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Abstract

In this work, the magnetic properties of superparamagnetic iron oxide nanoparticles (SPIONs) sub-
mitted to an external magnetic field are studied using a Metropolis algorithm. The influence on the M(B)
curves of the size distribution of the nanoparticles, of uniaxial anisotropy, and of dipolar interaction be-
tween the cores are examined, as well as the influence of drying the samples under a zero or non-zero
magnetic field. It is shown that the anisotropy impacts the shape of the magnetization curves, which then
deviate from a pure Langevin behaviour, whereas the dipolar interaction has no influence on the curves at
300K for small particles (with a radius of 3nm). The fitting of the magnetization curves of particles with
magnetic anisotropy to a Langevin model (including a size distribution of the particles) can then lead
to erroneous values of the distribution parameters. The simulation results are qualitatively compared to
experimental results obtained for iron oxide nanoparticles (with a 3.21nm median radius).

Keywords: superparamagnetism - iron oxide nanoparticles - anisotropy - dipolar interaction - size
distribution - Monte Carlo simulation

1 Introduction

1.1 Superparamagnetic Iron Oxide Nanoparticles

Since the description of superparamagnetism by Néel in 1949 [1] and then by Brown in 1963 [2], superparam-
agnetic iron oxide nanoparticles (SPIONs) have generated substantial interest from researchers, particularly
in the field of biophysics. Their high saturation magnetization and absence of remanent magnetization make
them suitable for a wide range of biomedical applications. They are used as contrast agents for magnetic
resonance imaging (MRI), mostly for small animal imaging [3]. Indeed, when submitted to an external field,
their magnetic moment produces local magnetic inhomogeneities which increase the relaxation rate of tis-
sues’ protons, resulting where they are present in hypointense regions in a T2 weighted image. SPIONs also
exhibit good performance and low toxicity for cell labelling and tracking [4, 5, 6, 7]. They can be used as
well to aggregate and detect viruses in vivo through MRI [8, 9]. They are good candidates for use in cancer
therapies by magnetic hyperthermia, because of the good biocompatibility of iron oxides, which degrade with
low toxicity [10, 11]. They are the center of magnetic particle imaging [12, 13], magnetorelaxometry [14] (in
both of which they directly generate the signal), and magnetic field assisted drug delivery [15]. Magnetite
even occurs naturally in the human hippocampus, where there is still debate about its evolutionary origin
and exact function. Its presence in the brain could even perhaps be correlated with neurodegenerative disease
[16]. Many of these applications rely on the superparamagnetic properties of the nanoparticles. It is therefore
of prime importance to fully understand their magnetic behaviour.
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1.2 Langevin’s model and its limitations

In 1905, Paul Langevin described paramagnetism using statistical mechanics [17], in a model that can be
used as well to describe the behaviour of superparamagnetic iron oxide nanoparticles. This subsection aims
at explaining that model in the context of superperamagnetism, and its limitations. The Hamiltonian of
an assembly of N non-interacting, monodisperse (same-size), superparamagnetic particles without magnetic
anisotropy submitted to an external field ~B is H = −N~µ · ~B, where ~µ is the magnetic moment of the particles
in Am2. It is proportional to their volume through the saturation magnetization Ms in A/m : µ = MsV .
The saturation magnetization of bulk magnetite is around 450kA/m. In this work, the term "magnetic field"
will be used for the magnetic flux density in T. Therefore, assuming the external field is applied along the z
axis, the mean z-component of the total magnetic moment can be computed as :

〈µtot,Z〉 = N

∫

µz

e−
H(~µ)
kT

Z
d~µ = Nµ

∫ π

θ=0

∫

2π

φ=0
cos(θ)e

µB cos(θ)
kT sin(θ)dθdφ

∫ π

θ=0

∫

2π

φ=0
e

µB cos(θ)
kT sin(θ)dθdφ

(1)

where Z is the partition function, µ and B denote |~µ| and | ~B| respectively, and θ the angle separating their
directions. Performing the integral yields

M(B) =
Nµ

Vtot

L

(

µB

kT

)

(2)

where N is the number of particles, Vtot is their total volume, and L(x) = coth(x)− 1

x
is called the Langevin

function. Reality, however, always differs from that theoretical framework:

1. In practice, the saturation magnetization of a sample of magnetite nanoparticles is always lower than
450kA/m, due, on one hand, to poor control of the oxidation level of iron during particle synthesis,
which causes magnetite to oxidize to maghemite [18], and on the other hand to surface effects [19, 20].

2. SPIONs generally have at least one anisotropy axis, to which their magnetization tends to align.
Anisotropy depends on the crystalline properties, the shape, and the surface of the particles. Uni-
axial anisotropy, which is the simplest form of anisotropy, has been theoretically shown to impact
the shape of magnetization curves [21]. For the sake of simplicity we will here limit ourselves to this
case. Experimentally, to fully determine the magnetic anisotropy of a given experimental sample, it is
important to ensure the sample is non-interacting [22].

3. Real particles generate a dipolar magnetic field through which they interact with each other if their
concentration is high enough [23]. This is expected to impact magnetization curves. In biological media,
high local concentrations occur often, as nanoparticles are internalized in endosomes [24, 25]. Moreover,
in solid (i.e. dried) samples, if the coating is thin the magnetic cores are inevitably very close to one
another, leading to increased interaction between particles.

4. It is impossible to produce sets of particles which all have the exact same size, and their radii inevitably
present some size distribution, which is typically log-normal (sometimes, normal). Obtaining samples
with narrow size distributions is a major challenge of the preparation of SPIONs. The synthesis method
influences the size dispersion, non-hydrolytic paths allowing for a better control [26].

