|   | 
Details
   web
Records
Author M. K. Kinyanjui, N. Gauquelin, E. Benckiser, H. –U. Habermeier, B. Keimer, U. Kaiser and G.A. Botton
Title Local lattice distortion and anisotropic modulation in Epitaxially Strained LaNiO3/LaAlO3 hetero-structures Type A1 Journal Article
Year 2014 Publication Applied Physics Letters Abbreviated Journal
Volume 104 Issue (up) Pages 221909
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Using a complementary combination of x-ray diffraction and atomically resolved imaging we investigated the lattice structure of epitaxial LaNiO3/LaAlO3 superlattices grown on a compressive-strain inducing LaSrAlO4 (001) substrate. A refinement of the structure obtained from the x-ray data revealed the monoclinic I 2/c 1 1 space group. The (Ni/Al)O6 octahedral rotation angle perpendicular to the superlattice plane is enhanced, and the one parallel to the plane is reduced with respect to the corresponding bulk values. High-angle annular dark field imaging was used to determine the lattice parameters within the superlattice unit cell. High-resolution electron microscopy images of the oxygen atoms are consistent with the x-ray results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000337161700029 Publication Date 2014-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links
Impact Factor Times cited 22 Open Access
Notes Approved Most recent IF: NA
Call Number EMAT @ emat @ Serial 4545
Permanent link to this record
 

 
Author H. Zhang, N. Gauquelin, G.A. Botton and J.Y.T. Wei
Title Attenuation of superconductivity in manganite/cuprate heterostructures by epitaxially induced CuO intergrowths Type A1 Journal Article
Year 2013 Publication Applied Physics Letters Abbreviated Journal
Volume 103 Issue (up) Pages 052606
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract We examine the effect of CuO intergrowths on the superconductivity in epitaxial

La 2/3 Ca 1/3 MnO 3 / YBa 2 Cu 3 O 7−δ La2/3Ca1/3MnO3/YBa2Cu3O7−δ

(LCMO/YBCO) thin-film heterostructures. Scanning transmission electron microscopy on bilayer LCMO/YBCO thin films revealed double CuO-chain intergrowths which form regions with the 247 lattice structure in the YBCO layer. These nanoscale 247 regions do not appear in x-ray diffraction, but can physically account for the reduced critical temperature (Tc) of bilayer thin films relative to unilayer films with the same YBCO thickness, at least down to ∼25 nm. We attribute the CuO intergrowths to the bilayer heteroepitaxial mismatch and the Tc reduction to the generally lower Tc seen in bulk 247 samples. These epitaxially-induced CuO intergrowths provide a microstructural mechanism for the attenuation of superconductivity in LCMO/YBCO heterostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322723000063 Publication Date 2013-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links
Impact Factor Times cited 12 Open Access
Notes Approved Most recent IF: NA
Call Number EMAT @ emat @ Serial 4546
Permanent link to this record
 

 
Author Wang, W.; Mei, D.; Tu, X.; Bogaerts, A.
Title Gliding arc plasma for CO 2 conversion: Better insights by a combined experimental and modelling approach Type A1 Journal article
Year 2017 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 330 Issue (up) Pages 11-25
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A gliding arc plasma is a potential way to convert CO2 into CO and O2, due to its non-equilibrium character, but little is known about the underlying mechanisms. In this paper, a self-consistent two-dimensional (2D) gliding arc model is developed, with a detailed non-equilibrium CO2 plasma chemistry, and validated with experiments. Our calculated values of the electron number density in the plasma, the CO2 conversion and energy efficiency show reasonable agreement with the experiments, indicating that the model can provide a realistic picture of the plasma chemistry. Comparison of the results with classical thermal conversion, as well as other plasma-based technologies for CO2 conversion reported in literature, demonstrates the non-equilibrium character of the gliding arc, and indicates that the gliding arc is a promising plasma reactor for CO2 conversion. However, some process modifications should be exploited to further improve its performance. As the model provides a realistic picture of the plasma behaviour, we use it first to investigate the plasma characteristics in a whole gliding arc cycle, which is necessary to understand the underlying mechanisms. Subsequently, we perform a chemical kinetics analysis, to investigate the different pathways for CO2 loss and formation. Based on the revealed discharge properties and the underlying CO2 plasma chemistry, the model allows us to propose solutions on how to further improve the

CO2 conversion and energy efficiency by a gliding arc plasma.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000414083300002 Publication Date 2017-07-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 38 Open Access OpenAccess
Notes This research was supported by the European Marie Skłodowska- Curie Individual Fellowship “GlidArc” within Horizon 2020 (Grant No. 657304) and by the FWO project (grant G.0383.16N). The support of this experimental work by the EPSRC CO2Chem Seedcorn Grant and the FWO travel grant for study abroad (Grant K2.128.17N) is gratefully acknowledged. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:145033 Serial 4636
Permanent link to this record
 

 
Author Rumyantseva, M.N.; Vladimirova, S.A.; Vorobyeva, N.A.; Giebelhaus, I.; Mathur, S.; Chizhov, A.S.; Khmelevsky, N.O.; Aksenenko, A.Y.; Kozlovsky, V.F.; Karakulina, O.M.; Hadermann, J.; Abakumov, A.M.; Gaskov, A.M.
Title p -CoO x / n -SnO 2 nanostructures: New highly selective materials for H 2 S detection Type A1 Journal article
Year 2017 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume Issue (up) Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanostructures p-CoOx/n-SnO2 based on tin oxide nanowires have been prepared by two step CVD technique and characterized in detail by XRD, XRF, XPS, HAADF-STEM imaging and EDX-STEM mapping. Depending on the temperature of decomposition of cobalt complex during the second step of CVD synthesis of nanostructures cobalt oxide forms a coating and/or isolated nanoparticles on SnO2 nanowire surface. It was found that cobalt presents in +2 and +3 oxidation states. The measurements of gas sensor properties have been carried out during exposure to CO (14 ppm), NH3 (21 ppm), and H2S (2 ppm) in dry air. The opposite trends were observed in the effect of cobalt oxide on the SnO2 gas sensitivity when detecting CO or NH3 in comparison to H2S. The decrease of sensor signal toward CO and NH3 was attributed to high catalytic activity of Co3O4 in oxidation of these gases. Contrary, the significant increase of sensor signal in the presence of H2S was attributed to the formation of metallic cobalt sulfide and removal of the barrier between p-CoOx and n-SnO2. This effect provides an excellent selectivity of p-CoOx/n-SnO2 nanostructures in H2S detection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000414151800068 Publication Date 2017-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited 13 Open Access Not_Open_Access: Available from 10.10.2019
Notes ERA-Net.Plus, 096 FONSENS ; Approved Most recent IF: 5.401
Call Number EMAT @ emat @c:irua:145926 Serial 4710
Permanent link to this record
 

