|
Record |
Links |
|
Author |
Spaeth, P.; Adhikari, S.; Heyvaert, W.; Zhuo, X.; Garcia, I.; Liz-Marzan, L.M.; Bals, S.; Orrit, M.; Albrecht, W. |
|
|
Title |
Photothermal circular dichroism measurements of single chiral gold nanoparticles correlated with electron tomography |
Type |
A1 Journal article |
|
Year |
2022 |
Publication |
ACS Photonics |
Abbreviated Journal |
Acs Photonics |
|
|
Volume |
9 |
Issue |
12 |
Pages |
3995-4004 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Chemically synthesized metal nanoparticles with morphological chiral features are known to exhibit strong circular dichroism. However, we still lack understanding of the correlation between morphological and chiroptical features of plasmonic nanoparticles. To shed light on that question, single nanoparticle experiments are required. We performed photothermal circular dichroism measurements of single chiral and achiral gold nanoparticles and correlated the chiroptical response to the 3D morphology of the same nanoparticles retrieved by electron tomography. In contrast to an ensemble measurement, we show that individual particles within the ensemble display a broad distribution of strength and handedness of circular dichroism signals. Whereas obvious structural chiral features, such as helical wrinkles, translate into chiroptical ones, nanoparticles with less obvious chiral morphological features can also display strong circular dichroism signals. Interestingly, we find that even seemingly achiral nanoparticles can display large g-factors. The origin of this circular dichroism signal is discussed in terms of plasmonics and other potentially relevant factors. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000884432100001 |
Publication Date |
2022-11-08 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2330-4022 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
7 |
Times cited |
5 |
Open Access |
OpenAccess |
|
|
Notes |
This work was supported by The Netherlands Organisation for Scientific Research (NWO) as part of the Open Technology Program (OTP, Project No. 16008) and by a Spinoza prize (M.O.) . W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 Program (Grant No. 797153, SOPMEN) . L.M.L.M. acknowledges funding from MCIN/AEI/10.13039/501100011033 (Grants PID2020-117779RB-I00 and MDM-2017-0720) . We thank Dr. Wolfgang L?fer for providing optical equipment. We also acknowledge the European Soft Matter Infrastructure (EUSMI: E201200468) . |
Approved |
Most recent IF: 7 |
|
|
Call Number |
UA @ admin @ c:irua:192098 |
Serial |
7331 |
|
Permanent link to this record |