Experimentally, the particle sizes usually follow either a log-normal distribution, whose probability density
function is given by

fl(x) =
1

xσL

√
2π

e
−

(lnx−µL)2

2σ2
L (3)

or (albeit less often) a normal distribution, whose probability density function is given by

fn(x) =
1

σN

√
2π

e
−

(x−〈x〉)2

2σ2
N (4)

In the log-normal distribution, R0 = eµ is the median radius of the particles. In both cases, the σ parameter is
a reflection of the broadness of the size distribution. It is worth noting however that the scaling is substantially
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different in the two distributions, since in the normal distribution σN denotes the standard deviation, but
in the log-normal distribution σL is the standard deviation of the distribution of the logarithms of the radii.
The particle size distribution can be taken into account by integrating equation (2) over all sizes, but without
considering its interactions with the other effects at play. Notably, an integrated version of equation (2)
is sometimes used to fit field-dependent curves, and extract size distribution parameters from experimental
results [22, 27, 28, 29, 30, 31, 32] :

M(B) =
1

Vtot

∫

f(R)µ(R)L

(

µ(R)B

kT

)

dR (5)

where

• f(R) is the probability density function of the radii,

• Vtot is the total volume of the magnetic cores inside the sample, which can be computed by integrating
their probability density function : Vtot =

∫

f(R) 4πR
3

3
dR

• µ(R) is the particle magnetic moment, which depends on its size : µ = MS4πR3

3

This method of determining the size dispersion should only be used on samples containing exclusively par-
ticles in the superparamagnetic regime, i.e. particles with a radius no larger than ∼ 11nm at 300K for a
measurement duration τM = 1s [33]. With the distributions used in this study, no particle exhibits such a
high radius.

1.3 Néel & Brown relaxation of the magnetic moment

The magnetization predicted by Langevin’s theory is reached by the particles through two relaxation pro-
cesses. The main one is an internal relaxation process first theorized by Néel [1]. It is a dynamical and
exponential relaxation process, which is linked to their magnetocrystalline anisotropy (which we consider
uniaxial), as it results from thermal agitation in the interatomic bonds of the crystal. The relaxation of the
magnetization is characterized by the Néel relaxation time τN , given by:

τN = τ0e
KV
kT (6)

The derivation of that time presupposes that the magnetic field is null, therefore the Hamiltonian of each
particle can be reduced to

H = −KV ~1µi
· ~1Ai

(7)

, with

• K is the magnetic anisotropy constant in J/cm3;

• V is the volume of the particle in m3;

• ~1µi
the unit vector to which the particle’s magnetic moment aligns;

• ~1Ai
the unit vector of the easy magnetization axis.

This is reasonable as long as the anisotropy of the material is high enough. The Néel relaxation time then
represents the mean time needed for the magnetic moment of the particle to relax from one easy magnetization
axis (corresponding to one minimum of the energy of the particle) to the other, under the influence of thermal
agitation. The Néel relaxation time critically depends on the particle volume, but also on the temperature.
Therefore, for a given sample of particles (with a fixed anisotropy constant and particle volume), there exists
a certain blocking temperature TB under which the typical duration of a measurement τM is lower than the
relaxation time of the magnetic moment, i.e. τM < τN . Under the blocking temperature, thermal agitation
is too weak for the energy barrier between the easy axes to be crossed regularly. As a consequence, the
particles appear blocked as they do not have the time, over an experimental measurement, to relax between
their easy magnetization axes. For magnetometric measurements of magnetite cores with a radius of 3nm,
as investigated in this paper, it is typically lower than 50 K. This process is called Néel blocking. It should
be stressed that Néel time depends on the applied magnetic field, and few models exist to describe the
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particle relaxation under large magnetic fields. Dipolar interactions are also known to impact Néel relaxation
time, and therefore can further modify the magnetic behaviour of SPIONs [23, 34]. In addition to the Néel
relaxation process of the magnetic moment, in liquid samples, the particles are able to rotate, which results
in modifications of the orientation of their anisotropy axis. This process is called Brown relaxation, and its
characteristic relaxation time is given in the absence of a magnetic field by:

τB =
3ηV

kT
(8)

where η is the viscosity of the carrier fluid [2]. In this paper, a value of 0.55mPas was used, which corre-
sponds to various organic solvents at 300K (chloroform [35] or toluene [36] for instance). For liquid samples
containing nanoparticles with a high volume fraction, the viscosity depends on the volume fraction, even for
nonmagnetic particles [37]. This could influence the computation of the Brown relaxation time. Moreover,
for ferrofluids, the magnetic field influences the viscosity, also at high volume fractions [38]. However, in our
simulation, the volume fraction f of the liquid sample was set to 0.005. For such a low f value, those effects
are expected to be negligible. Besides, in some cases, reversible clusters and chains can form in the ferrofluid
under the influence of a magnetic field. This would also influence the Brown relaxation time of the cluster.
Our simulations do not take this possibility into account.

1.4 Purpose of this work

The interactions of all those effects: anisotropy, dipole-dipole interactions, size distributions, are too complex
to be studied purely analytically. This is where numerical simulation comes in handy: it allows to "switch
on and off" the various effects. In particular, in this work, a Metropolis-Hastings algorithm is implemented,
similar to previous work, such as [19, 28, 39, 40, 41], with the specificity that Brown relaxation is added in our
algorithm to allow to evaluate its impact. Moreover, [28] and [39] focus on modeling one nanoparticle cluster,
and [40] on particles dispersed in a solid matrix, whereas we modeled liquid and solid samples. Reference [19]
does not provide a comparison with experimental results, nor a complete analysis of the impacts of the various
deviations from the Langevin behaviour, which we attempt to develop in this article. Whenever possible, the
simulations were compared to experimental results. The influence of the deviations from Langevin theory, in
particular those caused by anisotropy, on the size distribution parameters obtained by fitting the curves to
equation (5) is also probed, so as to evaluate the validity of the parameters obtained from those fits. Because
of the influence of effects beyond Langevin behaviour, those fits perform poorly on real samples.

2 Materials and methods

2.1 Simulations

The initial configuration of the particles is defined by:

1. their position;

2. the orientation of their magnetic moment;

3. the orientation of their easy axis.

The positions are generated at random, but respecting a chosen volumic fraction f of magnetic cores in the
simulation space, defined as

f =

∑

i Vi

VS

(9)

where Vi the volume of particle i and VS the total volume of the simulation space. Depending on the
simulation, the initial orientations of the easy axes are generated either at random or all in one given
direction (in the results section of this paper, their orientation is systematically specified), and the initial
orientations of the magnetic moments are always generated at random. Once the simulation space is created,
the numerical simulation consists in a Metropolis-Hastings algorithm [42], which is a Monte Carlo algorithm
allowing the computation of the equilibrium properties of systems. In our particular case, it translates as
such:
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1. A random particle in the sample is chosen, and a new magnetic moment, random in orientation, is
chosen for this particle.

