; Milanovic, S.; Sreepal, V.; Hao, G.-P.; Wang, Y.-C.; Hopkinson, D.G.; Gorbachev, R.; Shaw, S.; Novoselov, K.S.; Raveendran-Nair, R.; Peeters, F.M.; Lozada-Hidalgo, M.; Haigh, S.J. url  doi
openurl 
  Title Ion exchange in atomically thin clays and micas Type A1 Journal article
  Year 2021 Publication Nature Materials Abbreviated Journal Nat Mater  
  Volume 20 Issue (down) 12 Pages 1677-1682  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The physical properties of clays and micas can be controlled by exchanging ions in the crystal lattice. Atomically thin materials can have superior properties in a range of membrane applications, yet the ion-exchange process itself remains largely unexplored in few-layer crystals. Here we use atomic-resolution scanning transmission electron microscopy to study the dynamics of ion exchange and reveal individual ion binding sites in atomically thin and artificially restacked clays and micas. We find that the ion diffusion coefficient for the interlayer space of atomically thin samples is up to 10(4) times larger than in bulk crystals and approaches its value in free water. Samples where no bulk exchange is expected display fast exchange at restacked interfaces, where the exchanged ions arrange in islands with dimensions controlled by the moire superlattice dimensions. We attribute the fast ion diffusion to enhanced interlayer expandability resulting from weaker interlayer binding forces in both atomically thin and restacked materials. This work provides atomic scale insights into ion diffusion in highly confined spaces and suggests strategies to design exfoliated clay membranes with enhanced performance. Layered clays are of interest for membranes and many other applications but their ion-exchange dynamics remain unexplored in atomically thin materials. Here, using electron microscopy, it is found that the ion diffusion for few-layer two-dimensional clays approaches that of free water and that superlattice cation islands can form in twisted and restacked materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000689664000001 Publication Date 2021-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122; 1476-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 39.737  
  Call Number UA @ admin @ c:irua:181691 Serial 6999  
Permanent link to this record
 

 
Author Man, L.F.; Xu, W.; Xiao, Y.M.; Wen, H.; Ding, L.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Terahertz magneto-optical properties of graphene hydrodynamic electron liquid Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 104 Issue (down) 12 Pages 125420  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The discovery of the hydrodynamic electron liquid (HEL) in graphene [D. Bandurin et al., Science 351, 1055 (2016) and J. Crossno et al., Science 351, 1058 (2016)] has marked the birth of the solid-state HEL which can be probed near room temperature in a table-top setup. Here we examine the terahertz (THz) magneto-optical (MO) properties of a graphene HEL. Considering the case where the magnetic length l(B) = root h/eB is comparable to the mean-free path l(ee) for electron-electron interaction in graphene, the MO conductivities are obtained by taking a momentum balance equation approach on the basis of the Boltzmann equation. We find that when l(B) similar to l(ee), the viscous effect in a HEL can weaken significantly the THz MO effects such as cyclotron resonance and Faraday rotation. The upper hybrid and cyclotron resonance magnetoplasmon modes omega(+/-) are also obtained through the RPA dielectric function. The magnetoplasmons of graphene HEL at large wave-vector regime are affected by the viscous effect, and results in red-shifts of the magnetoplasmon frequencies. We predict that the viscosity in graphene HEL can affect strongly the magneto-optical and magnetoplasmonic properties, which can be verified experimentally.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704419300004 Publication Date 2021-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:182518 Serial 7029  
Permanent link to this record
 

 
Author Bagherpour, A.; Baral, P.; Colla, M.-S.; Orekhov, A.; Idrissi, H.; Haye, E.; Pardoen, T.; Lucas, S. url  doi
openurl 
  Title Tailoring Mechanical Properties of a-C:H:Cr Coatings Type A1 Journal Article
  Year 2023 Publication Coatings Abbreviated Journal Coatings  
  Volume 13 Issue (down) 12 Pages 2084  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The development of coatings with tunable performances is critical to meet a wide range of technological applications each one with different requirements. Using the plasma-enhanced chemical vapor deposition (PECVD) process, scientists can create hydrogenated amorphous carbon coatings doped with metal (a-C:H:Me) with a broad range of mechanical properties, varying from those resembling polymers to ones resembling diamond. These diverse properties, without clear relations between the different families, make the material selection and optimization difficult but also very rich. An innovative approach is proposed here based on projected performance indices related to fracture energy, strength, and stiffness in order to classify and optimize a-C:H:Me coatings. Four different a-C:H:Cr coatings deposited by PECVD with Ar/C2H2 discharge under different bias voltage and pressures are investigated. A path is found to produce coatings with a selective critical energy release rate between 5–125 J/m2 without compromising yield strength (1.6–2.7 GPa) and elastic limit (≈0.05). Finally, fine-tuned coatings are categorized to meet desired applications under different testing conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001136013600001 Publication Date 2023-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-6412 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Walloon region under the PDR FNRS, C 62/5—PDR/OL 33677636 ; Belgian National Fund for Scientific Research, CDR—J.0113.20 ; National Fund for Scientific Reaserch; Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:202390 Serial 8982  
Permanent link to this record
 