 
Author Vladimirova, S.A.; Rumyantseva, M.N.; Filatova, D.G.; Chizhov, A.S.; Khmelevsky, N.O.; Konstantinova, E.A.; Kozlovsky, V.F.; Marchevsky, A.V.; Karakulina, O.M.; Hadermann, J.; Gaskov, A.M.
Title Cobalt location in p -CoO x / n -SnO 2 nanocomposites: Correlation with gas sensor performances Type A1 Journal Article
Year 2017 Publication Journal Of Alloys And Compounds Abbreviated Journal J Alloy Compd
Volume 721 Issue (up) Pages 249-260
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Nanocomposites CoOx/SnO2 based on tin oxide powders with different crystallinity have been prepared by wet chemical synthesis and characterized in detail by ICP-MS, XPS, EPR, XRD, HAADF-STEM imaging and EDX-STEM mapping. It was shown that cobalt is distributed differently between the bulk and surface of SnO2 nanocrystals, which depends on the crystallinity of the SnO2 matrix. The measurements of gas sensor properties have been carried out during exposure to CO (10 ppm), and H2S (2 ppm) in dry air. The decrease of sensor signal toward CO was attributed to high catalytic activity of Co3O4 leading to oxidation of carbon monoxide entirely on the surface of catalyst particles. The formation of a p-CoOx/n-SnO2 heterojunction results in high sensitivity of nanocomposites in H2S detection. The conductance significantly changed in the presence of H2S, which was attributed to the formation of metallic cobalt sulfide and removal of the p – n junction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000405252400030 Publication Date 2017-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.133 Times cited Open Access Not_Open_Access
Notes This work was supported by ERA-Net.Plus grant N 096 FONSENS. EPR experiments were performed using the facilities of the Collective Use Center at the Moscow State University. Approved Most recent IF: 3.133
Call Number EMAT @ emat @ Serial 4711
Permanent link to this record
 

 
Author De Backer, A.; van den Bos, K.H.W.; Van den Broek, W.; Sijbers, J.; Van Aert, S.
Title StatSTEM: An efficient program for accurate and precise model-based quantification of atomic resolution electron microscopy images Type P1 Proceeding
Year 2017 Publication Journal of physics : conference series T2 – Electron Microscopy and Analysis Group Conference 2017 (EMAG2017), 3-6 July 2017, Manchester, UK Abbreviated Journal J. Phys.: Conf. Ser.
Volume 902 Issue (up) Pages 012013
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT); Vision lab
Abstract An efficient model-based estimation algorithm is introduced in order to quantify the atomic column positions and intensities from atomic resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for the overlap between neighbouring columns, enabling the analysis of a large field of view. For this algorithm, the accuracy and precision with which measurements for the atomic column positions and scattering cross-sections from annular dark field (ADF) STEM images can be estimated, is investigated. The highest attainable precision is reached even for low dose images. Furthermore, advantages of the model- based approach taking into account overlap between neighbouring columns are highlighted. To provide end-users this well-established quantification method, a user friendly program, StatSTEM, is developed which is freely available under a GNU public license.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000416370700013 Publication Date 2017-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access OpenAccess
Notes The authors acknowledge nancial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0374.13N, G.0368.15N, G.0369.15N, WO.010.16N) and a PhD research grant to K H W van den Bos, and a postdoctoral research grant to A De Backer. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3). A Rosenauer is acknowledged for providing the STEMsim program. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:147188 Serial 4764
Permanent link to this record
 

 
Author Shetty, S.; Sinha, S.K.; Ahmad, R.; Singh, A.K.; Van Tendeloo, G.; Ravishankar, N.
Title Existence of Ti2+States on the Surface of Heavily Reduced SrTiO3Nanocubes Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume Issue (up) Pages acs.chemmater.7b04113
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Using advanced electron microscopy, we demonstrate the presence of Ti2+ on the 001 surfaces of heavily reduced strontium titanate nanocubes. While high-angle annular dark field images show a clear difference between the surfaces of the unreduced and reduced samples, electron energy loss spectroscopy detects the presence of Ti2+ on the surface of the reduced cubes. Conventional reduction only leads to the formation of Ti3+ and involves the use of high temperatures. In our case, reduction is achieved at relatively lower temperatures in the solid state using sodium borohydride as the reducing agent. Our findings provide insights into the optical properties of the samples and provide a convenient method to produce highly reduced surfaces that could demonstrate a range of exotic physical phenomena
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000418206600005 Publication Date 2017-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 8 Open Access OpenAccess
Notes We thank Advanced Facility for Microscopy and Microanalysis (AFMM), IISc, Bangalore for providing the TEM facility. We also thank MNCF, CeNSE, IISc for providing the XPS and FT-IR facilities. We acknowledge the help from Prof. Anshu Pandey for providing the PL facility and Mr. Ashutosh Gupta for the help with measurements. SS and NR thank DST for providing the financial support. RA and AKS acknowledge Super Computing Education and Research Center (SERC) and Materials Research Center (MRC), at IISc for providing required computational facilities. RA acknowledges the financial support from INSPIRE fellowship, AORC.Science and Engineering Research Board; Federaal Wetenschapsbeleid; Department of Science and Technology, Ministry of Science and Technology; Approved Most recent IF: 9.466
Call Number UA @ lucian @c:irua:147191 Serial 4767
Permanent link to this record
 

 
Author Charkin, D.O.; Plokhikh, I.V.; Kazakov, S.M.; Kalmykov, S.N.; Akinfiev, V.S.; Gorbachev, A.V.; Batuk, M.; Abakumov, A.M.; Teterin, Y.A.; Maslakov, K.I.; Teterin, A.Y.; Ivanov, K.E.
Title Synthesis and structural characterization of a novel Sillén – Aurivillius bismuth oxyhalide, PbBi3VO7.5Cl, and its derivatives Type A1 Journal article
Year 2018 Publication Solid state sciences Abbreviated Journal Solid State Sci
Volume 75 Issue (up) Pages 27-33
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new Sillen – Aurivillius family of layered bismuth oxyhalides has been designed and successfully constructed on the basis of PbBiO2X(X = halogen) synthetic perites and g-form of Bi2VO5.5 solid elec- trolyte. This demonstrates, for the first time, the ability of the latter to serve as a building block in construction of mixed-layer structures. The parent compound PbBi3VO7.5-dCl (d = 0.05) has been investigated by powder XRD, TEM, XPS methods and magnetic susceptibility measurements. An unexpected but important condition for the formation of the mixed-layer structure is partial (ca. 5%) reduction of VV into VIV which probably suppresses competitive formation of apatite-like Pb – Bi vanadates. This reduction also stabilizes the g polymorphic form of Bi2VO5.5 not only in the intergrowth structure, but in Bi2V1-xMxO5.5-y (M – Nb, Sb) solid solutions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000418566200005 Publication Date 2017-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1293-2558 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.811 Times cited 1 Open Access Not_Open_Access
Notes The work was partially supported by M.V. Lomonosov Moscow State University Program of Development and Russian Science Foundation under Grant No.14-13-00738. We also thank Dr. K.V. Zakharov (MSU) for the magnetic measurements of the PbBi3- VO7.5Cl sample. Approved Most recent IF: 1.811
Call Number EMAT @ emat @c:irua:147239 Serial 4769
Permanent link to this record
 