2. The total energy change ∆E resulting from switching to the new moment is computed. In this work,
the total energy of the particle with index i (and volume Vi, and magnetic moment −→µi) comprises

• The Zeeman interaction between the particle’s magnetic moment and the external field

EZ
i = −−→µi ·

−→
B ; (10)

• The dipolar interaction between the particle’s magnetic moment and those of its nearest neighbours
:

ED
i = −µ0

4π

∑

j

[

3 (−→µi ·−→rij) (−→µj ·−→rij)
r5ij

−
−→µi ·−→µj

r3ij

]

(11)

with j denoting the indexes of the nearest neighbours of particle i and −→rij the vector that goes
from the center of particle j to the center of particle i. The nearest neighbours of particle i are
defined as the particles within a sphere of radius RC around particle i. RC is called the cutoff
radius of the dipolar interaction, and was chosen at five times the mean interparticle distance,
after performing tests to ensure this approximation did not skew the results (see fig. S1). For the
computation of the dipolar interaction, the simulation space is considered periodic, meaning that
the particles on one side of the simulation space can be influenced by the particles on the other
side.

• The magnetic anisotropy of the particle, which we consider uniaxial. The magnetic anisotropy
energy is given by

EA
i = KVi

−→
1µi

·−→1Ai
. (12)

An anisotropy constant K = 13600J/m3, typical of magnetite (whose experimental constants
typically range from 10000 to 20000 J/m3 [22]), is always considered here. The higher order
anisotropy constants are neglected.

3. The new moment is accepted with probability min[e−
∆E
kT , 1].

4. The same process is repeated for the rotation of the (same) particle, which is modelled as a change of
its anisotropy axis: a random new orientation of the axis is chosen, the resulting change in the energy
of the sample, resulting purely from the magnetic anisotropy term, is computed, and the new axis is
accepted with probability min[e−

∆E
kT , 1] if the Brown time of the particle is lower than 1 second, as this

is our measurement time. Below the fusion temperature of the carrier liquid, the anisotropy axis is
blocked.

This procedure is repeated without the magnetization being recorded for a certain number of so-called
equilibration steps, and then the mean magnetization of the sample is computed over a (higher) number
of steps. Our simulations also allow to consider a size distribution of the particles, following either a log-
normal or normal distribution (with no negative radii allowed). Each simulation was performed three times,
allowing to compute a mean and standard deviation of each data point. To validate our simulations, a
series of tests were conducted. The magnetization of a mono-disperse, non interacting simulated sample
with a null anisotropy constant K was compared to the Langevin theory (see fig. S2); the dependence of
the magnetization on the cut-off radius of the dipolar interaction was studied, revealing a convergence of
the magnetization for a RC higher than 5 times the mean distance between particles (see fig. S1); and the
simulations with anisotropy compared quantitatively with theoretical results obtained by Respaud [21] (see
fig. S3). The simulation parameters were also optimized, i.e. it was checked that the magnetization value
had properly converged for the parameter values inputted in the algorithm. The simulations presented in this
work were conducted with 5000 nanoparticles, 250000 equilibration steps and 106 total simulation steps. As
opposed to previous studies on the topic [43, 39, 44, 41, 45, 46, 47, 48], we choose the new magnetic moment
and anisotropy axis at random and not within a solid angle around its previous direction. The underlying
assumption is that our system is ergodic, because we are limiting our study to superparamagnetic states. The
average acceptance rate of the new magnetic moment in our algorithm ranged from 11% for the 6nm radius

5



particles with all energy constraints considered to 42% for the 3nm radius particles with only the Zeeman
interaction considered in the hamiltonian. That range is close to the approximate ideal acceptance rate of
23% for a Metropolis algorithm in high dimensions [49]. The acceptance rate of the new anisotropy axis was
higher, ranging from 47% to 94% for simulations in which it was relevant. For detail, see supplementary
material. The simulation code was written in C++ using the Boost library and the GNU Scientific Library
(GSL).

2.2 Experiments

3nm iron oxide particles suspended in toluene and coated with a layer of oleic acid were purchased from HiQ
Nano. Scanning transmission electron microscopy (STEM) images of the samples were obtained on a Tecnai
Osiris Microscope, using a 200kV voltage and 0.057nA beam current. One of them is presented on figure
1. The presence of a 1 − 2nm layer of oleic acid can be inferred from that image: it can be seen that the
magnetic cores are not in contact, even though STEM images are obtained with dried samples. From that
STEM image, using ImageJ, the diameter of 345 particles was measured. Their distribution was then fitted to
a log-normal distribution. The particles presented a fairly narrow log-normal size distribution, with a median

(a)

(b)
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Figure 1: (a) STEM image of HiQ Nano particles with a 3nm median radius. (b) Radius distribution histogram of 345
particles visible on the STEM images.

radius R0 of 3.21nm and σL-parameter 0.16. This is consistent with the manufacturer’s announced median
radius of 3nm. Dynamic Light Scattering (DLS) measurements of the sample were performed on a Malvern
Zetasizer (see figure S4). The mean hydrodynamic radius is 5.77nm. Considering that the magnetic cores
have a median radius of 3.21nm as determined by STEM, and are coated with a 1− 2nm layer of oleic acid,
it can be assumed that the suspension is constituted of isolated homogeneously distributed particles without
clustering. The iron concentration of the sample was measured through Atomic Emission Spectroscopy after
microwave-assisted acidic digestion, yielding [Fe] = 19.8mg/mL. This is consistent with the manufacturer’s
nominal concentration of 20mg/mL. All samples were initially prepared with 50µL of the concentrated
solution, and the solid samples were then obtained by letting the solvent evaporate. Some of these samples
were dried under a 0.5T magnetic field, either parallel to the external field B0 or perpendicular to it. The
magnetic measurements were conducted on a Mini High Field System (Cryogenics) using the Vibrating
Sample Magnetometer option. The diamagnetic contribution of the sample carrier and the solvent to the
signal was removed by linearly fitting (µtot(B) = m ·B + p) the two high-field regions of the curve, where
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superparamagnetism does not contribute anymore to signal variations, averaging the parameters m and p
obtained from those two fits, and then removing from the signal at each field the diamagnetic contribution
computed from the average values of the parameters:

µcorr(B) = µraw(B)− (〈m〉B + 〈p〉) (13)

Then, the signal (in electromagnetic units) was converted to A/m, through the formula :

M(A/m) =
M(emu) · fM,Fe · ρmag

50 · 10−6 ·C · 10−3
(14)

where :

• M(A/m) is the magnetization in A/m;

• M(eemu) is the raw magnetic moment in electromagnetic units;

• 50 · 10−6L is the sample volume;

• fM,Fe is the mass fraction of iron in either magnetite (0.72) or maghemite (0.699), depending on which
iron oxide the sample is assumed to be. Unless specified otherwise, samples were always assumed to be
pure magnetite in this article ;

• ρmag is the density in g/cm3 of either magnetite (ρmag = 5.17g/cm3) or maghemite (ρmag = 4.9g/cm3

[50]) depending on which iron oxide the sample is assumed to be.