 
Author Demirkol, Ö.; Sevik, C.; Demiroğlu, I. url  doi
openurl 
  Title First principles assessment of the phase stability and transition mechanisms of designated crystal structures of pristine and Janus transition metal dichalcogenides Type A1 Journal article
  Year 2022 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 24 Issue (down) 12 Pages 7430-7441  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional Transition Metal Dichalcogenides (TMDs) possessing extraordinary physical properties at reduced dimensionality have attracted interest due to their promise in electronic and optical device applications. However, TMD monolayers can show a broad range of different properties depending on their crystal phase; for example, H phases are usually semiconductors, while the T phases are metallic. Thus, controlling phase transitions has become critical for device applications. In this study, the energetically low-lying crystal structures of pristine and Janus TMDs are investigated by using ab initio Nudged Elastic Band and molecular dynamics simulations to provide a general explanation for their phase stability and transition properties. Across all materials investigated, the T phase is found to be the least stable and the H phase is the most stable except for WTe2, while the T' and T '' phases change places according to the TMD material. The transition energy barriers are found to be large enough to hint that even the higher energy phases are unlikely to undergo a phase transition to a more stable phase if they can be achieved except for the least stable T phase, which has zero barrier towards the T ' phase. Indeed, in molecular dynamics simulations the thermodynamically least stable T phase transformed into the T ' phase spontaneously while in general no other phase transition was observed up to 2100 K for the other three phases. Thus, the examined T ', T '' and H phases were shown to be mostly stable and do not readily transform into another phase. Furthermore, so-called mixed phase calculations considered in our study explain the experimentally observed lateral hybrid structures and point out that the coexistence of different phases is strongly stable against phase transitions. Indeed, stable complex structures such as metal-semiconductor-metal architectures, which have immense potential to be used in future device applications, are also possible based on our investigation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000766791000001 Publication Date 2022-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.3  
  Call Number UA @ admin @ c:irua:187184 Serial 7164  
Permanent link to this record
 

 
Author Martin, É.; Gossuin, Y.; Bals, S.; Kavak, S.; Vuong, Q.L. pdf  url
doi  openurl
  Title Monte Carlo simulations of the magnetic behaviour of iron oxide nanoparticle ensembles: taking size dispersion, particle anisotropy, and dipolar interactions into account Type A1 Journal article
  Year 2022 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 95 Issue (down) 12 Pages 201  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this work, the magnetic properties of superparamagnetic iron oxide nanoparticles (SPIONs) submitted to an external magnetic field are studied using a Metropolis algorithm. The influence on the M(B) curves of the size distribution of the nanoparticles, of uniaxial anisotropy, and of dipolar interaction between the cores are examined, as well as the influence of drying the samples under a zero or non-zero magnetic field. It is shown that the anisotropy impacts the shape of the magnetization curves, which then deviate from a pure Langevin behaviour, whereas the dipolar interaction has no influence on the curves at 300 K for small particles (with a radius of 3 nm). The fitting of the magnetization curves of particles with magnetic anisotropy to a Langevin model (including a size distribution of the particles) can then lead to erroneous values of the distribution parameters. The simulation results are qualitatively compared to experimental results obtained for iron oxide nanoparticles (with a 3.21 nm median radius).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000901937400001 Publication Date 2022-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.6 Times cited Open Access OpenAccess  
  Notes The authors would like to thank Sophie Laurent from the University of Mons for the access to the Dynamic Light Scattering equipment. Computational resources have been provided by the Consortium des Equipements de Calcul Intensif (C ´ ECI), funded by the ´ Fonds de la Recherche Scientifique de Belgique (F.R.S.- FNRS) under Grant No. 2.5020.11 and by the Walloon Region. Approved Most recent IF: 1.6  
  Call Number EMAT @ emat @c:irua:192706 Serial 7232  
Permanent link to this record
 