 
Author Vatanparast, M.; Egoavil, R.; Reenaas, T.W.; Verbeeck, J.; Holmestad, R.; Vullum, P.E.
Title Bandgap measurement of high refractive index materials by off-axis EELS Type A1 Journal article
Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 182 Issue (up) Pages 92-98
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In the present work Cs aberration corrected and monochromated scanning transmission electron microscopy electron energy loss spectroscopy (STEM-EELS) has been used to explore experimental setups that allow bandgaps of high refractive index materials to be determined. Semi-convergence and collection angles in the mu rad range were combined with off-axis or dark field EELS to avoid relativistic losses and guided light modes in the low loss range to contribute to the acquired EEL spectra. Off-axis EELS further supressed the zero loss peak and the tail of the zero loss peak. The bandgap of several GaAs-based materials were successfully determined by simple regression analyses of the background subtracted EEL spectra. The presented set-up does not require that the acceleration voltage is set to below the. Cerenkov limit and can be applied over the entire acceleration voltage range of modern TEMs and for a wide range of specimen thicknesses. (C) 2017 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000413436500013 Publication Date 2017-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 3 Open Access Not_Open_Access
Notes ; The authors would like to thank Professor Shu Min Wang and Mahdad Sadeghi at the Nanofabrication Laboratory at Chalmers University, Sweden for providing the samples. The Norwegian Research Council is acknowledged for funding the HighQ-IB project under contract no. 10415201. M.V. and T.W.R. acknowledge funding from the EEA Financial Mechanism 2009-2014 under the project contract no 23SEE/30.06.2014. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2(Integrated Infrastructure Initiative-I3) through the system of transnational access. R.E. and J.V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. ; Approved Most recent IF: 2.843
Call Number UA @ lucian @ c:irua:146639UA @ admin @ c:irua:146639 Serial 4778
Permanent link to this record
 

 
Author Wang, W.; Kim, H.-H.; Van Laer, K.; Bogaerts, A.
Title Streamer propagation in a packed bed plasma reactor for plasma catalysis applications Type A1 Journal article
Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 334 Issue (up) Pages 2467-2479
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A packed bed dielectric barrier discharge (DBD) is widely used for plasma catalysis applications, but the exact plasma characteristics in between the packing beads are far from understood. Therefore, we study here these plasma characteristics by means of fluid modelling and experimental observations using ICCD imaging, for packing materials with different dielectric constants. Our study reveals that a packed bed DBD reactor in dry air at atmospheric pressure may show three types of discharges, i.e. positive restrikes, filamentary microdischarges, which can also be localized between two packing beads, and surface discharges (so-called surface ionization

waves). Restrikes between the dielectric surfaces result in the formation of filamentary microdischarges, while surface charging creates electric field components parallel to the dielectric surfaces, leading to the formation of surface discharges. A transition in discharge mode occurs from surface discharges to local filamentary discharges between the packing beads when the dielectric constant of the packing rises from 5 to 1000. This may have implications for the efficiency of plasma catalytic gas treatment, because the catalyst activation may be limited by constraining the discharge to the contact points of the beads. The production of reactive species occurs most in the positive restrikes, the surface discharges and the local microdischarges in between the beads, and is less significant in the longer filamentary microdischarges. The faster streamer propagation and discharge development with higher dielectric constant of the packing beads leads to a faster production of reactive species. This study is of great interest for plasma catalysis, where packing beads with different dielectric constants are often used as supports for the catalytic materials. It allows us to better understand how different packing materials can influence the performance of packed bed plasma reactors for environmental applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000418533400246 Publication Date 2017-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 36 Open Access Not_Open_Access: Available from 10.01.2020
Notes We acknowledge financial support from the Fund for Scientific Research Flanders (FWO) (grant nos G.0217.14 N, G.0254.14 N and G.0383.16 N), the TOP-BOF project of the University of Antwerp, the European Marie Skłodowska-Curie Individual Fellowship “GlidArc” within Horizon2020 (Grant No. 657304) and the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders). This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions – Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb.ac.be/), and supported by the Belgian Science Policy Office (BELSPO). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:147864 Serial 4800
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Maccato, C.; Altantzis, T.; Kaunisto, K.; Gasparotto, A.
Title Controlled Growth of Supported ZnO Inverted Nanopyramids with Downward Pointing Tips Type A1 Journal article
Year 2018 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des
Volume Issue (up) Pages acs.cgd.8b00198
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract High purity porous ZnO nanopyramids with controllable properties are grown on their tips on

Si(100) substrates by means of a catalyst-free vapor phase deposition route in a wet oxygen

reaction environment. The system degree of preferential [001] orientation, as well as

nanopyramid size, geometrical shape and density distribution, can be finely tuned by varying the

growth temperature between 300 and 400°C, whereas higher temperatures lead to more compact

systems with a three-dimensional (3D) morphology. A growth mechanism of the obtained ZnO

nanostructures based on a self-catalytic vapor-solid (VS) mode is proposed, in order to explain

the evolution of nanostructure morphologies as a function of the adopted process conditions. The

results obtained by a thorough chemico-physical characterization enable to get an improved

control over the properties of ZnO nanopyramids grown by this technique. Taken together, they

are of noticeable importance not only for fundamental research on ZnO nanomaterials with

controlled nano-organization, but also to tailor ZnO functionalities in view of various potential

applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000429508200073 Publication Date 2018-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1528-7483 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.055 Times cited 6 Open Access OpenAccess
Notes This work has been supported by Padova University ex-60% 2015–2017, P-DiSC #03BIRD2016-UNIPD projects and ACTION post-doc fellowship. T. A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO, Belgium). Thanks are also due to Dr. Rosa Calabrese (Department of Chemical Sciences, Padova University, Italy) and to Dr. T.-P. Ruoko (Department of Chemistry and Bioengineering, Tampere University of Technology, Finland) for skilful technical support. Approved Most recent IF: 4.055
Call Number EMAT @ emat @c:irua:149514 Serial 4904
Permanent link to this record
 

 
Author Sathiya, M.; Jacquet, Q; Doublet, M.L; Karakulina, O.M.; Hadermann, J.; Tarascon, J.-M.
Title A Chemical Approach to Raise Cell Voltage and Suppress Phase Transition in O3 Sodium Layered Oxide Electrodes Type A1 Journal article
Year 2018 Publication Advanced energy materials Abbreviated Journal Adv. Energy Mater.
Volume Issue (up) Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Sodium ion batteries (NIBs) are one of the versatile technologies for lowcost rechargeable batteries. O3-type layered sodium transition metal oxides (NaMO2, M = transition metal ions) are one of the most promising positive electrode materials considering their capacity. However, the use of O3 phases is limited due to their low redox voltage and associated multiple phase transitions which are detrimental for long cycling. Herein, a simple strategy is proposed to successfully combat these issues. It consists of the introduction of a larger, nontransition metal ion Sn4+ in NaMO2 to prepare a series of NaNi0.5Mn0.5−y SnyO2 (y = 0–0.5) compositions with attractive electrochemical performances, namely for y = 0.5, which shows a single-phase transition from O3 ⇔ P3 at the very end of the oxidation process. Na-ion NaNi0.5Sn0.5O2/C coin cells are shown to deliver an average cell voltage of 3.1 V with an excellent capacity retention as compared to an average stepwise voltage of ≈2.8 V and limited capacity retention for the pure NaNi0.5Mn0.5O2 phase. This study potentially shows the way to manipulate the O3 NaMO2 for facilitating their practical use in NIBs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430163100013 Publication Date 2018-01-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 21.875 Times cited 28 Open Access OpenAccess
Notes M.S. and Q.J. contributed equally to this work. The authors thank Dr. Daniel Alves Dalla Corte and Sujoy Saha for electronic conductivity measurements and Prof. Dominique Larcher for fruitful discussions. Q.J. thanks the ANR “Deli-Redox” for Ph.D. funding. J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. TGA analysis by Matthieu Courty, LRCS, Amiens, is greatly acknowledged. J.H. and O.M.K. acknowledge funding from FWO Vlaanderen project G040116N. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:149515 Serial 4907
Permanent link to this record
 