In most experimental samples, the particles are assumed to be a mix of magnetite and maghemite.

2.3 Fits

As mentioned previously, the integrated Langevin equation (5) is often used to fit the magnetization curves of
experimental samples, and one goal of this research is to probe how accurate the size distributions obtained
through that fit are. To perform the fits, we used the curve_fit routine from the optimize package of the
SciPy library, with the mean radius 〈R〉, the standard deviation σN and the saturation magnetization MS as
fit parameters in the case of normal distributions, and the median radius R0, σL parameter and saturation
magnetization MS in the case of log-normal distributions. The fits were performed on full magnetization
curves, from −5T to 5T. The integration intervals were adapted to the size distribution parameters: for
normal distributions the integration was performed from R0 − 4σN to R0 + 4σN , and for log-normal distri-
butions from R0e

−4σL to R0e
4σL , as those intervals contained 99.99% of the distribution. The errors on the

fit parameters were computed as the square roots of the diagonal elements of the covariance matrix, which
were provided by the routine.

3 Results

3.1 Effect of the sole size distribution

In this section, the sole effect of the size distribution is probed. The simulated particles therefore exhibit
no magnetic anisotropy, and are non-interacting. Figure 2 presents the magnetization curves of simulated
samples with varying size dispersions, in the case of a lognormal and of a normal size distribution. In both
cases, the broader the distribution, the faster the saturation of the magnetization. The curves were fitted
using the integrated Langevin equation (5), yielding the parameters listed in table 1. They are very close to
the input size distribution parameters, which validates the fitting program. For the rest of this paper, only
log-normal distributions were considered, as the particle radii in the experimental sample follow a log-normal.

3.2 Effect of the anisotropy

Next, the effect of particle anisotropy on the curves was probed. In this subsection, the simulated particles
do not interact. However, as magnetic anisotropy is considered, rotation can have an influence on the curves.
For each graph and table, the state of the sample (dried, i.e. with rotation of the particles inhibited, or
liquid, i.e. with rotation of the particles allowed) is specified.
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Figure 2: Simulated magnetization curves of samples of nanoparticles with various size distributions (no dipolar interaction, no
anisotropy) at 300K (a) with a log-normal distribution of their radii - R0 = 3nm (b) with a normal distribution of their radii -

〈R〉 = 3nm.

Dist. type Input Fitted parameters

Log-
normal

R0

(nm)
σL

MS

(kA/m)
R0

(nm)
σL

MS

(kA/m)

3

0.1

314.3

3.0265± 0.0039 0.0923± 0.0019 312.87± 0.09

0.3 3.050± 0.012 0.2947± 0.0019 311.72± 0.24

0.5 3.15± 0.07 0.491± 0.007 310.2± 0.6

Normal

R0

(nm)
σN

(nm)
MS

(kA/m)
R0

(nm)
σN

(nm)
MS

(kA/m)

3

0.3

314.3

3.0241± 0.0035 0.275± 0.006 312.92± 0.09

0.5 3.0380± 0.0047 0.4746± 0.0049 312.60± 0.10

1 3.097± 0.012 0.965± 0.007 311.61± 0.15

Table 1: Distribution parameters obtained by fitting the simulated magnetization curves at 300K (no
dipolar interaction, no anisotropy, see fig. 2) to the integrated Langevin equation, for six simulations with

varying size distributions.

3.2.1 Effect of the rotation on the curves

To evaluate if differences between the magnetization curves of solid and liquid samples are caused by Brown
relaxation, the influence of the rotation (i.e. of the Brown relaxation process, or in a more physical manner,
the solid or liquid state of the sample) on the curves of anisotropic particles was first probed. To that effect,
simulations were performed twice, once with the standard code, and once with rotation explicitly blocked in
the algorithm. The resulting curves are presented on figure 3. The simulations with and without rotation
(random anisotropy axes) overlap for σL = 0.1 and σL = 0.3, which indicates that there is no effect of the
rotation on the magnetization curves of non-interacting particles with a median radius of 3nm, a narrow
size distribution, and (initially) distributed anisotropy axes at 300K. For the broadest size distribution
(σL = 0.5), a slight difference between the curves with and without rotation can be seen, hence Brown
relaxation does impact the magnetization curve. The size distribution parameters obtained from fitting
those curves are presented in table 2. The values are close for the liquid and solid samples, except for high
dispersion parameters σL.

3.2.2 Effect of the easy axes’ alignment on the curves

Next, the effect of the easy axes’ alignment on the curves was probed. Brown relaxation was explicitly
blocked in all cases to model the drying of the sample which was performed in the experiments (which will
be presented further). The resulting curves can be seen on figure 4. Two different cases were considered:
anisotropy axes parallel to the external field (which is along the Oz axis), and axes perpendicular to the
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Figure 3: Comparison of the simulated magnetization curves of samples of nanoparticles with various size distributions (no
dipolar interaction) at 300K with and without allowing the particles to rotate. Anisotropy axes are randomly oriented in the

sample. K = 13600J/m3. f = 0.005.

external field (specifically, aligned with the Oy axis). As a reference, the simulations with (blocked) randomly
distributed anisotropy axes are plotted in a dashed line. In all cases, K = 13600 J/m3. For each situation,
three dispersion parameters σL were considered. It should be noted that the fit curve for σL = 0.5 in the case
of anisotropy axes aligned to Oy (i.e. axes perpendicular to the external field) is not satisfactory. As can
be seen on figure 4, there is a clear impact of the orientation of the easy axes on the magnetization curves
of non-interacting nanoparticles with a median radius of 3nm. When the anisotropy axes are parallel to the
external field, the saturation is faster. On the other hand, when the axes are perpendicular to the external
field, the saturation is slower. The size distribution parameters and saturation magnetizations obtained
from fitting those curves, compared with the parameters obtained by fitting the simulations with (randomly)
distributed anisotropy axes, are presented in table 3. The size dispersion parameters obtained from fitting
the curves with anisotropy axes parallel to the external field are significantly (10 to 55 %) higher than the
parameters obtained from fitting the curves with randomly distributed anisotropy axes. On the other hand,
the size dispersion parameters obtained from fitting the curves with anisotropy axes perpendicular to the field
axis are significantly lower (9 to 31 %) than the parameters obtained from fitting the curves with randomly
distributed anisotropy axes. The fit of the simulation with axes perpendicular to the field and the highest
σL parameter was not considered in these percentages, because it has a 100% error.

3.3 Effect of the dipolar interaction

3.3.1 For particles without a size dispersion

To isolate the sole effect of the dipolar interaction, the simulated particles first had no magnetic anisotropy,
and all had a median radius of 3 nm. As can be seen on figure 5a, there is no effect of the dipolar interaction
between particles, within "error" (i.e. the standard deviation of the computations), on the magnetization at
300K, nor at 50K (see fig. S5(a)). Only at 10K for f = 0.1 (see fig. S5(b)) is an influence notable, but this
simulation result should be interpreted with caution. In a real system, the particles are no longer superpara-
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Sample
state

Input Fitted parameters

R0

(nm)
σL

MS

(kA/m)
R0

(nm)
σL

MS

(kA/m)

Liquid
(Rotation
allowed)

3

0.1

314.3

3.0444± 0.0047 0.0781± 0.0026 312.87± 0.09

0.3 3.062± 0.012 0.2890± 0.0018 311.7± 0.23

0.5 3.53± 0.07 0.426± 0.007 310.1± 0.7

Solid
(Rotation
inhibited)

3

0.1

314.3

3.0244± 0.0041 0.0929± 0.0020 312.92± 0.10

0.3 3.157± 0.012 0.2714± 0.0020 311.24± 0.23

0.5 3.32± 0.09 0.427± 0.009 311.8± 1.0

Table 2: Distribution parameters obtained by fitting the simulated magnetization curves at 300K to the
integrated Langevin equation, for six simulations with varying size distributions. Anisotropy is considered,

but dipolar interaction between the magnetic cores is not.

Sample
state

Input Fitted parameters

R0

(nm)
σL

MS

(kA/m)
R0

(nm)
σL

MS

(kA/m)

Solid (axes
randomly

distributed)
3

0.1

314.3

3.0244± 0.0041 0.0929± 0.0020 312.92± 0.10

0.3 3.062± 0.012 0.2890± 0.0018 311.70± 0.23

0.5 3.32± 0.09 0.427± 0.009 311.8± 1.0

Solid
(axes ‖)

3

0.1

314.3

3.1309± 0.0038 0.1023± 0.0016 311.93± 0.09

0.3 2.830± 0.018 0.3787± 0.0024 311.75± 0.32

0.5 2.30± 0.09 0.663± 0.010 309.2± 0.7

Solid
(axes ⊥)

3

0.1

314.3

2.9769± 0.0041 0.0841± 0.0022 313.40± 0.10

0.3 3.331± 0.011 0.1991± 0.0024 310.76± 0.22

0.5 4.759± 0.017 0.0± 0.7 310.4± 0.7

Table 3: Distribution parameters obtained by fitting the simulated magnetization curves at 300K to the
integrated Langevin equation, for six simulations of solid samples with varying size distributions and

orientations of the easy axes. No dipolar interaction between the magnetic cores was considered.

magnetic at this temperature, because most of the particles are blocked. As a consequence, no equilibrium
state can be reached, whereas our simulations only consider equilibrium states. It is worth noting that no
impact of the dipolar interaction can be observed even with very high volumic fractions of nanoparticles
(f > 0.1, which would correspond to concentrations over 370mg/mL for magnetite nanoparticles, and over
470mg/mL for maghemite nanoparticles). At 300K (figure 5b), simulations in which the particles were posi-
tioned in contact with each other on a cubic grid network, leading to an extremely high volumic fraction of
0.46, were also performed. They confirm the results obtained at f = 0.1: a negligible impact of the dipolar
interaction alone, within statistical variation, on M(B) curves. An effect of dipolar interaction can however
be observed at 300K for larger particles, with a radius R = 7nm, as can be seen on figure S6.

3.3.2 For particles with a size distribution, and magnetic anisotropy

Curves including both anisotropy, with distributed axes (K = 13600J/m3), and dipolar interaction (f = 0.1)
were also obtained, and can be seen on figure 6, for three different size dispersion parameters. Dipolar
interaction has no effect on the curves for σL = 0.1 and σL = 0.3, and at first glance seemingly a slight effect
on the curves for the highest dispersion parameter (σL = 0.5). However, at low fields, the curves (σL = 0.5)
are clearly different, as can be seen on the inset of figure 6 which translates in a significant difference in the
parameters obtained from fitting both curves.
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Figure 4: Simulated magnetization of particles exhibiting a log-normal size distribution, with a median radius of 3nm and
varying σL-parameters, at 300K. Various orientations of their easy magnetization axes were considered, and were kept for the

whole duration of the simulation so as to mimic a solid sample. The particles did not interact.

3.4 Experimental results

The magnetization curves of three dried samples were obtained, at 300K. The three samples were prepared
from the same batch of HiQ Nano particles (hence, they had the same particle size distribution, concentration,
and magnetic anisotropy constant), but they differed in their drying conditions. One was dried under a 0.5T
magnetic field parallel to the experimental measurement field, one under a 0.5T magnetic field perpendicular
to the experimental field, and one was dried in the absence of a magnetic field. The saturation magnetization
used in all the simulations presented henceforth was not fitted from the curves, but was taken as the highest

value of the magnetization of the sample at
∣

∣

∣

~B
∣

∣

∣
= 5T. As can be seen on figure 7, the drying method has

a significant effect on the curves. Specifically, when the particles have been dried under a perpendicular
magnetic field, the magnetization saturates at significantly higher fields than when they have been dried
under zero field. On the other hand, when the particles have been dried under a parallel magnetic field, the
magnetization saturates at significantly lower fields than when dried under no field. The dispersion parameter
σL obtained by fit is also very dependent on the drying conditions of the sample, as can be seen in table 5,
which presents the size distribution parameters fitted from the various curves. When the sample has been
dried under a parallel field, the fitted σL is higher than that obtained by fitting the curve of a sample dried
in the absence of a magnetic field (by 17%). On the other hand, when dried under a perpendicular field, the
σL parameter is lower by 23% compared to the sample dried without a magnetic field.

3.5 Comparison between experimental and simulation results

Finally, the 300K magnetization curve of a solid sample was simulated using the size distribution and satu-
ration magnetisation of the dried experimental sample, and compared to the experimental curve. Therefore,
in these simulations, rotation was inhibited to better model the solid state of the sample, and a very high
volumic fraction was used (f = 0.27). It should however be noted that the volume fraction does not in-
fluence the shape of the magnetisation curve in those conditions (fig. S7). Similar results can be obtained
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Figure 5: Simulated magnetization curves of interacting nanoparticles with a 3nm radius at 300K, depending on the particle
volumic fraction. (a) randomly placed (b) placed on a grid (f = 0.46)

Sample

Input Fitted parameters

R0

(nm)
σL

MS

(kA/m)
R0

(nm)
σL

MS

(kA/m)

Non-interacting 3

0.1

314.3

3.0244± 0.0041 0.0929± 0.0020 312.92± 0.10

0.3 3.062± 0.012 0.2890± 0.0018 311.70± 0.23

0.5 3.32± 0.09 0.427± 0.009 311.8± 1.0

Interacting 3

0.1

314.3

3.0147± 0.0040 0.0964± 0.0018 312.97± 0.09

0.3 3.063± 0.012 0.2869± 0.0019 311.81± 0.23

0.5 4.141± 0.038 0.2997± 0.0042 309.47± 0.48

Table 4: Size distribution parameters obtained by fitting the magnetization curve of six simulations with
varying size distributions to the integrated Langevin equation. The simulations with interacting

nanoparticles (f = 0.1), are compared to their equivalent with non-interacting particles. The particles had
magnetic anisotropy, with randomly distributed and fixed easy axes so as to mimic a solid sample dried

under zero field. The curves are presented in figure 6.

for the liquid sample, since as previously shown, free rotation of the particles does not impact the curves.
The saturation magnetization input in the simulations was the highest value of the magnetization at 5T of
the experimental sample, after correcting for diamagnetism. Because this value depends on how the total
magnetic moment (in electromagnetic units) is converted to the total magnetization (in A/m), it depends on
whether the sample is assumed to be magnetite or maghemite. The maghemite/magnetite proportion of the
sample could be determined via Mossbauer spectroscopy [51]. However, this proportion can evolve over time
through oxidation [52]. Therefore, two extreme cases were considered here: pure magnetite (figure 8(a)) and
pure maghemite (figure 8(b)). The size distribution was here directly input from the TEM; the radii of the
345 particles who were measured were directly introduced into the algorithm. 15 copies of each particle were
made so as to obtain enough particles to ensure proper convergence of the magnetization. The agreement
between simulation and experiment is very good, especially if the sample is assumed to be maghemite. Curves
with two other ways of inputting the size distribution into the algorithm were also produced:

• the size distribution histogram was fitted to a lognormal, yielding a median radius R0 = 3.21nm and
dispersion parameter σL = 0.16. 5000 radii were then sampled from that distribution, and directly
input in the code.

• the size distribution histogram was fitted to two normal peaks, and 5000 radii were sampled from the
superposition of those two peaks, and directly input in the code.

Predictably, the three curves using the three different evaluations of the size distribution superimpose (see
fig. S8).
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Figure 6: Simulated magnetization curves of dried interacting nanoparticles (f = 0.1) with a 3nm radius at 300K, with varying
size distributions. The particles exhibit magnetic anisotropy (K = 13600J/m3). The size distribution parameters obtained

from fitting those curves can be found in table 4. On the right a zoom on low field values is presented.

Sample
Oxide

considered

Median
radius
(nm)

σL

Saturation
magnetization

(kA/m)

Liquid
Magnetite 3.067± 0.016 0.1534± 0.005 355.636

Maghemite 3.152± 0.017 0.153± 0.005 327.420

Dried
without field

Magnetite 3.043± 0.016 0.1673± 0.004 348.111

Maghemite 3.128± 0.016 0.1673± 0.0048 320.492

Dried under a
0.5 T ‖ field

Magnetite 3.049± 0.017 0.1955± 0.0044 348.747

Maghemite 3.134± 0.018 0.1956± 0.0044 321.077

Dried under a
0.5T ⊥ field

Magnetite 3.076± 0.017 0.128± 0.006 345.889

Maghemite 3.162± 0.018 0.128± 0.006 318.446

Table 5: Size distribution parameters obtained by fitting the magnetization curve of three solid samples
and one liquid sample of HiQ Nano particles with a median radius of 3.21nm and a dispersion parameter
σL = 0.16 to the integrated Langevin equation. The curves are presented in figure 7. The saturation

magnetization was fixed and set to the highest value of the 5T magnetization of the sample.
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Figure 7: Experimental magnetization curves of three solid samples of HiQ Nano nanoparticles with a median radius of 3nm,
dried under different magnetic conditions, at 300K, compared with the magnetization curve of the liquid sample. The size

distribution parameters obtained from fitting those curves can be found in table 5. On the right a zoom on low field values is
presented.
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Figure 8: Experimental magnetization curve of the dried experimental sample, compared with the simulation performed with
the size distribution from the TEM measurement. In the simulation, dipolar interaction between particles was considered
(f = 0.27), and particle anisotropy was considered (K = 13600J/m3 and the axes are randomly distributed). Saturation

magnetization was the highest value of the experimental 5T magnetization. Conversion of the magnetization from emu to
amperes per meter was performed by assuming the particles were (a) pure magnetite, versus (b) pure maghemite.
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4 Discussion

As previously noted [33], the Langevin fitting method is not accurate at 300K for particles with radii above
∼ 11nm, because those particles are no longer superparamagnetic. Our results indicate that even for super-
paramagnetic particles, the various effects that are not taken into account in Langevin theory, even when
accounting for size distribution, cause significant deviations from the magnetization it predicts. Fitting the
magnetization curves with equation (5) to obtain the size distribution parameters from a sample is therefore
not always an accurate method.

4.1 Impact of the size distribution

On its own, the dispersion of sizes in the sample leads to a faster saturation than the theory predicts. The
size distribution broadness can be gauged by the σL and σN parameters. The broader the size distribution,
the faster the saturation of the magnetization for both normal and lognormal distributions. This is a well-
known result [28, 39] which validates the simulations. As mentioned previously, the size distribution can be
accounted for by integrating the Langevin equation. Fitting the simulations to integrated equation (5) yields
fairly correct size parameters, as can be seen in table 1. This fit therefore yields a good evaluation of the
size distribution of non-interacting samples without magnetic anisotropy, at all temperatures (see fig. S9 and
table S2 for an example at 150K). However, particles from experimental samples do exhibit anisotropy, and
do interact. It is therefore useful to evaluate how the fit holds when taking into account those realities.