 
Author Zeegers, M.T.; Kadu, A.; van Leeuwen, T.; Batenburg, K.J. pdf  doi
openurl 
  Title ADJUST : a dictionary-based joint reconstruction and unmixing method for spectral tomography Type A1 Journal article
  Year 2022 Publication Inverse problems Abbreviated Journal Inverse Probl  
  Volume 38 Issue (down) 12 Pages 125002-125033  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Advances in multi-spectral detectors are causing a paradigm shift in x-ray computed tomography (CT). Spectral information acquired from these detectors can be used to extract volumetric material composition maps of the object of interest. If the materials and their spectral responses are known a priori, the image reconstruction step is rather straightforward. If they are not known, however, the maps as well as the responses need to be estimated jointly. A conventional workflow in spectral CT involves performing volume reconstruction followed by material decomposition, or vice versa. However, these methods inherently suffer from the ill-posedness of the joint reconstruction problem. To resolve this issue, we propose 'A Dictionary-based Joint reconstruction and Unmixing method for Spectral Tomography' (ADJUST). Our formulation relies on forming a dictionary of spectral signatures of materials common in CT and prior knowledge of the number of materials present in an object. In particular, we decompose the spectral volume linearly in terms of spatial material maps, a spectral dictionary, and the indicator of materials for the dictionary elements. We propose a memory-efficient accelerated alternating proximal gradient method to find an approximate solution to the resulting bi-convex problem. From numerical demonstrations on several synthetic phantoms, we observe that ADJUST performs exceedingly well compared to other state-of-the-art methods. Additionally, we address the robustness of ADJUST against limited and noisy measurement patterns. The demonstration of the proposed approach on a spectral micro-CT dataset shows its potential for real-world applications. Code is available at https://github.com/mzeegers/ADJUST.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000868885200001 Publication Date 2022-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0266-5611 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.1 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.1  
  Call Number UA @ admin @ c:irua:191536 Serial 7280  
Permanent link to this record
 

 
Author Wang, L.; Ratkowsky, D.A.; Gielis, J.; Ricci, P.E.; Shi, P. url  doi
openurl 
  Title Effects of the numerical values of the parameters in the Gielis equation on its geometries Type A1 Journal article
  Year 2022 Publication Symmetry Abbreviated Journal Symmetry-Basel  
  Volume 14 Issue (down) 12 Pages 2475-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The Lamé curve is an extension of an ellipse, the latter being a special case. Dr. Johan Gielis further extended the Lamé curve in the polar coordinate system by introducing additional parameters (n1, n2, n3; m): rφ=1Acosm4φn2+1Bsinm4φn3−1/n1, which can be applied to model natural geometries. Here, r is the polar radius corresponding to the polar angle φ; A, B, n1, n2 and n3 are parameters to be estimated; m is the positive real number that determines the number of angles of the Gielis curve. Most prior studies on the Gielis equation focused mainly on its applications. However, the Gielis equation can also generate a large number of shapes that are rotationally symmetric and axisymmetric when A = B and n2 = n3, interrelated with the parameter m, with the parameters n1 and n2 determining the shapes of the curves. In this paper, we prove the relationship between m and the rotational symmetry and axial symmetry of the Gielis curve from a theoretical point of view with the condition A = B, n2 = n3. We also set n1 and n2 to take negative real numbers rather than only taking positive real numbers, then classify the curves based on extremal properties of r(φ) at φ = 0, π/m when n1 and n2 are in different intervals, and analyze how n1, n2 precisely affect the shapes of Gielis curves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000904525700001 Publication Date 2022-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.7  
  Call Number UA @ admin @ c:irua:191860 Serial 7301  
Permanent link to this record
 