 
Author Berthelot, A.; Bogaerts, A.
Title Pinpointing energy losses in CO 2 plasmas – Effect on CO 2 conversion Type A1 Journal article
Year 2018 Publication Journal of CO2 utilization Abbreviated Journal J Co2 Util
Volume 24 Issue (up) Pages 479-499
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma technology is gaining increasing interest for CO2 conversion, but to maximize the energy efficiency, it is important to track the different energy transfers taking place in the plasma. In this paper, we study these mechanisms by a 0D chemical kinetics model, including the vibrational kinetics, for different conditions of reduced electric field, gas temperature and ionization degree, at a pressure of 100 mbar. Our model predicts a maximum conversion and energy efficiency of 32% and 47%, respectively, at conditions that are particularly beneficial for energy efficient CO2 conversion, i.e. a low reduced electric field (10 Td) and a low gas temperature (300 K). We study the effect of the efficiency by which the vibrational energy is used to dissociate CO2, as well as of the activation energy of the reaction CO2+O→CO+O2, to elucidate the theoretical limitations to the energy

efficiency. Our model reveals that these parameters are mainly responsible for the limitations in the energy efficiency. By varying these parameters, we can reach a maximum conversion and energy efficiency of 86%. Finally, we derive an empirical formula to estimate the maximum possible energy efficiency that can be reached under the assumptions of the model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000428234500054 Publication Date 2018-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.292 Times cited 6 Open Access Not_Open_Access: Available from 16.03.2020
Notes We acknowledge financial support from the European Union's Seventh Framework Program for research, technological development and demonstration under grant agreement no. 606889. The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We would also like to thank Prof. Richard van de Sanden (DIFFER) for the interesting talks. Approved Most recent IF: 4.292
Call Number PLASMANT @ plasmant @c:irua:149645 Serial 4912
Permanent link to this record
 

 
Author Schryvers, D.; Salje, E.K.H.; Nishida, M.; De Backer, A.; Idrissi, H.; Van Aert, S.
Title Quantification by aberration corrected (S)TEM of boundaries formed by symmetry breaking phase transformations Type A1 Journal article
Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 176 Issue (up) Pages 194-199
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The present contribution gives a review of recent quantification work of atom displacements, atom site occupations and level of crystallinity in various systems and based on aberration corrected HR(S)TEM images. Depending on the case studied, picometer range precisions for individual distances can be obtained, boundary widths at the unit cell level determined or statistical evolutions of fractions of the ordered areas calculated. In all of these cases, these quantitative measures imply new routes for the applications of the respective materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403992200026 Publication Date 2017-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 1 Open Access OpenAccess
Notes The authors acknowledge financial support from the Fund for Scientific Research-Flanders (G.0064.10N, G.0393.11N, G.0374.13N, G.0368.15N, G.0369.15N) and the Flemish Hercules 3 program for large infrastructure as well as financial support from the European Union Seventh Framework Programme (FP7/2007 – 2013) under Grant agreement no. 312483 (ESTEEM2). EKHS thanks EPSRC (EP/ K009702/1) and the Leverhulme trust (EM-2016-004) for support. DS and MN acknowledge financial support from the Japan Society for the Promotion of Science (JSPS, Japan) through the Grant-in-Aid for Scientific Research (A: No. 26249090) and the Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation (R2408). Approved Most recent IF: 2.843
Call Number EMAT @ emat @c:irua:149654 Serial 4914
Permanent link to this record
 

 
Author Verbeeck, J.; Béché, A.; Müller-Caspary, K.; Guzzinati, G.; Luong, M.A.; Den Hertog, M.
Title Demonstration of a 2 × 2 programmable phase plate for electrons Type A1 Journal article
Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 190 Issue (up) Pages 58-65
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract First results on the experimental realisation of a 2 × 2 programmable phase plate for electrons are presented. The design consists of an array of electrostatic elements that influence the phase of electron waves passing through 4 separately controllable aperture holes. This functionality is demonstrated in a conventional transmission electron microscope operating at 300 kV and results are in very close agreement with theoretical predictions. The dynamic creation of a set of electron probes with different phase symmetry is demonstrated, thereby bringing adaptive optics in TEM one step closer to reality. The limitations of the current design and how to overcome these in the future are discussed. Simulations show how further evolved versions of the current proof of concept might open new and exciting application prospects for beam shaping and aberration correction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000432868800007 Publication Date 2018-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 73 Open Access Not_Open_Access: Available from 19.04.2020
Notes J.V. and A.B. acknowledge funding from the Fund for Scientific Research Flanders FWO project G093417N and the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX and ERC proof of concept project DLV-789598 ADAPTEM. The Qu-Ant-EM microscope used in this work was partly funded by the Hercules fund from the Flemish Government. MdH acknowledges financial support from the ANRCOSMOS (ANR-12-JS10-0002). MdH and ML acknowledge funding from the Laboratoire d’excellence LANEF in Grenoble (ANR-10-LABX-51-01). Approved Most recent IF: 2.843
Call Number EMAT @ emat @c:irua:150459UA @ admin @ c:irua:150459 Serial 4920
Permanent link to this record
 

 
Author Zhao, H.; Hu, Z.; Liu, J.; Li, Y.; Wu, M.; Van Tendeloo, G.; Su, B.-L.
Title Blue-edge slow photons promoting visible-light hydrogen production on gradient ternary 3DOM TiO 2 -Au-CdS photonic crystals Type A1 Journal article
Year 2018 Publication Nano energy Abbreviated Journal Nano Energy
Volume 47 Issue (up) Pages 266-274
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The slow photon effect, a structural effect of photonic crystal photocatalyst, is very efficient in the enhancement of photocatalytic reactions. However, slow photons in powdered photonic crystal photocatalyst have rarely been discussed because they are usually randomly oriented when the photocatalytic reaction happens in solution under constant stirring. In this work, for the first time we design a gradient ternary TiO2-Au-CdS photonic crystal based on three-dimensionally ordered macroporous (3DOM) TiO2 as skeleton, Au as electron transfer medium and CdS as active material for photocatalytic H2 production under visible-light. As a result, this gradient ternary photocatalyst is favorable to simultaneously enhance light absorption, extend the light responsive region and reduce the recombination rate of the charge carriers. In particular, we found that slow photons at blue-edge exhibit much higher photocatalytic activity than that at red-edge. The photonic crystal photocatalyst with a macropore size of 250 nm exhibits the highest visible-light H2 production rate of 3.50 mmolh⁻¹g⁻¹ due to the slow photon energy at the blue-edge to significantly enhance the incident photons utilization. This work verifies that slow photons at the blue-edge can largely enhance light harvesting and sheds a light on designing the powdered photonic crystal photocatalyst to promote the photocatalytic H2 production via slow photon effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430057000027 Publication Date 2018-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.343 Times cited 33 Open Access OpenAccess
Notes B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents”. Y. Li acknowledges Hubei Provincial Department of Education for the “Chutian Scholar” program. This work is financially supported the National KeyR&D Program of China (2016YFA0202602), National Natural Science Foundation of China (U1663225, 51502225), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), Hubei Provincial Natural Science Foundation (2015CFB516), International Science &Technology Cooperation Program of China (2015DFE52870) and the Fundamental Research Funds for the Central Universities (WUT: 2016III029). Approved Most recent IF: 12.343
Call Number EMAT @ lucian @c:irua:150721 Serial 4924
Permanent link to this record
 

 
Author Lu, Y.; Cheng, X.; Tian, G.; Zhao, H.; He, L.; Hu, J.; Wu, S.-M.; Dong, Y.; Chang, G.-G.; Lenaerts, S.; Siffert, S.; Van Tendeloo, G.; Li, Z.-F.; Xu, L.-L.; Yang, X.-Y.; Su, B.-L.
Title Hierarchical CdS/m-TiO 2 /G ternary photocatalyst for highly active visible light-induced hydrogen production from water splitting with high stability Type A1 Journal article
Year 2018 Publication Nano energy Abbreviated Journal Nano Energy
Volume 47 Issue (up) Pages 8-17
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Hierarchical semiconductors are the most important photocatalysts, especially for visible light-induced hydrogen production from water splitting. We demonstrate herein a hierarchical electrostatic assembly approach to hierarchical CdS/m-TiO2/G ternary photocatalyst, which exhibits high photoactivity and excellent photostability (more than twice the activity of pure CdS while 82% of initial photoactivity remained after 15 recycles during 80 h irradiation). The ternary nanojunction effect of the photocatalyst has been investigated from orbitals hybrid, bonding energy to atom-stress distortion and nano-interface fusion. And a coherent separation mechanism of charge carriers in the ternary system has been proposed at an atomic/nanoscale. This work offers a promising way to inhibit the photocorrosion of CdS and, more importantly, provide new insights for the design of ternary nanostructured photocatalysts with an ideal heterojunction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430057000002 Publication Date 2018-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.343 Times cited 58 Open Access Not_Open_Access
Notes This work supported by National Key R&D Program of China (2017YFC1103800), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), National Natural Science Foundation of China (U1663225, U1662134, 51472190, 51611530672, 21711530705, 51503166, 51602236, 21706199), International Science & Technology Cooperation Program of China (2015DFE52870), Natural Science Foundation of Hubei Province (2016CFA033, 2017CFB487), Open 22 Project Program of State Key Laboratory of Petroleum Pollution Control (PPC2016007) CNPC Research Institute of Safety and Environmental Technology., China Postdoctoral Science Foundation (2016M592400), Fundamental Research Funds for the Central Universities (WUT: 2017IVB012). Approved Most recent IF: 12.343
Call Number EMAT @ lucian @c:irua:150720 Serial 4925
Permanent link to this record
 

 
Author Belov, I.; Vermeiren, V.; Paulussen, S.; Bogaerts, A.
Title Carbon dioxide dissociation in a microwave plasma reactor operating in a wide pressure range and different gas inlet configurations Type A1 Journal article
Year 2018 Publication Journal of CO2 utilization Abbreviated Journal J Co2 Util
Volume 24 Issue (up) Pages 386-397
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Microwave (MW) plasmas represent a promising solution for efficient CO2 dissociation. MW discharges are also very versatile and can be sustained at various pressure and gas flow regimes. To identify the most favorable conditions for the further scale-up of the CO2 decomposition reaction, a MW plasma reactor operating in pure CO2 in a wide pressure range (200 mbar–1 bar) is studied. Three different gas flow configurations are explored: a direct, reverse and a vortex regime. The CO2 conversion and energy efficiency drop almost linearly with increasing pressure, regardless of the gas flow regime. The results obtained in the direct flow configuration underline the importance of post-discharge cooling, as the exhaust of the MW plasma reactor in this regime expanded into the vacuum chamber without additional quenching. As a result, this system yields exhaust temperatures of up to 1000 K, which explains the lowest conversion (∼3.5% at 200 mbar and 2% at 1 bar). A post-discharge cooling step is introduced for the reverse gas inlet regime and allows the highest conversion to be achieved (∼38% at 200 mbar and 6.2% at 1 bar, with energy efficiencies of 23% and 3.7%). Finally, a tangential gas inlet is utilized in the vortex configuration to generate a swirl flow pattern. This results in the generation of a stable discharge in a broader range of CO2 flows (15–30 SLM) and the highest energy efficiencies obtained in this study (∼25% at 300 mbar and ∼13% at 1 bar, at conversions of 21% and 12%). The experimental results are complemented with computational fluid dynamics simulations and with the analysis of the latest literature to identify the further research directions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000428234500045 Publication Date 2018-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.292 Times cited 8 Open Access Not_Open_Access: Available from 16.03.2020
Notes The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7-PEOPLE-2013- ITN) under Grant Agreement№606889 (R Approved Most recent IF: 4.292
Call Number PLASMANT @ plasmant @c:irua:150874 Serial 4955
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Van Alphen, S.; Michielsen, I.; Meynen, V.; Cool, P.; Bogaerts, A.
Title A packed-bed DBD micro plasma reactor for CO 2 dissociation: Does size matter? Type A1 Journal article
Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 348 Issue (up) Pages 557-568
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract DBD plasma reactors are of great interest for environmental and energy applications, such as CO2 conversion, but they suffer from limited conversion and especially energy efficiency. The introduction of packing materials has been a popular subject of investigation in order to increase the reactor performance. Reducing the discharge gap of the reactor below one millimetre can enhance the plasma performance as well. In this work, we combine both effects and use a packed-bed DBD micro plasma reactor to investigate the influence of gap size reduction, in combination with a packing material, on the conversion and efficiency of CO2 dissociation. Packing materials used in this work were SiO2, ZrO2, and Al2O3 spheres as well as glass wool. The results are compared to a regular size reactor as a benchmark. Reducing the discharge gap can greatly increase the CO2 conversion, although at a lower energy efficiency. Adding a packing material further increases the conversion when keeping a constant residence time, but is greatly dependent on the material composition, gap and sphere size used. Maximum conversions of 50–55% are obtained for very long residence times (30 s and higher) in an empty reactor or with certain packing material combinations, suggesting a balance in CO2 dissociation and recombination reactions. The maximum energy efficiency achieved is 4.3%, but this is for the regular sized reactor at a short residence time (7.5 s). Electrical characterization is performed to reveal some trends in the electrical behaviour of the plasma upon reduction of the discharge gap and addition of a packing material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000434467000055 Publication Date 2018-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 22 Open Access Not_Open_Access: Available from 03.05.2020
Notes We acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund for Scientific Research (FWO; Grant Number: G.0254.14N) and an IOF-SBO (SynCO2Chem) project from the University of Antwerp. Approved Most recent IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:151238 Serial 4956
Permanent link to this record
 

 
Author Vanraes, P.; Wardenier, N.; Surmont, P.; Lynen, F.; Nikiforov, A.; Van Hulle, S.W.H.; Leys, C.; Bogaerts, A.
Title Removal of alachlor, diuron and isoproturon in water in a falling film dielectric barrier discharge (DBD) reactor combined with adsorption on activated carbon textile: Reaction mechanisms and oxidation by-products Type A1 Journal article
Year 2018 Publication Journal of hazardous materials Abbreviated Journal J Hazard Mater
Volume 354 Issue (up) Pages 180-190
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A falling film dielectric barrier discharge (DBD) plasma reactor combined with adsorption on activated carbon textile material was optimized to minimize the formation of hazardous oxidation by-products from the treatment of persistent pesticides (alachlor, diuron and isoproturon) in water. The formation of by-products and the reaction mechanism was investigated by HPLC-TOF-MS. The maximum concentration of each by-product was at least two orders of magnitude below the initial pesticide concentration, during the first 10 min of treatment. After 30 min of treatment, the individual by-product concentrations had decreased to values of at least three orders of magnitude below the initial pesticide concentration. The proposed oxidation pathways revealed five main oxidation steps: dechlorination, dealkylation, hydroxylation, addition of a double-bonded oxygen and nitrification. The latter is one of the main oxidation mechanisms of diuron and isoproturon for air plasma treatment. To our knowledge, this is the first time that the formation of nitrificated intermediates is reported for the plasma treatment of non-phenolic compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000437814600021 Publication Date 2018-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.065 Times cited 4 Open Access Not_Open_Access: Available from 04.05.2020
Notes This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors would like to thank Carbon Cloth Division for Zorflex® samples and personally thank Jack Taylor for fruitful discussion of active carbon water treatment processes Approved Most recent IF: 6.065
Call Number PLASMANT @ plasmant @c:irua:152179 Serial 4989
Permanent link to this record
 

 
Author Aussems, D.U.B.; Bal, K.M.; Morgan, T.W.; van de Sanden, M.C.M.; Neyts, E.C.
Title Mechanisms of elementary hydrogen ion-surface interactions during multilayer graphene etching at high surface temperature as a function of flux Type A1 Journal article
Year 2018 Publication Carbon Abbreviated Journal Carbon
Volume 137 Issue (up) Pages 527-532
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In order to optimize the plasma-synthesis and modification process of carbon nanomaterials for applications such as nanoelectronics and energy storage, a deeper understanding of fundamental hydrogengraphite/graphene interactions is required. Atomistic simulations by Molecular Dynamics have proven to be indispensable to illuminate these phenomena. However, severe time-scale limitations restrict them to very fast processes such as reflection, while slow thermal processes such as surface diffusion and molecular desorption are commonly inaccessible. In this work, we could however reach these thermal processes for the first time at time-scales and surface temperatures (1000 K) similar to high-flux plasma exposure experiments during the simulation of multilayer graphene etching by 5 eV H ions. This was achieved by applying the Collective Variable-Driven Hyperdynamics biasing technique, which extended the inter-impact time over a range of six orders of magnitude, down to a more realistic ion-flux of 1023m2s1. The results show that this not only causes a strong shift from predominant ion-to thermally induced interactions, but also significantly affects the hydrogen uptake and surface evolution. This study thus elucidates H ion-graphite/graphene interaction mechanisms and stresses the importance of including long time-scales in atomistic simulations at high surface temperatures to understand the dynamics of the ion-surface system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000440661700056 Publication Date 2018-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 4 Open Access Not_Open_Access: Available from 25.05.2020
Notes DIFFER is part of the Netherlands Organisation for Scientific Research (NWO). K.M.B. is funded as PhD fellow (aspirant) of the FWO-Flanders (Fund for Scientific Research-Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government e department EWI. Approved Most recent IF: 6.337
Call Number PLASMANT @ plasmant @c:irua:152172 Serial 4993
Permanent link to this record
 

 
Author De Backer, J.; Razzokov, J.; Hammerschmid, D.; Mensch, C.; Hafideddine, Z.; Kumar, N.; van Raemdonck, G.; Yusupov, M.; Van Doorslaer, S.; Johannessen, C.; Sobott, F.; Bogaerts, A.; Dewilde, S.
Title The effect of reactive oxygen and nitrogen species on the structure of cytoglobin: A potential tumor suppressor Type A1 Journal article
Year 2018 Publication Redox Biology Abbreviated Journal Redox Biol
Volume 19 Issue (up) Pages 1-10
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Molecular Spectroscopy (MolSpec)
Abstract Many current anti-cancer therapies rely on increasing the intracellular reactive oxygen and nitrogen species (RONS) contents with the aim to induce irreparable damage, which subsequently results in tumor cell death. A novel tool in cancer therapy is the use of cold atmospheric plasma (CAP), which has been found to be very effective in the treatment of many different cancer cell types in vitro as well as in vivo, mainly through the vast generation of RONS. One of the key determinants of the cell's fate will be the interaction of RONS, generated by CAP, with important proteins, i.e. redox-regulatory proteins. One such protein is cytoglobin (CYGB), a recently discovered globin proposed to be involved in the protection of the cell against oxidative stress. In this study, the effect of plasma-produced RONS on CYGB was investigated through the treatment of CYGB with CAP for different treatment times. Spectroscopic analysis of CYGB showed that although chemical modifications occur, its secondary structure remains intact. Mass spectrometry experiments identified these modifications as oxidations of mainly sulfur-containing and aromatic amino acids. With longer treatment time, the treatment was also found to induce nitration of the heme. Furthermore, the two surface-exposed cysteine residues of CYGB were oxidized upon treatment, leading to the formation of intermolecular disulfide bridges, and potentially also intramolecular disulfide bridges. In addition, molecular dynamics and docking simulations confirmed, and further show, that the formation of an intramolecular disulfide bond, due to oxidative conditions, affects the CYGB 3D structure, thereby opening the access to the heme group, through gate functioning of His117. Altogether, the results obtained in this study (1) show that plasma-produced RONS can extensively oxidize proteins and (2) that the oxidation status of two redox-active cysteines lead to different conformations of CYGB.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000449722100002 Publication Date 2018-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2213-2317 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited Open Access OpenAccess
Notes M.Y. and N.K. gratefully acknowledge financial support from the Research Foundation – Flanders (FWO), Grant nos. 1200216N and 12J5617N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI). C.M acknowledges the financial support provided by the Flemish Community and the University of Antwerp (BOF-NOI) for the pre-doctoral scholarship is under grant number/project ID: 28465. S.V.D., S. D. and Z.H. acknowledge the FWO (Grant G.0687.13) and the GOA-BOF UA 2013–2016 (project-ID 28312) for funding. The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI. Approved Most recent IF: 6.337
Call Number PLASMANT @ plasmant @c:irua:152818 Serial 5006
Permanent link to this record
 

 
Author Du, C.; Hoefnagels, J.P.M.; Kolling, S.; Geers, M.G.D.; Sietsma, J.; Petrov, R.; Bliznuk, V.; Koenraad, P.M.; Schryvers, D.; Amin-Ahmadi, B.
Title Martensite crystallography and chemistry in dual phase and fully martensitic steels Type A1 Journal article
Year 2018 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 139 Issue (up) Pages 411-420
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Lath martensite is important in industry because it is the key strengthening component in many advanced high strength steels. The study of crystallography and chemistry of lath martensite is extensive in the literature, however, mostly based on fully martensitic steels. In this work, lath martensite in dual phase steels is investigated with a focus on the substructure identification of the martensite islands and microstructural bands using electron backscattered diffraction, and on the influence of the accompanied tempering process during industrial coating process on the distribution of alloying elements using atom probe tomography. Unlike findings for the fully martensitic steels, no martensite islands with all 24 Kurdjumov-Sachs variants have been observed. Almost all martensite islands contain only one main packet with all six variants and minor variants from the remaining three packets of the same prior austenite grain. Similarly, the martensite bands are typically composed of connected domains originating from prior austenite grains, each containing one main packets (mostly with all variants) and few separate variants. The effect of tempering at similar to 450 degrees C (due to the industrial zinc coating process) has also been investigated. The results show a strong carbon partitioning to lath boundaries and Cottrell atmospheres at dislocation core regions due to the thermal process of coating. In contrast, auto-tempering contributes to the carbon redistribution only in a limited manner. The substitutional elements are all homogenously distributed. The phase transformation process has two effects on the material: mechanically, the earlier-formed laths are larger and softer and therefore more ductile (as revealed by nanoindentation); chemically, due to the higher dislocation density inside the later-formed laths, which are generally smaller, carbon Cottrell atmospheres are predominantly observed.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000431469300044 Publication Date 2018-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.714
Call Number UA @ lucian @ c:irua:151554 Serial 5033
Permanent link to this record
 

 
Author Gkanatsiou, A.; Lioutas, C.B.; Frangis, N.; Polychroniadis, E.K.; Prystawko, P.; Leszczynski, M.; Altantzis, T.; Van Tendeloo, G.
Title Influence of 4H-SiC substrate miscut on the epitaxy and microstructure of AlGaN/GaN heterostructures Type A1 Journal article
Year 2019 Publication Materials science in semiconductor processing Abbreviated Journal Mat Sci Semicon Proc
Volume 91 Issue (up) Pages 159-166
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract AlGaN/GaN heterostructures were grown on “on-axis” and 2° off (0001) 4H-SiC substrates by metalorganic vapor phase epitaxy (MOVPE). Structural characterization was performed by transmission electron microscopy. The dislocation density, being greater in the on-axis case, is gradually reduced in the GaN layer and is forming

dislocation loops in the lower region. Steps aligned along [11̅00] in the off-axis case give rise to simultaneous defect formation. In the on-axis case, an almost zero density of steps is observed, with the main origin of defects probably being the orientation mismatch at the grain boundaries between the small not fully coalesced AlN grains. V-shaped formations are observed in the AlN nucleation layer, but are more frequent in the off-axis case, probably enhanced by the presence of steps. These V-shaped formations are completely overgrown by the GaN layer, during the subsequent deposition, presenting AlGaN areas in the walls of the defect, indicating an interdiffusion between the layers. Finally, at the AlGaN/GaN heterostructure surface in the on-axis case, V-shapes are observed, with the AlN spacer and AlGaN (21% Al) thickness on relaxed GaN exceeding the critical thickness for relaxation. On the other hand, no relaxation in the form of V-shape creation is observed in the off-axis case, probably due to the smaller AlGaN thickness (less than 21% Al). The AlN spacer layer, grown in between the heterostructure, presents a uniform thickness and clear interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000454537700022 Publication Date 2018-11-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1369-8001 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.359 Times cited 1 Open Access Not_Open_Access
Notes Funding: This work was supported by the IKY Fellowships of Excellence for Postgraduate Studies in Greece-SIEMENS Program; the Greek General Secretariat for Research and Technology, contract SAE 013/8–2009SE 01380012; and the JU ENIAC Project LAST POWER Large Area silicon carbide Substrates and heteroepitaxial GaN for POWER device applications [grant number 120218]. Also part of the research leading to these results has received funding from the European Union Seventh Framework Program under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative–I3). T.A. acknowledges financial support from the Research Foundation Flanders (FWO, Belgium) through a post-doctoral grant. Approved Most recent IF: 2.359
Call Number EMAT @ emat @UA @ admin @ c:irua:156200 Serial 5149
Permanent link to this record
 

 
Author Bogaerts, A.; Snoeckx, R.; Trenchev, G.; Wang, W.
Title Modeling for a Better Understanding of Plasma-Based CO2 Conversion Type H1 Book Chapter
Year 2018 Publication Plasma Chemistry and Gas Conversion Abbreviated Journal
Volume Issue (up) Pages
Keywords H1 Book Chapter; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract This chapter discusses modeling efforts for plasma-based CO2 conversion, which are needed to obtain better insight in the underlying mechanisms, in order to improve this application. We will discuss two types of (complementary) modeling efforts that are most relevant, that is, (i) modeling of the detailed plasma chemistry by zero-dimensional (0D) chemical kinetic models and (ii) modeling of reactor design, by 2D or 3D fluid dynamics models. By showing some characteristic calculation results of both models, for CO2 splitting and in combination with a H-source, and for packed bed DBD and gliding arc plasma, we can illustrate the type of information they can provide.
Address
Corporate Author Thesis
Publisher IntechOpen Place of Publication Rijeka Editor Britun, N.; Silva, T.
Language Wos Publication Date 2018-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @ Bogaerts18c:irua:155915 Serial 5142
Permanent link to this record
 

 
Author van den Bos, K.H.W.; Janssens, L.; De Backer, A.; Nellist, P.D.; Van Aert, S.
Title The atomic lensing model: new opportunities for atom-by-atom metrology of heterogeneous nanomaterials Type A1 Journal article
Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 203 Issue (up) Pages 155
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The atomic lensing model has been proposed as a promising method facilitating atom-counting in heterogeneous nanocrystals [1]. Here, image simulations will validate the model, which describes dynamical diffraction as a superposition of individual atoms focussing the incident electrons. It will be demonstrated that the model is reliable in the annular dark field regime for crystals having columns containing dozens of atoms. By using the principles of statistical detection theory, it will be shown that this model gives new opportunities for detecting compositional differences.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000465021000020 Publication Date 2018-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 4 Open Access OpenAccess
Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0369.15N, G.0502.18N and WO.010.16N), and by personal grants to K.H.W. van den Bos and A. De Backer. This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No. 770887). Approved Most recent IF: 2.843
Call Number EMAT @ emat @UA @ admin @ c:irua:155721 Serial 5074
Permanent link to this record
 

 
Author Yang, C.; Batuk, M.; Jacquet, Q.; Rousse, G.; Yin, W.; Zhang, L.; Hadermann, J.; Abakumov, A.M.; Cibin, G.; Chadwick, A.; Tarascon, J.-M.; Grimaud, A.
Title Revealing pH-Dependent Activities and Surface Instabilities for Ni-Based Electrocatalysts during the Oxygen Evolution Reaction Type A1 Journal article
Year 2018 Publication ACS energy letters Abbreviated Journal Acs Energy Lett
Volume Issue (up) Pages 2884-2890
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Multiple electrochemical processes are involved at the catalyst/ electrolyte interface during the oxygen evolution reaction (OER). With the purpose of elucidating the complexity of surface dynamics upon OER, we systematically studied two Ni-based crystalline oxides (LaNiO3−δ and La2Li0.5Ni0.5O4) and compared them with the state-of-the-art Ni−Fe (oxy)- hydroxide amorphous catalyst. Electrochemical measurements such as rotating ring disk electrode (RRDE) and electrochemical quartz microbalance microscopy (EQCM) coupled with a series of physical characterizations including transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) were conducted to unravel the exact pH effect on both the OER activity and the catalyst stability. We demonstrate that for Ni-based crystalline catalysts the rate for surface degradation depends on the pH and is greater than the rate for surface reconstruction. This behavior is unlike that for the amorphous Ni oxyhydroxide catalyst, which is found to be more stable and pH-independent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453805100005 Publication Date 2018-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2380-8195 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access: Available from 06.11.2019
Notes C.Y., J.-M.T., and A.G. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC GrantProject 670116-ARPEMA. A.G. acknowledges financial support from the ANR MIDWAY (Project ID ANR-17-CE05- 0008). We acknowledge Diamond Light Source for time awarded to the Energy Materials BAG on Beamline B18, under Proposal sp12559. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:155046 Serial 5067
Permanent link to this record
 

 
Author Jimenez-Mena, N.; Jacques, P.J.; Ding, L.; Gauquelin, N.; Schryvers, D.; Idrissi, H.; Delannay, F.; Simar, A.
Title Enhancement of toughness of Al-to-steel Friction Melt Bonded welds via metallic interlayers Type A1 Journal article
Year 2019 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct
Volume 740-741 Issue (up) Pages 274-284
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The toughness of Al-to-steel welds decreases with increasing thickness of the intermetallic (IM) layer formed at the interface. Co plating has been added as interlayer in Al-to-steel Friction Melt Bonded (FMB) welds to control the nature and thickness of the IM layer. In comparison to a weld without interlayer, Co plating brings about a reduction of the thickness of the IM layer by 70%. The critical energy release rate of the crack propagating in the weld is used as an indicator of toughness. It is evaluated via an adapted crack propagation test using an energy conservation criterion. For a weld without interlayer, critical energy release rate is found to increase when the thickness of the intermetallic layer decreases. When the intermetallic layer is thick, the crack propagates in a brittle manner through the intermetallic whereas, at low layer thickness, the crack deviates and partially propagates through the Al plate, which causes an increase of toughness. The use of a Co interlayer brings about an increase of toughness by causing full deviation of the crack towards the Al plate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453494500029 Publication Date 2018-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-5093 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.094 Times cited 4 Open Access Not_Open_Access: Available from 25.10.2020
Notes The authors acknowledge the financial support of the Interuniversity Attraction Poles Program from the Belgian State through the Belgian Policy Agency, Belgium, contract IAP7/21 INTEMATE. N. Jimenez-Mena acknowledges the financial support of the (Fonds pour la formation à la recherchedans l'industrie et dans l'agriculture (FRIA), Belgium. A. Simar acknowledges the financial support of the (European Research Council – Starting Grant (ERC-StG), project ALUFIX, grant agreement no 716678. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS), Belgium. The authors also acknowledge M. Coulombier for the help provided in the measurement of the friction coefficient, and T. Pardoen and F. Lani for the fruitful discussions. Approved Most recent IF: 3.094
Call Number EMAT @ emat @c:irua:154866UA @ admin @ c:irua:154866 Serial 5061
Permanent link to this record
 

 
Author Cautaerts, N.; Delville, R.; Stergar, E.; Schryvers, D.; Verwerft, M.
Title Characterization of (Ti,Mo,Cr)C nanoprecipitates in an austenitic stainless steel on the atomic scale Type A1 Journal article
Year 2019 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 164 Issue (up) Pages 90-98
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanometer sized (Ti,Mo,Cr)C (MX-type) precipitates that grew in a 24% cold worked Ti-stabilized austenitic stainless steel (grade DIN 1.4970, member of the 15-15Ti austenitic stainless steels) after heat treatment were fully characterized with transmission electron microscopy (TEM), probe corrected high angle annular dark field scanning transmission electron microscopy (HR-HAADF STEM), and atom probe tomography (APT). The precipitates shared the cube-on-cube orientation with the matrix and were facetted on {111} planes, yielding octahedral and elongated octahedral shapes. The misfit dislocations were believed to have Burgers vectors a/6<112> which was verified by geometrical phase analysis (GPA) strain mapping of a matrix-precipitate interface. The dislocations were spaced five to seven atomic

planes apart, on average slightly wider than expected for the lattice parameters of steel and TiC. Quantitative atom probe tomography analysis of the precipitates showed that precipitates were significantly enriched in Mo, Cr and V, and that they were hypostoichiometric with respect to C. These findings were consistent with a reduced lattice parameter. The precipitates were found primarily on Shockley

partial dislocations originating from the original perfect dislocation network. These novel findings could contribute to the understanding of how TiC nanoprecipitates interact with point defects and matrix dislocations. This is essential for the application of these Ti-stabilized steels in high temperature environments or fast spectrum nuclear fission reactors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000456902800008 Publication Date 2018-10-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 2 Open Access Not_Open_Access: Available from 12.10.2020
Notes This work was supported by ENGIE [contract number 2015-AC- 007 e BSUEZ6900]; the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07- 051D14517 as part of a Nuclear Science User Facilities experiment; and by the MYRRHA program in development at SCKCEN, Belgium. Special thanks to Dr. H. Mezerji and Dr. T. Altantzis for the work on the FEI Titan microscope.We also want to thank Ms. J. Burns for the help on the FIB and Dr. Y. Wu at CAES for conducting the APT measurements. Approved Most recent IF: 5.301
Call Number EMAT @ emat @c:irua:154873UA @ admin @ c:irua:154873 Serial 5060
Permanent link to this record
 

 
Author Godet, M.; Vergès-Belmin, V.; Gauquelin, N.; Saheb, M.; Monnier, J.; Leroy, E.; Bourgon, J.; Verbeeck, J.; Andraud, C.
Title Nanoscale investigation by TEM and STEM-EELS of the laser induced yellowing Type A1 Journal article
Year 2018 Publication Micron Abbreviated Journal Micron
Volume 115 Issue (up) Pages 25-31
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nd-YAG QS laser cleaning of soiled stone at 1064 nm can sometimes result in a more yellow appearance compared to other cleaning techniques. Especially in France, this yellowing effect is still considered as a major aesthetic issue by the architects and conservators. One explanation states that the yellowing is linked to the formation of iron-rich nanophase(s) through the laser beam interaction with black crusts that would re-deposit on the cleaned substrate after irradiation. To characterize these nanophases, a model crust containing hematite was elaborated and laser irradiated using a Nd-YAG QS laser. The color of the sample shifted instantaneously from red to a bright yellow and numerous particles were ablated in a visible smoke. Transmission electron microscopy (TEM) was used to examine the morphology and the crystallinity of the neo-formed compounds, both on the surface of the samples and in the ablated materials. In addition, an investigation of the chemical and structural properties of the nanophases was conducted by X-ray dispersive energy (EDX) and electron energy loss (EELS) spectroscopies. It was found that both the surface of the sample and the ablated materials are covered by crystallized nano-spheres and nano-residues, all containing iron and oxygen, sometimes along with calcium and sulfur. In particular an interfacial area containing the four elements was evidenced between some nanostructures and the substrate. Magnetite Fe3O4 was also identified at the nanoscale. This study demonstrates that the laser yellowing of a model crust is linked to the presence of iron-rich nanophases including CaxFeySzOδ nanostructures and magnetite Fe3O4 at the surface after irradiation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000449125600004 Publication Date 2018-08-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 9 Open Access Not_Open_Access: Available from 19.08.2020
Notes The authors wish to thank Valérie Lalanne for the sample preparation for TEM and Stijn Van den Broeck for the FIB cut elaboration. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative–I3). Approved Most recent IF: 1.98
Call Number EMAT @ emat @c:irua:154356UA @ admin @ c:irua:154356 Serial 5056
Permanent link to this record