4.2 Impact of the magnetic anisotropy

Indeed, the particle anisotropy impacts the simulated magnetization curves, and therefore the size distribution
parameters obtained by fitting them. It is interesting to note first that rotation (i.e. the liquid or solid state
of the sample) does not influence the magnetization curves of small non-interacting particles with randomly
distributed anisotropy axes, as can be seen on figure 3. It does have a visible influence when the size
distribution is broad (σL = 0.5), and that influence can be explained by the bigger particles in the sample.
Indeed, such a broad distribution contains about 4.5% particles with a radius greater than 7nm, and such
particles have a significantly greater magnetic moment, which creates a strong incentive for them to realign
their easy magnetization axes with the field, which is possible in a liquid solvent. Supplementary figure
S10 shows that for monodisperse particles with a radius of 7nm, the curves with and without rotation are
clearly different: with rotation the saturation is logically faster. This translates in different effective radii
when fitting the curves to a simple langevin: the fitting of the liquid curve yields R = (6.885 ± 0.010)nm
and MS = (312.14 ± 0.31)kA/m, whereas the fitting of the solid curve yields R = (6.833 ± 0.023)nm and
MS = (308.7± 0.7)kA/m with a fit that is less satisfactory (see fig. S10). For polydisperse solid samples, the
underestimation of the radius of the bigger particles then results in erroneous fit parameters.

For solid samples, the magnetization curve of a sample with randomly distributed anisotropy axes (as the
curves of figure 3), which would correspond to a sample dried without a magnetic field, coincides within
standard deviation to the magnetization curve of particles without anisotropy (as the curves in figure 2) for
σL = 0.1 and 0.3, and differ for σL = 0.5. This is more clearly seen on supplementary figure S11, in which they
are plotted together. For low dispersion parameters, it seems that the various competing tendencies of the
distributed axes "even out", resulting in a magnetization similar to a model without anisotropy. For σL = 0.5,
this symmetry disappears because of the significant fraction of big particles, which also affect the signal more.
M. Respaud [21], in a previous theoretical description, evidenced an influence of magnetic anisotropy on the
magnetization curves even in the case of distributed anisotropy axes, for particles with an anisotropy energy
EA = 3.45 · 10−20J . In our simulations, for particles with a 3nm radius, EA = 1.54 · 10−21J, but in the
case of a broader size distribution (like in our σL = 0.5 case), the bigger particles (at the most, for that
distribution, R ∼ 10nm and therefore EA reaches 5.7 · 10−20) behave as Respaud predicted, which explains
that the case of distributed axes, for σL = 0.5 then yields a curve different to the case without anisotropy.
The size distribution parameters obtained from fitting the curves discussed above to the integrated Langevin
equation (5) can be found in the top part of table 1 (for the case without anisotropy) and the bottom part of
table 2 (for the case with distributed anisotropy axes in a solid sample). They only correspond within error
for σL = 0.1, but remain close for σL = 0.3.
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In simulations of solid samples, the orientation of the anisotropy axes also has a strong impact on the
parameters obtained by fitting the curves, as can be seen on figure 4. When the anisotropy axes are aligned
with the external field, the saturation occurs faster than when they are randomly distributed, and even more
so than when they are perpendicular to the field. This result was expected: when the easy magnetization
axes are aligned with the magnetic field, the Zeeman and anisotropy contributions to the particle’s energy
cooperate to push the magnetic moments of the SPIONs to align with the field, more so than the Zeeman
interaction alone (in samples without anisotropy). On the other hand, when the easy magnetization axes are
perpendicular to the magnetic field, the Zeeman and anisotropy contributions to the particle’s energy are in
competition, which hinders the alignment of the magnetic moments with the field. These variations in the
simulated magnetization curves translate, in the case of samples with a size distribution, in a completely
artificial variation of the resulting fitted parameters. Specifically, as can be seen in table 3, the fitted
dispersion parameter is impacted by the axes’ orientation: when parallel to the measurement field B0, σL is
overestimated by 10 % to 55%, and when perpendicular to the field, σL is underestimated by 9 % to 31%. It
seems that the fit interprets the faster saturation here as a broader size distribution (which would also lead
to a faster saturation), since it does not take into account the anisotropy, and conversely slower saturation as
a narrower size distribution. The simulated impact of the alignment of the axes with respect to the field on
the magnetization curves is consistent with tendencies observed by Londoño Navarro et al [19]. The current
study pushes it a bit further by fitting the curves, which allows for a quantification of the effect. These
effects observed in the simulations compare qualitatively well with our experimental results. It is obviously
not possible to choose the orientation of the easy magnetization axes of a sample of nanoparticles in solution.
It is however possible to orientate them using a magnetic field when still in liquid state, and then block them
by inhibiting Brown relaxation, i.e. by either freezing or drying the sample. If the sample was dried under a
parallel field, the easy magnetization axes were aligned with the magnetic field before being blocked, and the
results can be compared to the simulations where the axes were parallel to the field. On the other hand, if
the sample was dried under a perpendicular field, the axes were blocked in a direction perpendicular to the
magnetic field, and the resulting curve can be compared to the simulation where the axes were perpendicular
to the field.

The comparisons hold up; the simulations with axes aligned to the external field, presented on figure 4
(which yield the fitted size distribution parameters presented in table 3) lead to a faster saturation of the
magnetization and a higher dispersion parameter σL, same as the experiments on samples dried under a
parallel magnetic field, presented on figure 7 (and leading to the fitted size distribution parameters from
table 5). On the other hand, the simulations with axes perpendicular to the field lead to a slower saturation
of the magnetization, and a lower dispersion parameter σL, same as the experiments on a sample dried under
a perpendicular magnetic field. The relative impact of the easy axes being aligned with the field on the fitted
σL parameter in the experiments is comparable to the relative impact observed in the simulations (σL is
17% higher when fitting the "parallel" curve, and 23% lower when fitting the "perpendicular" curve). The
simulation and experimental results indicate that extra caution should be taken to dry (or freeze) samples
under a controlled zero field. Indeed, the three samples presented here experimentally sport the same size
distribution, since they come from the same batch of nanoparticles. The three simulations (for each size
dispersion) also have the same, known, size distribution. However, the curves corresponding to drying in
different conditions show different magnetization curves. Therefore, when fitted to the integrated equation,
they yield different distribution parameters, which do not accurately reflect the actual size distribution of
the samples if dried under a nonzero magnetic field.

4.3 Impact of the dipolar interaction between particles

Aside from anisotropy, the magnetic behaviour of solid samples is expected to be driven by the effect of
dipolar interaction, as drying leads to volumic fractions of nanoparticles dramatically higher than those
reached in solutions. To test that hypothesis, the effect of sole dipolar interactions on particles with no
magnetocrystalline anisotropy, and without any size dispersion, was first probed. As can be seen on figure
5, there is no effect of dipolar interactions on the simulated magnetization curves of nanoparticles with a
3nm radius at 300K within error. This is consistent with previous simulation studies on the topic, although
those focused on clusters of nanoparticles [28, 19]. As a consequence, the presence of dipolar interaction
in the simulations does not modify the fitted parameters. Only at both low temperatures (T ∼ 10K) and
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high volume fractions (f ∼ 0.1) do dipolar interactions impact the curves of such particles by lowering the
magnetization (see fig. S5). Such volumic fractions correspond to a mean interparticle distance

〈rij〉 = 3

√

4πR3

3f
(15)

of 10nm for particles with a radius of 3nm. However, at low temperatures, the magnetic moments of the
particles are blocked to Néel relaxation (τN > τM ). As those processes are not taken into account in the
simulations presented in this article, the magnetization curves obtained at those temperatures should not
be taken as a realistic prediction of the behaviour of experimental samples; this is far beyond the scope of
the simulations, which aim at modeling superparamagnetic systems. When a size dispersion of the particles
and magnetic anisotropy are introduced in the simulation, an impact of dipolar interaction appears for broad
distributions (σL = 0.5), as can be seen on figure 6 at 300K. This is again due to the bigger particles present
in such a sample. As established before, in such a distribution, there are 4.5% of particles with a radius
higher than 7nm, and for those bigger particles, the stronger dipolar interaction energy results in changes in
the magnetization curve, even when they do not have magnetic anisotropy and all have the same size, as can
be seen on supplementary figure S6. This also translates in significant variations in the parameters obtained
by fitting the magnetization curves of interacting nanoparticles to the integrated Langevin equation (5): the
dispersion parameter σL is dramatically underestimated, and the median radius R0 is widely overestimated,
both by 40%. Ivanov and Kuznetsova proposed a second-order modified mean-field model, which is an
adapted Langevin theory accounting for interactions between particles. It reportedly yields consistent size
distribution parameters over a wide range of concentrations, indicating that it performs well to evaluate size
distributions of interacting samples [41]. However, it does not take into account magnetic anisotropy, which
Monte Carlo simulations allow to do.

4.4 Comparison between the simulation and the experiments

Our simulations reproduce quite well the magnetization curve of a dried sample at 300K, as figure 8 shows.
The discrepancies remaining between the simulation and the experiment have yet to be explained. One
possible improvement of the simulations to be explored is refining the modeling of anisotropy, as the uniaxial
model is rather simplistic; cubic anisotropy would be more realistic. As shown before, magnetocrystalline
anisotropy can have a significant impact on magnetization curves, so a change in its definition could very
well be the missing puzzle piece. The value of the anisotropy constant, within the typical range expected
for magnetite, however has no influence on the simulated curves (see fig. S12), at this temperature and for
randomly oriented axes (which is expected of a realistic sample). Another possibility are surface effects, which
some authors consider in simulations or analytically (albeit without comparing to experimental results) [53].
Contrary to Schaller et al [28], the size distribution used in simulations to reproduce the experimental curve
was evaluated from the TEM, independently from magnetic measurements. This makes the good agreement
between simulation and experiments all the more interesting.

4.5 Limitations of our model

In this work, we chose to use a Metropolis-Hastings algorithm to model the behaviour of superparamagnetic
iron oxide nanoparticles. It should be noted that this algorithm is built to study the equilibrium properties
of systems. It is not suitable to study dynamical effects, such as the Néel and Brown relaxation processes.
This limits the results that can be obtained by our methodology, in particular at low temperatures, because
of the blocking of the magnetic moment of the particles. The absence of an effect of dipolar interactions on
the magnetization curves of nanoparticles with a 3nm radius at 300K, even at high volumic fractions, could
seem surprising. Indeed, dense clusters of iron oxide nanoparticles exhibit an important shift of the peak of
their ZFC curves towards higher temperatures, when compared to the same, isolated particles [23, 54, 44].
This may be due to dipolar interaction modifying the Néel relaxation time [1] through the locally high fields
it can produce. A previous theoretical study by Ilg and Kröger on the influence of dipolar interactions on
the Néel and Brown relaxation times supports this hypothesis [55]. Such an effect of dipolar interactions on
Néel time could explain how clustering affects field-cooling and zero-field-cooling magnetization curves [54]
without affecting the magnetization curves at a given temperature.
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5 Conclusion

In this article, the impact of different parameters influencing the magnetization curves of iron oxide nanopar-
ticles was studied using Monte Carlo simulations. First, at 300K, drying a sample of nanoparticles with
distributed anisotropy axes in the absence of a magnetic field does not modify the magnetization curves.
Dipolar interaction has no influence on the curves either, even with high volumic fractions of the particles.
Both those conclusions only hold as long as the particles are small, and exhibit a narrow size distribution:
the presence of even few bigger particles sees the curves of the various simulated samples differ. Second, in
solid samples, the orientation of the easy magnetization axes had a significant effect on the magnetization
curves in both simulations and experiments. This highlights the importance of controlling the magnetic
field under which samples are dried or frozen: it can have a significant impact on their magnetic properties.
Special caution should be taken if the curves are to be fitted to an integrated Langevin equation to determine
size distribution parameters, as the fitted dispersion parameter σL in particular is modified (by 9% to 55%)
in samples dried under a magnetic field, whether parallel or perpendicular to the experimental field. The
main finding of this paper is that overall, that fit has a very limited validity range; it only performs well for
samples of non-interacting small particles with distributed anisotropy axes. Most experimental samples do
not fit that bill, and therefore the size distribution parameters obtained by fitting experimental curves to the
integrated Langevin equation should be used with caution. Finally, our simulations including all the known
experimental parameters reproduce quantitatively well the magnetization curves of a liquid sample at 300K,
which confirms the validity of the simulation model at such a temperature.

Highlights

• A method to simulate liquid and dry samples of superparamagnetic particles is built.

• The simulation results are compared whenever possible to experiments.

• Neither dipolar interaction nor particle rotation influence the curves at 300K.

• The orientation of the magnetocrystalline anisotropy axes does however.

• Deviations from Langevin behaviour cause Langevin fitting to behave poorly.
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