 
Author Yao, Y.; Ugras, T.J.; Meyer, T.; Dykes, M.; Wang, D.; Arbe, A.; Bals, S.; Kahr, B.; Robinson, R.D. pdf  doi
openurl 
  Title Extracting pure circular dichroism from hierarchically structured CdS magic cluster films Type A1 Journal article
  Year 2022 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 16 Issue (down) 12 Pages 20457-20469  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Chiroptically active, hierarchically structured materials are difficult to accurately characterize due to linear anisotropic contributions (i.e., linear dichroism (LD) and linear birefringence (LB)) and parasitic ellipticities that produce artifactual circular dichroism (CD) signals, in addition to chiral analyte contributions ranging from molecular-scale clusters to micron-sized assemblies. Recently, we have shown that CdS magic-sized clusters (MSC) can self-assemble into ordered films that have a hierarchical structure spanning seven orders of length-scale. These films have a strong CD response, but the chiral origins are obfuscated by the hierarchical architecture and LDLB contributions. Here, we derive and demonstrate a method for extracting the “pure” CD signal (CD generated by structural dissymmetry) from hierarchical MSC films and identified the chiral origin. The theory behind the method is derived using Mueller matrix and Stokes vector conventions and verified experimentally before being applied to hierarchical MSC and nanoparticle films with varying macroscopic orderings. Each film's extracted “true CD” shares a bisignate profile aligned with the exciton peak, indicating the assemblies adopt a chiral arrangement and form an exciton coupled system. Interestingly, the linearly aligned MSC film possesses one of the highest g-factors (0.05) among semiconducting nanostructures reported. Additionally, we find that films with similar electronic transition dipole alignment can possess greatly different g-factors, indicating chirality change rather than anisotropy is the cause of the difference in the CD signal. The difference in g-factor is controllable via film evaporation geometry. This study provides a simple means to measure “true” CD and presents an example of experimentally understanding chiroptic interactions in hierarchical nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000888219600001 Publication Date 2022-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 8 Open Access Not_Open_Access  
  Notes This work was supported in part by the National Science Foundation (NSF) under Award Nos. DMR-2003431 and CHE-2003586. This work made use of the Cornell Center for Materials Research Shared Facilities, which are supported through the NSF MRSEC program (DMR-1719875). This work is partly supported by Grant PID2021-123438NB-I00 (MCIN/AEI/10.13039/501100011033 and “ERDF vA way of making Europe”) and Grant IT1566-22 (Eusko Jaurlaritza). D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in the Horizon 2020 program (Grant 894254 SuprAtom). S.B. acknowledges financial support from ERC Consolidator Grant No. 815128 REALNANO. B.K. acknowledges NSF award DMR-2003968. We would like to thank Dr. Mark August Pfeifer for help with circular dichroism measurements. Additionally, we would like to thank Professor Luis M. Liz-Marzan for invaluable discussions on chirality. Approved Most recent IF: 17.1  
  Call Number UA @ admin @ c:irua:192070 Serial 7305  
Permanent link to this record
 

 
Author Birkholzer, Y.A.; Sotthewes, K.; Gauquelin, N.; Riekehr, L.; Jannis, D.; van der Minne, E.; Bu, Y.; Verbeeck, J.; Zandvliet, H.J.W.; Koster, G.; Rijnders, G. url  doi
openurl 
  Title High-strain-induced local modification of the electronic properties of VO₂ thin films Type A1 Journal article
  Year 2022 Publication ACS applied electronic materials Abbreviated Journal  
  Volume 4 Issue (down) 12 Pages 6020-6028  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Vanadium dioxide (VO2) is a popular candidate for electronic and optical switching applications due to its well-known semiconductor-metal transition. Its study is notoriously challenging due to the interplay of long- and short-range elastic distortions, as well as the symmetry change and the electronic structure changes. The inherent coupling of lattice and electronic degrees of freedom opens the avenue toward mechanical actuation of single domains. In this work, we show that we can manipulate and monitor the reversible semiconductor-to-metal transition of VO2 while applying a controlled amount of mechanical pressure by a nanosized metallic probe using an atomic force microscope. At a critical pressure, we can reversibly actuate the phase transition with a large modulation of the conductivity. Direct tunneling through the VO2-metal contact is observed as the main charge carrier injection mechanism before and after the phase transition of VO2. The tunneling barrier is formed by a very thin but persistently insulating surface layer of the VO2. The necessary pressure to induce the transition decreases with temperature. In addition, we measured the phase coexistence line in a hitherto unexplored regime. Our study provides valuable information on pressure-induced electronic modifications of the VO2 properties, as well as on nanoscale metal-oxide contacts, which can help in the future design of oxide electronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000890974900001 Publication Date 2022-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2637-6113 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited 2 Open Access OpenAccess  
  Notes This work received financial support from the project Green ICT (grant number 400.17.607) of the research program NWA, which is financed by the Dutch Research Council (NWO), Research Foundation Flanders (FWO grant number G0F1320N), and the European Union’s Horizon 2020 research and innovation program within a contract for Integrating Activities for Advanced Communities (grant number 823717 − ESTEEM3). The K2 camera was funded through the Research Foundation Flanders (FWO-Hercules grant number G0H4316N – “Direct electron detector for soft matter TEM”).; esteem3reported; esteem3jra Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:192712 Serial 7309  
Permanent link to this record
 

 
Author Spaeth, P.; Adhikari, S.; Heyvaert, W.; Zhuo, X.; Garcia, I.; Liz-Marzan, L.M.; Bals, S.; Orrit, M.; Albrecht, W. url  doi
openurl 
  Title Photothermal circular dichroism measurements of single chiral gold nanoparticles correlated with electron tomography Type A1 Journal article
  Year 2022 Publication ACS Photonics Abbreviated Journal Acs Photonics  
  Volume 9 Issue (down) 12 Pages 3995-4004  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Chemically synthesized metal nanoparticles with morphological chiral features are known to exhibit strong circular dichroism. However, we still lack understanding of the correlation between morphological and chiroptical features of plasmonic nanoparticles. To shed light on that question, single nanoparticle experiments are required. We performed photothermal circular dichroism measurements of single chiral and achiral gold nanoparticles and correlated the chiroptical response to the 3D morphology of the same nanoparticles retrieved by electron tomography. In contrast to an ensemble measurement, we show that individual particles within the ensemble display a broad distribution of strength and handedness of circular dichroism signals. Whereas obvious structural chiral features, such as helical wrinkles, translate into chiroptical ones, nanoparticles with less obvious chiral morphological features can also display strong circular dichroism signals. Interestingly, we find that even seemingly achiral nanoparticles can display large g-factors. The origin of this circular dichroism signal is discussed in terms of plasmonics and other potentially relevant factors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000884432100001 Publication Date 2022-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2330-4022 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7 Times cited 5 Open Access OpenAccess  
  Notes This work was supported by The Netherlands Organisation for Scientific Research (NWO) as part of the Open Technology Program (OTP, Project No. 16008) and by a Spinoza prize (M.O.) . W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 Program (Grant No. 797153, SOPMEN) . L.M.L.M. acknowledges funding from MCIN/AEI/10.13039/501100011033 (Grants PID2020-117779RB-I00 and MDM-2017-0720) . We thank Dr. Wolfgang L?fer for providing optical equipment. We also acknowledge the European Soft Matter Infrastructure (EUSMI: E201200468) . Approved Most recent IF: 7  
  Call Number UA @ admin @ c:irua:192098 Serial 7331  
Permanent link to this record
 

 
Author Van Dyck, P.M.; Van Grieken, R.E. doi  openurl
  Title Absorption correction via scattered radiation in energy-dispersive X-ray fluorescence analysis for samples of variable composition and thickness Type A1 Journal article
  Year 1980 Publication Analytical chemistry Abbreviated Journal  
  Volume 52 Issue (down) 12 Pages 1859-1864  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1980KJ65700021 Publication Date 2005-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116516 Serial 7410  
Permanent link to this record
 

 
Author Alloul, A.; Ganigue, R.; Spiller, M.; Meerburg, F.; Cagnetta, C.; Rabaey, K.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Capture-ferment-upgrade : a three-step approach for the valorization of sewage organics as commodities Type A1 Journal article
  Year 2018 Publication Environmental science and technology Abbreviated Journal  
  Volume 52 Issue (down) 12 Pages 6729-6742  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This critical review outlines a roadmap for the conversion of chemical oxygen demand (COD) contained in sewage to commodities based on three-steps: capture COD as sludge, ferment it to volatile fatty acids (VFA), and upgrade VFA to products. The article analyzes the state-of-the-art of this three step approach and discusses the bottlenecks and challenges. The potential of this approach is illustrated for the European Union's 28 member states (EU-28) through Monte Carlo simulations. High-rate contact stabilization captures the highest amount of COD (66-86 g COD person equivalent(-1) day(-1) in 60% of the iterations). Combined with thermal hydrolysis, this would lead to a VFA-yield of 23-44 g COD person equivalent(-1) day(-1). Upgrading VFA generated by the EU-28 would allow, in 60% of the simulations, for a yearly production of 0.2-2.0 megatonnes of esters, 0.7-1.4 megatonnes of polyhydroxyalkanoates or 0.6-2.2 megatonnes of microbial protein substituting, respectively, 20-273%, 70-140% or 21-72% of their global counterparts (i.e., petrochemical-based esters, bioplastics or fishmeal). From these flows, we conclude that sewage has a strong potential as biorefinery feedstock, although research is needed to enhance capture, fermentation and upgrading efficiencies. These developments need to be supported by economic/environmental analyses and policies that incentivize a more sustainable management of our resources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000436018900004 Publication Date 2018-05-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151968 Serial 7574  
Permanent link to this record
 

 
Author Hillen, M.; Legrand, S.; Dirkx, Y.; Janssens, K.; van der Snickt, G.; Caen, J.; Steenackers, G. url  doi
openurl 
  Title Cluster analysis of IR thermography data for differentiating glass types in historical leaded-glass windows Type A1 Journal article
  Year 2020 Publication Applied Sciences-Basel Abbreviated Journal Appl Sci-Basel  
  Volume 10 Issue (down) 12 Pages 4255-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Cultural Heritage Sciences (ARCHES); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Infrared thermography is a fast, non-destructive and contactless testing technique which is increasingly used in heritage science. The aim of this study was to assess the ability of infrared thermography, in combination with a data clustering approach, to differentiate between the different types of historical glass that were included in a colorless leaded-glass windows during previous restoration interventions. Inspection of the thermograms and the application of two data mining techniques on the thermal data, i.e., k-means clustering and hierarchical clustering, allowed identifying different groups of window panes that show a different thermal behavior. Both clustering approaches arrive at similar groupings of the glass with a clear separation of three types. However, the lead cames that hold the glass panes appear to have a substantial impact on the thermal behavior of the surrounding glass, thus preventing classification of the smallest glass panes. For the larger panes, this was not a critical issue as the center of the glass remained unaffected. Subtle visual color differences between panes, implying a variation in coloring metal ions, was not always distinguished by IRT. Nevertheless, data clustering assisted infrared thermography shows potential as an efficient and swift method for documenting the material intervention history of leaded-glass windows during or in preparation of conservation treatments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000549351800001 Publication Date 2020-06-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited Open Access  
  Notes Approved Most recent IF: 2.7; 2020 IF: 1.679  
  Call Number UA @ admin @ c:irua:170012 Serial 7674  
Permanent link to this record
 

 
Author Markowicz, A.A.; Van Grieken, R.E. doi  openurl
  Title Composition dependence of Bremsstrahlung background in electron-probe x-ray microanalysis Type A1 Journal article
  Year 1984 Publication Analytical chemistry Abbreviated Journal  
  Volume 56 Issue (down) 12 Pages 2049-2051  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1984TL48800021 Publication Date 2005-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116518 Serial 7704  
Permanent link to this record
 

 
Author Van Grieken, R.; Delalieux, F.; Gysels, K. doi  openurl
  Title Cultural heritage and the environment Type A1 Journal article
  Year 1998 Publication Pure and applied chemistry Abbreviated Journal  
  Volume 70 Issue (down) 12 Pages 2327-2331  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000080509000012 Publication Date 2007-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-4545 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:23298 Serial 7744  
Permanent link to this record
 

 
Author Zhang, Q.; De Clippeleir, H.; Su, C.; Al-Omari, A.; Wett, B.; Vlaeminck, S.E.; Murthy, S. pdf  doi
openurl 
  Title Deammonification for digester supernatant pretreated with thermal hydrolysis : overcoming inhibition through process optimization Type A1 Journal article
  Year 2016 Publication Applied microbiology and biotechnology Abbreviated Journal  
  Volume 100 Issue (down) 12 Pages 5595-5606  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The thermal hydrolysis process (THP) has been proven to be an excellent pretreatment step for an anaerobic digester (AD), increasing biogas yield and decreasing sludge disposal. The goal of this work was to optimize deammonification for efficient nitrogen removal despite the inhibition effects caused by the organics present in the THP-AD sludge filtrate (digestate). Two sequencing batch reactors were studied treating conventional digestate and THP-AD digestate, respectively. Improved process control based on higher dissolved oxygen set-point (1 mg O-2/L) and longer aeration times could achieve successful treatment of THP-AD digestate. This increased set-point could overcome the inhibition effect on aerobic ammonium-oxidizing bacteria (AerAOB), potentially caused by particulate and colloidal organics. Moreover, based on the mass balance, anoxic ammonium-oxidizing bacteria (AnAOB) contribution to the total nitrogen removal decreased from 97 +/- A 1 % for conventional to 72 +/- A 5 % for THP-AD digestate treatment, but remained stable by selective AnAOB retention using a vibrating screen. Overall, similar total nitrogen removal rates of 520 +/- A 28 mg N/L/day at a loading rate of 600 mg N/L/day were achieved in the THP-AD reactor compared to the conventional digestate treatment operating at low dissolved oxygen (DO) (0.38 +/- A 0.10 mg O-2/L).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000376456700033 Publication Date 2016-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0175-7598; 1432-0614 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:134166 Serial 7755  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: