toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Arslan Irmak, E.; Liu, P.; Bals, S.; Van Aert, S. pdf  url
doi  openurl
  Title 3D Atomic Structure of Supported Metallic Nanoparticles Estimated from 2D ADF STEM Images: A Combination of Atom – Counting and a Local Minima Search Algorithm Type A1 Journal article
  Year 2021 Publication Small methods Abbreviated Journal Small Methods  
  Volume Issue Pages 2101150  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Determining the three-dimensional (3D) atomic structure of nanoparticles (NPs) is critical to understand their structure-dependent properties. It is hereby important to perform such analyses under conditions relevant for the envisioned application. Here, we investigate the 3D structure of supported Au NPs at high temperature, which is of importance to understand their behavior during catalytic reactions. To overcome limitations related to conventional high-resolution electron tomography at high temperature, 3D characterization of NPs with atomic resolution has been performed by applying atom-counting using atomic resolution annular darkfield scanning transmission electron microscopy (ADF STEM) images followed by structural relaxation. However, at high temperatures, thermal displacements, which affect the ADF STEM intensities, should be taken into account. Moreover, it is very likely that the structure of a NP investigated at elevated temperature deviates from a ground state configuration, which is difficult to determine using purely computational energy minimization approaches. In this paper, we therefore propose an optimized approach using an iterative local minima search algorithm followed by molecular dynamics (MD) structural relaxation of candidate structures associated with each local minimum. In this manner, it becomes possible to investigate the 3D atomic structure of supported NPs, which may deviate from their ground state configuration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000716511600001 Publication Date 2021-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2366-9608 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 12 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 815128 REALNANO to SB, Grant 770887 PICOMETRICS to SVA, Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0267.18N, G.0502.18N, G.0346.21N).; sygmaSB; esteem3jra; esteem3reported Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:183289 Serial 6820  
Permanent link to this record
 

 
Author De Backer, A.; Zhang, Z.; van den Bos, K.H.W.; Bladt, E.; Sánchez‐Iglesias, A.; Liz‐Marzán, L.M.; Nellist, P.D.; Bals, S.; Van Aert, S. url  doi
openurl 
  Title Element Specific Atom Counting at the Atomic Scale by Combining High Angle Annular Dark Field Scanning Transmission Electron Microscopy and Energy Dispersive X‐ray Spectroscopy Type A1 Journal article
  Year 2022 Publication Small methods Abbreviated Journal Small Methods  
  Volume Issue Pages 2200875  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A new methodology is presented to count the number of atoms in multimetallic nanocrystals by combining energy dispersive X-ray spectroscopy (EDX) and high angle annular dark field scanning transmission electron microscopy (HAADF STEM). For this purpose, the existence of a linear relationship between the incoherent HAADF STEM and EDX images is exploited. Next to the number of atoms for each element in the atomic columns, the method also allows quantification of the error in the obtained number of atoms, which is of importance given the noisy nature of the acquired EDX signals. Using experimental images of an Au@Ag core–shell nanorod, it is demonstrated that 3D structural information can be extracted at the atomic scale. Furthermore, simulated data of an Au@Pt core–shell nanorod show the prospect to characterize heterogeneous nanostructures with adjacent atomic numbers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000862072700001 Publication Date 2022-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2366-9608 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.4 Times cited 5 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S.V.A., Grant 815128 REALNANO to S.B., and Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0267.18N, G.0502.18N, G.0346.21N) and a postdoctoral grant to A.D.B.; esteem3reported; esteem3JRA Approved Most recent IF: 12.4  
  Call Number EMAT @ emat @c:irua:191570 Serial 7109  
Permanent link to this record
 

 
Author van den Bos, K.H.W.; Altantzis, T.; De Backer, A.; Van Aert, S.; Bals, S. pdf  url
doi  openurl
  Title Recent breakthroughs in scanning transmission electron microscopy of small species Type A1 Journal article
  Year 2018 Publication Advances in Physics: X Abbreviated Journal Advances in Physics: X  
  Volume 3 Issue 3 Pages 1480420  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Over the last decade, scanning transmission electron microscopy has become one of the most powerful tools to characterise nanomaterials at the atomic scale. Often, the ultimate goal is to retrieve the three-dimensional structure, which is very challenging since small species are typically sensitive to electron irradiation. Nevertheless, measuring individual atomic positions is crucial to understand the relation between the structure and physicochemical properties of these (nano)materials. In this review, we highlight the latest approaches that are available to reveal the 3D atomic structure of small species. Finally, we will provide an outlook and will describe future challenges where the limits of electron microscopy will be pushed even further.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441619500001 Publication Date 2018-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2374-6149 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 8 Open Access OpenAccess  
  Notes This work was supported by the Research Foundation Flanders (FWO, Belgium) under Grant G.0368.15N, G.0369.15N, and G.0267.18N, by personal FWO Grants to K. H. W. van den Bos, T. Altantzis, and A. De Backer, and the European Research Council under Grant 335078 COLOURATOM to S. Bals. The authors would like to thank the colleagues who have contributed to this work over the years, including A. M. Abakumov, K. J. Batenburg, E. Countiño-Gonzalez, C. de Mello Donega, R. Erni, J. J. Geuchies, B. Goris, J. Hofkens, L. Jones, P. Lievens, L. M. Liz-Marzán, I. Lobato, G. T. Martinez, P. D. Nellist, B. Partoens, M. B. J. Roeffaers, M.D. Rossell, B. Schoeters, M. J. Van Bael, W. van der Stam, M. van Huis, G. Van Tendeloo, D. Vanmaekelbergh, and N. Winckelmans. (ROMEO:green; preprint:; postprint:can ; pdfversion:can); saraecas; ECAS_Sara; Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:152820UA @ admin @ c:irua:152820 Serial 5007  
Permanent link to this record
 

 
Author Beckwee, E.J.; Watson, G.; Houlleberghs, M.; Arenas Esteban, D.; Bals, S.; Van Der Voort, P.; Breynaert, E.; Martens, J.; Baron, G.V.; Denayer, J.F.M. url  doi
openurl 
  Title Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes Type A1 Journal article
  Year 2023 Publication Heliyon Abbreviated Journal  
  Volume 9 Issue 7 Pages e17662-14  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodic mesoporous organosilica (PMO) nanotubes, referred to as hollow ring PMO (HR-PMO), capable of promoting methane clathrate hydrate formation under mild working conditions (273 K, 3.5 MPa) and at high water loading (5.1 g water/g HR-PMO) is reported. Gravimetric uptake measurements reveal a steep single-stepped isotherm and a noticeably high methane storage capacity (0.55 g methane/g HR-PMO; 0.11 g methane/g water at 3.5 MPa). The large working capacity throughout consecutive pressure-induced clathrate hydrate formationdissociation cycles demonstrates the material's excellent recyclability (97% preservation of capacity). Supported by ex situ cryo-electron tomography and x-ray diffraction, HR-PMO nanotubes are hypothesized to promote clathrate hydrate nucleation and growth by distribution and confinement of water in the mesopores of their outer wall, along the central channels of the nanotubes and on the external nanotube surface. These findings showcase the potential for application of organosilica materials with hierarchical and interconnected pore systems for pressure-based storage of biomethane in confined clathrate hydrates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001056264100001 Publication Date 2023-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2405-8440 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access OpenAccess  
  Notes E.J.B., G.W. and M.H. contributed equally to this work. M.H. acknowledges FWO for an FWO-SB fellowship. All authors acknowledge VLAIO for Moonshot funding (ARCLATH, n ? HBC.2019.0110, ARCLATH2, n ? HBC.2021.0254) . J.A.M. acknowledges the Flemish Government for long-term structural funding (Methusalem) and department EWI for infrastructure investment via the Hermes Fund (AH.2016.134) . NMRCoRe acknowledges the Flemish government, department EWI for financial support as International Research Infrastructure (I001321N: Nuclear Magnetic Resonance Spectroscopy Platform for Molecular Water Research) . J.A.M. acknowledges the European Research Council (ERC) for an Advanced Research Grant under the European Union's Horizon 2020 research and innovation program under grant agreement No. 834134 (WATUSO) . S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G.0381.16N) . This project also received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO) . Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:199249 Serial 8862  
Permanent link to this record
 

 
Author Grzelczak, M.; Sanchez-Iglesias, A.; Heidari, H.; Bals, S.; Pastoriza-Santos, I.; Perez-Juste, J.; Liz-Marzan, L.M. url  doi
openurl 
  Title Silver Ions Direct Twin-Plane Formation during the Overgrowth of Single-Crystal Gold Nanoparticles Type A1 Journal article
  Year 2016 Publication ACS Omega Abbreviated Journal  
  Volume 1 Issue 1 Pages 177-181  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It is commonly agreed that the crystalline structure of seeds dictates the crystallinity of final nanoparticles in a seeded-growth process. Although the formation of monocrystalline particles does require the use of single-crystal seeds, twin planes may stem from either single-or polycrystalline seeds. However, experimental control over twin-plane formation remains difficult to achieve synthetically. Here, we show that a careful interplay between kinetics and selective surface passivation offers a unique handle over the emergence of twin planes (in decahedra and triangles) during the growth over single-crystalline gold nanoparticles of quasi-spherical shape. Twinning can be suppressed under conditions of slow kinetics in the presence of silver ions, yielding single-crystalline particles with high-index facets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000391203300002 Publication Date 2016-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2470-1343;2470-1343; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 18 Open Access OpenAccess  
  Notes ; This work was supported by the Spanish Ministerio de Economia y Competitividad MINECO (grants: MAT2013-46101-R, MAT2013-49375-EXP, MAT2013-45168-R). Financial support is acknowledged by the European Research Council (ERC Advanced Grant # 267867, PLASMAQUO; ERC Starting Grant #335078-COLOURATOM). ; ecas_Sara Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:140398 Serial 4446  
Permanent link to this record
 

 
Author Reguera, J.; Flora, T.; Winckelmans, N.; Rodriguez-Cabello, J.C.; Bals, S. url  doi
openurl 
  Title Self-assembly of Janus Au:Fe₃O₄ branched nanoparticles. From organized clusters to stimuli-responsive nanogel suprastructures Type A1 Journal article
  Year 2020 Publication Nanoscale Advances Abbreviated Journal  
  Volume 2 Issue 6 Pages 2525-2530  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Janus nanoparticles offer enormous possibilities through a binary selective functionalization and dual properties. Their self-assembly has attracted strong interest due to their potential as building blocks to obtain molecular colloids, supracrystals and well-organized nanostructures that can lead to new functionalities. However, this self-assembly has been focused on relatively simple symmetrical morphologies, while for complex nanostructures this process has been unexplored. Here, we study the assembly of plasmonic-magnetic Janus nanoparticles with a branched (nanostar) – sphere morphology. The branched morphology enhances their plasmonic properties in the near-infrared region and therefore their applicability, but at the same time constrains their self-assembly capabilities to obtain more organized or functional suprastructures. We describe the self-assembly of these nanoparticles after amphiphilic functionalization. The role of the nanoparticle branching, as well as the size of the polymer-coating, is explored. We show how the use of large molecular weight stabilizing polymers can overcome the anisotropy of the nanoparticles producing a change in the morphology from small clusters to larger quasi-cylindrical nanostructures. Finally, the Janus nanoparticles are functionalized with a thermo-responsive elastin-like recombinamer. These nanoparticles undergo reversible self-assembly in the presence of free polymer giving rise to nanoparticle-stabilized nanogel-like structures with controlled size, providing the possibility to expand their applicability to multi-stimuli controlled self-assembly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000543283200032 Publication Date 2020-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2516-0230 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.7 Times cited 10 Open Access OpenAccess  
  Notes ; J. R. acknowledges the.nancial support of Basque Country Elkartek-KK-2019/ 00101. T. F. and J. C. R-C acknowledge the funding from the European Commission (NMP-2014-646075), the Spanish Government (PCIN-2015-010 (FunBioPlas), MAT2016-78903-R), Junta de Castilla y Leon (VA317P18) and Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y Leon. ; Approved Most recent IF: 4.7; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:170773 Serial 6600  
Permanent link to this record
 

 
Author Parastaev, A.; Muravev, V.; Osta, E.H.; Kimpel, T.F.; Simons, J.F.M.; van Hoof, A.J.F.; Uslamin, E.; Zhang, L.; Struijs, J.J.C.; Burueva, D.B.; Pokochueva, E.V.; Kovtunov, K.V.; Koptyug, I.V.; Villar-Garcia, I.J.; Escudero, C.; Altantzis, T.; Liu, P.; Béché, A.; Bals, S.; Kosinov, N.; Hensen, E.J.M. url  doi
openurl 
  Title Breaking structure sensitivity in CO2 hydrogenation by tuning metal–oxide interfaces in supported cobalt nanoparticles Type A1 Journal article
  Year 2022 Publication Nature Catalysis Abbreviated Journal Nat Catal  
  Volume 5 Issue 11 Pages 1051-1060  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract A high dispersion of the active metal phase of transition metals on oxide supports is important when designing efficient heterogeneous catalysts. Besides nanoparticles, clusters and even single metal atoms can be attractive for a wide range of reactions. However, many industrially relevant catalytic transformations suffer from structure sensitivity, where reducing the size of the metal particles below a certain size substantially lowers catalytic performance. A case in point is the low activity of small cobalt nanoparticles in the hydrogenation of CO and CO2. Here we show how engineering of catalytic sites at the metal–oxide interface in cerium oxide–zirconium dioxide (ceria–zirconia)-supported cobalt can overcome this structure sensitivity. Few-atom cobalt clusters dispersed on 3 nm cobalt(II)-oxide particles stabilized by ceria–zirconia yielded a highly active CO2 methanation catalyst with a specific activity higher than that of larger particles under the same conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000884939300006 Publication Date 2022-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2520-1158 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 37.8 Times cited 32 Open Access OpenAccess  
  Notes This research was supported by the Applied and Engineering Sciences division of the Netherlands Organization for Scientific Research through the Alliander (now Qirion) Perspective program on Plasma Conversion of CO2. We acknowledge Diamond Light Source for time on beamline B18 under proposal SP20715-1. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO) and T.A. acknowledges funding from the University of Antwerp Research fund (BOF). A.B. received funding from the European Union under grant agreement No 823717 – ESTEEM3. The authors acknowledge funding through the Hercules grant (FWO, University of Antwerp) I003218N “Infrastructure for imaging nanoscale processes in gas/vapour or liquid environments”. I.V.K., D.B.B., and E.V.P. acknowledge the Russian Ministry of Science and Higher Education (contract 075-15-2021-580) for financial support of parahydrogen-based studies. Experiments using synchrotron radiation XPS were performed at the CIRCE beamline at ALBA Synchrotron with the collaboration of ALBA staff. F. Oropeza Palacio and Rim C.J. van de Poll are acknowledged for the help with RPES measurements.; esteem3reported; esteem3jra Approved Most recent IF: 37.8  
  Call Number EMAT @ emat @c:irua:192068 Serial 7230  
Permanent link to this record
 

 
Author Yang, S.; An, H.; Arnouts, S.; Wang, H.; Yu, X.; de Ruiter, J.; Bals, S.; Altantzis, T.; Weckhuysen, B.M.; van der Stam, W. url  doi
openurl 
  Title Halide-guided active site exposure in bismuth electrocatalysts for selective CO₂ conversion into formic acid Type A1 Journal article
  Year 2023 Publication Nature Catalysis Abbreviated Journal  
  Volume 6 Issue 9 Pages 796-806  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract It remains a challenge to identify the active sites of bismuth catalysts in the electrochemical CO2 reduction reaction. Here we show through in situ characterization that the activation of bismuth oxyhalide electrocatalysts to metallic bismuth is guided by the halides. In situ X-ray diffraction results show that bromide promotes the selective exposure of planar bismuth surfaces, whereas chloride and iodide result in more disordered active sites. Furthermore, we find that bromide-activated bismuth catalysts outperform the chloride and iodide counterparts, achieving high current density (>100 mA cm(-2)) and formic acid selectivity (>90%), suggesting that planar bismuth surfaces are more active for the electrochemical CO2 reduction reaction. In addition, in situ X-ray absorption spectroscopy measurements reveal that the reconstruction proceeds rapidly in chloride-activated bismuth and gradually when bromide is present, facilitating the formation of ordered planar surfaces. These findings show the pivotal role of halogens on selective facet exposure in activated bismuth-based electrocatalysts during the electrochemical CO2 reduction reaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001050367400001 Publication Date 2023-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2520-1158 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 37.8 Times cited 13 Open Access OpenAccess  
  Notes B.M.W. acknowledges support from the Strategic UU-TU/e Alliance project 'Joint Centre for Chemergy Research' as well as from the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO gravitation programme funded by the Ministry of Education, Culture and Science of the government of the Netherlands. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). S.A. and T.A. acknowledge funding from the University of Antwerp Research fund (BOF). We also thank J. Wijten, J. Janssens and T. Prins (all from the Inorganic Chemistry and Catalysis group, Utrecht University) for helpful technical support. S. Deelen (Faculty of Science, Utrecht University) and L. Wu (Inorganic Chemistry and Catalysis group, Utrecht University) are acknowledged for the design of the in situ XRD cell. We also acknowledge B. Detlefs, P. Glatzel and V. Paidi (ESRF) for the support during the HERFD-XANES measurements on the ID26 beamline of the ESRF. Approved Most recent IF: 37.8; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:199190 Serial 8877  
Permanent link to this record
 

 
Author Abakumov, A.M.; Li, C.; Boev, A.; Aksyonov, D.A.; Savina, A.A.; Abakumova, T.A.; Van Tendeloo, G.; Bals, S. pdf  doi
openurl 
  Title Grain boundaries as a diffusion-limiting factor in lithium-rich NMC cathodes for high-energy lithium-ion batteries Type A1 Journal article
  Year 2021 Publication ACS applied energy materials Abbreviated Journal  
  Volume 4 Issue 7 Pages 6777-6786  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract High-energy lithium-rich layered transition metal oxides are capable of delivering record electrochemical capacity and energy density as positive electrodes for Li-ion batteries. Their electrochemical behavior is extremely complex due to sophisticated interplay between crystal structure, electronic structure, and defect structure. Here we unravel an extra level of this complexity by revealing that the most typical representative Li1.2Ni0.13Mn0.54Co0.13O2 material, prepared by a conventional coprecipitation technique with Na2CO3 as a precipitating agent, contains abundant coherent (001) grain boundaries with a Na-enriched P2-structured block due to segregation of the residual sodium traces. The trigonal prismatic oxygen coordination of Na triggers multiple nanoscale twinning, giving rise to incoherent (104) boundaries. The cationic layers at the (001) grain boundaries are filled with transition metal cations being Mn-depleted and Co-enriched; this makes them virtually not permeable for the Li+ cations, and therefore they negatively influence the Li diffusion in and out of the spherical agglomerates. These results demonstrate that besides the mechanisms intrinsic to the crystal and electronic structure of Li-rich cathodes, their rate capability might also be depreciated by peculiar microstructural aspects. Dedicated engineering of grain boundaries opens a way for improving inherently sluggish kinetics of these materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000678382900042 Publication Date 2021-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access OpenAccess  
  Notes We thank Dr. M. V. Berekchiian (MSU) for assisting in ICPMS measurements. We acknowledge Russian Science Foundation (Grant 20-43-01012) and Research Foundation Flanders (FWO Vlaanderen, Project No. G0F1320N) for financial support. Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180556 Serial 6841  
Permanent link to this record
 

 
Author Asapu, R.; Claes, N.; Ciocarlan, R.-G.; Minjauw, M.; Detavernier, C.; Cool, P.; Bals, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Electron Transfer and Near-Field Mechanisms in Plasmonic Gold-Nanoparticle-Modified TiO2Photocatalytic Systems Type A1 Journal article
  Year 2019 Publication ACS applied nano materials Abbreviated Journal ACS Appl. Nano Mater.  
  Volume 2 Issue 2 Pages 4067-4074  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The major mechanism responsible for plasmonic enhancement of titanium dioxide photocatalysis using gold nanoparticles is still under contention. This work introduces an experimental strategy to disentangle the significance of the charge transfer and near-field mechanisms in plasmonic photocatalysis. By controlling the thickness and conductive nature of a nanoparticle shell that acts as a spacer layer separating the plasmonic metal core from the TiO2 surface, field enhancement or charge transfer effects can be selectively repressed or evoked. Layer-by-layer and in situ polymerization methods are used to synthesize gold core–polymer shell nanoparticles with shell thickness control up to the sub-nanometer level. Detailed optical and electrical characterization supported by near-field simulation models corroborate the trends in photocatalytic activity of the different systems. This approach mainly points at an important contribution of the enhanced near field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477917700006 Publication Date 2019-05-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 32 Open Access OpenAccess  
  Notes This work was supported by Research Foundation Flanders (FWO). P.C. and R-G.C. acknowledge financial support from FWO (Project No. G038215N). N.C. and S.B. acknowledge financial support from the European Research Council (ERC Starting Grant No. 335078-COLOURATOM). Approved Most recent IF: NA  
  Call Number EMAT @ emat @UA @ admin @ c:irua:160579 Serial 5184  
Permanent link to this record
 

 
Author Mulder, J.T.; Kirkwood, N.; De Trizio, L.; Li, C.; Bals, S.; Manna, L.; Houtepen, A.J. url  doi
openurl 
  Title Developing lattice matched ZnMgSe shells on InZnP quantum dots for phosphor applications Type A1 Journal article
  Year 2020 Publication ACS applied nano materials Abbreviated Journal  
  Volume 3 Issue 4 Pages 3859-3867  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Indium phosphide quantum dots (QDs) have drawn attention as alternatives to cadmium- and lead-based QDs that are currently used as phosphors in lamps and displays. The main drawbacks of InP QDs are, in general, a lower photoluminescence quantum yield (PLQY), a decreased color purity, and poor chemical stability. In this research, we attempted to increase the PLQY and stability of indium phosphide QDs by developing lattice matched InP/MgSe core-shell nanoheterostructures. The choice of MgSe comes from the fact that, in theory, it has a near-perfect lattice match with InP, provided MgSe is grown in the zinc blende crystal structure, which can be achieved by alloying with zinc. To retain lattice matching, we used Zn in both the core and shell and we fabricated InZnP/ZnxMg1-xSe core/shell QDs. To identify the most suitable conditions for the shell growth, we first developed a synthesis route to ZnxMg1-xSe nanocrystals (NCs) wherein Mg is effectively incorporated. Our optimized procedure was employed for the successful growth of ZnxMg1-xSe shells around In(Zn)P QDs. The corresponding core/ shell systems exhibit PLQYs higher than those of the starting In(Zn)P QDs and, more importantly, a higher color purity upon increasing the Mg content. The results are discussed in the context of a reduced density of interface states upon using better lattice matched ZnxMg1-xSe shells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000529206200076 Publication Date 2020-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.9 Times cited 22 Open Access OpenAccess  
  Notes ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 766900 (testing the large-scale limit of quantum mechanics). A.J.H. acknowledges support from the European Research Council Horizon 2020 ERC Grant Agreement No. 678004 (Doping on Demand). This research is supported by the Dutch Technology Foundation TTW, which is part of The Netherlands Organization for Scientific Research (NWO) and which is partly funded by Ministry of Economic Affairs. The authors thank Wiel Evers for performing the TEM imaging and the EDX analysis. The authors also thank Lea Pasquale and Mirko Prato for their help with performing and analyzing the XPS measurements and Filippo Drago for the ICP measurements. ; Approved Most recent IF: 5.9; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:169563 Serial 6482  
Permanent link to this record
 

 
Author Borah, R.; Smets, J.; Ninakanti, R.; Tietze, M.L.; Ameloot, R.; Chigrin, D.N.; Bals, S.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Self-assembled ligand-capped plasmonic Au nanoparticle films in the Kretschmann configuration for sensing of volatile organic compounds Type A1 Journal article
  Year 2022 Publication ACS applied nano materials Abbreviated Journal  
  Volume 5 Issue 8 Pages acsanm.2c02524-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Films of close-packed Au nanoparticles are coupled electrodynamically through their collective plasmon resonances. This collective optical response results in enhanced light–matter interactions, which can be exploited in various applications. Here, we demonstrate their application in sensing volatile organic compounds, using methanol as a test case. Ordered films over several cm2 were obtained by interfacial self-assembly of colloidal Au nanoparticles (∼10 nm diameter) through controlled evaporation of the solvent. Even though isolated nanoparticles of this size are inherently nonscattering, when arranged in a close-packed film the plasmonic coupling results in a strong reflectance and absorbance. The in situ tracking of vapor phase methanol concentration through UV–vis transmission measurements of the nanoparticle film is first demonstrated. Next, in situ ellipsometry of the self-assembled films in the Kretschmann (also known as ATR) configuration is shown to yield enhanced sensitivity, especially with phase difference measurements, Δ. Our study shows the excellent agreement between theoretical models of the spectral response of self-assembled films with experimental in situ sensing experiments. At the same time, the theoretical framework provides the basis for the interpretation of the various observed experimental trends. Combining periodic nanoparticle films with ellipsometry in the Kretschmann configuration is a promising strategy toward highly sensitive and selective plasmonic thin-film devices based on colloidal fabrication methods for volatile organic compound (VOC) sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000834348300001 Publication Date 2022-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.9 Times cited 11 Open Access OpenAccess  
  Notes R.B. acknowledges financial support from the University of Antwerp Special Research Fund (BOF) for a DOCPRO4 doctoral scholarship. J.S. acknowledges financial support from the Research Foundation Flanders (FWO) by a Ph.D. fellowship (11H8121N) . M.L.T. acknowledges financial support from the Research Foundation Flanders (FWO) by a senior postdoctoral fellowship (12ZK720N) . Approved Most recent IF: 5.9  
  Call Number UA @ admin @ c:irua:189295 Serial 7095  
Permanent link to this record
 

 
Author Pacquets, L.; Van den Hoek, J.; Arenas Esteban, D.; Ciocarlan, R.-G.; Cool, P.; Baert, K.; Hauffman, T.; Daems, N.; Bals, S.; Breugelmans, T. pdf  url
doi  openurl
  Title Use of nanoscale carbon layers on Ag-based gas diffusion electrodes to promote CO production Type A1 Journal article
  Year 2022 Publication ACS applied nano materials Abbreviated Journal  
  Volume 5 Issue 6 Pages 7723-7732  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract A promising strategy for the inhibition of the hydrogen evolution reaction along with the stabilization of the electrocatalyst in electrochemical CO2 reduction cells involves the application of a nanoscale amorphous carbon layer on top of the active catalyst layer in a gas diffusion electrode. Without modifying the chemical nature of the electrocatalyst itself, these amorphous carbon layers lead to the stabilization of the electrocatalyst, and a significant improvement with respect to the inhibition of the hydrogen evolution reaction was also obtained. The faradaic efficiencies of hydrogen could be reduced from 31.4 to 2.1% after 1 h of electrolysis with a 5 nm thick carbon layer. Furthermore, the impact of the carbon layer thickness (5–30 nm) on this inhibiting effect was investigated. We determined an optimal thickness of 15 nm where the hydrogen evolution reaction was inhibited and a decent stability was obtained. Next, a thickness of 15 nm was selected for durability measurements. Interestingly, these durability measurements revealed the beneficial impact of the carbon layer already after 6 h by suppressing the hydrogen evolution such that an increase of only 37.9% exists compared to 56.9% without the use of an additional carbon layer, which is an improvement of 150%. Since carbon is only applied afterward, it reveals its great potential in terms of electrocatalysis in general.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000818507900001 Publication Date 2022-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.9 Times cited 3 Open Access OpenAccess  
  Notes L.P. was supported through a Ph.D. fellowship strategic basic research (1S56920N) of the Research Foundation-Flanders (FWO). S.B. acknowledges financial support from ERC Consolidator Grant Number 815128 REALNANO. This research was financed by the Research Council of the University of Antwerp (BOF-GOA 33928). P.C. and R.-G.C. acknowledge financial support by FWO Flanders (project no. G038215N). The authors recognize the contribution of S. Pourbabak and T. Derez for the assistance with the Ag and carbon coating, Indah Prihatiningtyas and Bart Van der Bruggen for the assistance with the contact angle measurements, Daniel Choukroun for the use of the in-house-made hybrid flow cell, and Stijn Van den Broeck for his assistance with the FIB measurements. Approved Most recent IF: 5.9  
  Call Number UA @ admin @ c:irua:188887 Serial 7099  
Permanent link to this record
 

 
Author Carrasco, S.; Orcajo, G.; Martínez, F.; Imaz, I.; Kavak, S.; Arenas-Esteban, D.; Maspoch, D.; Bals, S.; Calleja, G.; Horcajada, P. url  doi
openurl 
  Title Hf/porphyrin-based metal-organic framework PCN-224 for CO2 cycloaddition with epoxides Type A1 Journal article
  Year 2023 Publication Materials Today Advances Abbreviated Journal  
  Volume 19 Issue Pages 100390  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Herein, we describe for the first time the synthesis of the highly porous Hf-tetracarboxylate porphyrin-based metal-organic framework (MOF) (Hf)PCN-224(M) (M = H2, Co2+). (Hf)PCN-224(H2) was easily and efficiently prepared following a simple microwave-assisted procedure with good yields (56–67%; space-time yields: 1100–1270 kg m−3·day−1), high crystallinity and phase purity by using trifluoromethanesulfonic acid and benzoic acid as modulators in less than 30 min. By simply introducing a preliminary step (10 min), 5,10,15,20-(tetra-4-carboxyphenyl)porphyrin linker (TCPP) was quantitatively metalated with Co2+ without additional purification and/or time consuming protection/deprotection steps to further obtain (Hf)PCN-224(Co). (Hf)PCN-224(Co) was then tested as catalyst in CO2 cycloaddition reaction with different epoxides to yield cyclic carbonates, showing the best catalytic performance described to date compared to other PCNs, under mild conditions (1 bar CO2, room temperature, 18–24 h). Twelve epoxides were tested, obtaining from moderate to excellent conversions (35–96%). Moreover, this reaction was gram scaled-up (x50) without significant loss of yield to cyclic carbonates. (Hf)PCN-224(Co) maintained its integrity and crystallinity even after 8 consecutive runs, and poisoning was efficiently reverted by a simple thermal treatment (175 °C, 6 h), fully recovering the initial catalytic activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001025764000001 Publication Date 2023-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2590-0498 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10 Times cited 1 Open Access OpenAccess  
  Notes S.C. acknowledges the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie (MSCA-COFUND) grant agreement No 754382 (GOT Energy Talent). S.C. and P.H. acknowledge “Comunidad de Madrid” and European Regional Development Fund-FEDER 2014-2020-OE REACT-UE 1 for their financial support to VIRMOF-CM project associated to R&D projects in response to COVID-19. The authors acknowledge H2020-MSCA-ITN-2019 HeatNMof (ref. 860942), the M-ERA-NET C-MOF-cell (grant PCI2020-111998 funded by MCIN/AEI /10.13039/501100011033 and European Union NextGenerationEU/PRTR) project, and Retos Investigación MOFSEIDON (grant PID2019-104228RB-I00 funded by MCIN/AEI/10.13039/501100011033) project. This work has been also supported by the Regional Government of Madrid (Project ACES2030-CM, S2018/EMT-4319) and the Universidad Rey Juan Carlos IMPULSO Project (grant MATER M − 3000). S.K acknowledges the Flemish Fund for Scientific Research (FWO Vlaanderen) through a PhD research grant (1181122 N). Approved Most recent IF: 10; 2023 IF: NA  
  Call Number EMAT @ emat @c:irua:197198 Serial 8800  
Permanent link to this record
 

 
Author Gao, Y.-J.; Jin, H.; Esteban, D.A.; Weng, B.; Saha, R.A.; Yang, M.-Q.; Bals, S.; Steele, J.A.; Huang, H.; Roeffaers, M.B.J. url  doi
openurl 
  Title 3D-cavity-confined CsPbBr₃ quantum dots for visible-light-driven photocatalytic C(sp³)-H bond activation Type A1 Journal article
  Year 2024 Publication Carbon Energy Abbreviated Journal  
  Volume Issue Pages e559  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Metal halide perovskite (MHP) quantum dots (QDs) offer immense potential for several areas of photonics research due to their easy and low-cost fabrication and excellent optoelectronic properties. However, practical applications of MHP QDs are limited by their poor stability and, in particular, their tendency to aggregate. Here, we develop a two-step double-solvent strategy to grow and confine CsPbBr3 QDs within the three-dimensional (3D) cavities of a mesoporous SBA-16 silica scaffold (CsPbBr3@SBA-16). Strong confinement and separation of the MHP QDs lead to a relatively uniform size distribution, narrow luminescence, and good ambient stability over 2 months. In addition, the CsPbBr3@SBA-16 presents a high activity and stability for visible-light-driven photocatalytic toluene C(sp(3))-H bond activation to produce benzaldehyde with similar to 730 mu mol g(-1) h(-1) yield rate and near-unity selectivity. Similarly, the structural stability of CsPbBr3@SBA-16 QDs is superior to that of both pure CsPbBr3 QDs and those confined in MCM-41 with 1D channels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001223583600001 Publication Date 2024-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2637-9368 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:206000 Serial 9133  
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Zhuo, X.; Albrecht, W.; Bals, S.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Tuning Size and Seed Position in Small Silver Nanorods Type A1 Journal article
  Year 2020 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.  
  Volume 2 Issue 9 Pages 1246-1250  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000571390700022 Publication Date 2020-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 9 Open Access OpenAccess  
  Notes Financial support is acknowledged from the European Commission under the Horizon 2020 Programme, by means of Grant Agreement No. 731019 (EUSMI), the ERC Consolidator Grant (No. 815128) (REALNANO), and the ERC Advanced Grant (No. 787510) (4DbioSERS). W.A. acknowledges an Individual Fellowship from the Marie Sklodowska-Curie actions (MSCA), under the EU’s Horizon 2020 program (Grant 797153, SOPMEN). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720).; sygma Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:171980 Serial 6439  
Permanent link to this record
 

 
Author Heyvaert, W.; Pedrazo-Tardajos, A.; Kadu, A.; Claes, N.; González-Rubio, G.; Liz-Marzán, L.M.; Albrecht, W.; Bals, S. pdf  url
doi  openurl
  Title Quantification of the Helical Morphology of Chiral Gold Nanorods Type A1 Journal article
  Year 2022 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.  
  Volume 4 Issue Pages 642-649  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Chirality in inorganic nanoparticles and nanostructures has gained increasing scientific interest, because of the possibility to tune their ability to interact differently with left- and right-handed circularly polarized light. In some cases, the optical activity is hypothesized to originate from a chiral morphology of the nanomaterial. However, quantifying the degree of chirality in objects with sizes of tens of nanometers is far from straightforward. Electron tomography offers the possibility to faithfully retrieve the three-dimensional morphology of nanomaterials, but only a qualitative interpretation of the morphology of chiral nanoparticles has been possible so far. We introduce herein a methodology that enables us to quantify the helicity of complex chiral nanomaterials, based on the geometrical properties of a helix. We demonstrate that an analysis at the single particle level can provide significant insights into the origin of chiroptical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000784490000013 Publication Date 2022-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access OpenAccess  
  Notes S.B. and A.P.-T. gratefully acknowledge funding by the European Research Council (ERC Consolidator Grant #815128-REALNANO) the European Union’s Horizon 2020 research and innovation program under grant agreement #823717ESTEEM3. L.M.L.-M. acknowledges funding from MCIN/ AEI /10.13039/501100011033, grant # PID2020- 117779RB-I00 and the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720). G.G.-R. thanks the Spanish Spanish Ministerio de Ciencia e Innovación for an FPI (BES-2014- 068972) fellowship.; SygmaSB; esteem3reported; esteem3jra Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:186959 Serial 6956  
Permanent link to this record
 

 
Author Vlasov, E.; Skorikov, A.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Verbeeck, J.; Bals, S. pdf  url
doi  openurl
  Title Secondary electron induced current in scanning transmission electron microscopy: an alternative way to visualize the morphology of nanoparticles Type A1 Journal article
  Year 2023 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.  
  Volume Issue Pages 1916-1921  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron tomography (ET) is a powerful tool to determine the three-dimensional (3D) structure of nanomaterials in a transmission electron microscope. However, the acquisition of a conventional tilt series for ET is a time-consuming process and can therefore not provide 3D structural information in a time-efficient manner. Here, we propose surface-sensitive secondary electron (SE) imaging as an alternative to ET for the investigation of the morphology of nanomaterials. We use the SE electron beam induced current (SEEBIC) technique that maps the electrical current arising from holes generated by the emission of SEs from the sample. SEEBIC imaging can provide valuable information on the sample morphology with high spatial resolution and significantly shorter throughput times compared with ET. In addition, we discuss the contrast formation mechanisms that aid in the interpretation of SEEBIC data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001006191600001 Publication Date 2023-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access OpenAccess  
  Notes The funding for this project was provided by European Research Council (ERC Consolidator Grant 815128, REALNANO). J.V. acknowledges the eBEAM project, which is supported by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 101017720 (FET-Proactive EBEAM). L.M.L.-M. acknowledges funding from MCIN/AEI/10.13039/501100011033 (grant # PID2020-117779RB-I00). Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:197004 Serial 8795  
Permanent link to this record
 

 
Author Hugenschmidt, M.; Jannis, D.; Kadu, A.A.; Grünewald, L.; De Marchi, S.; Perez-Juste, J.; Verbeeck, J.; Van Aert, S.; Bals, S. pdf  doi
openurl 
  Title Low-dose 4D-STEM tomography for beam-sensitive nanocomposites Type A1 Journal article
  Year 2023 Publication ACS materials letters Abbreviated Journal  
  Volume 6 Issue 1 Pages 165-173  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron tomography is essential for investigating the three-dimensional (3D) structure of nanomaterials. However, many of these materials, such as metal-organic frameworks (MOFs), are extremely sensitive to electron radiation, making it difficult to acquire a series of projection images for electron tomography without inducing electron-beam damage. Another significant challenge is the high contrast in high-angle annular dark field scanning transmission electron microscopy that can be expected for nanocomposites composed of a metal nanoparticle and an MOF. This strong contrast leads to so-called metal artifacts in the 3D reconstruction. To overcome these limitations, we here present low-dose electron tomography based on four-dimensional scanning transmission electron microscopy (4D-STEM) data sets, collected using an ultrafast and highly sensitive direct electron detector. As a proof of concept, we demonstrate the applicability of the method for an Au nanostar embedded in a ZIF-8 MOF, which is of great interest for applications in various fields, including drug delivery.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001141178500001 Publication Date 2023-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2639-4979 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes This work was supported by the European Research Council (Grant 815128 REALNANO to S.B., Grant 770887 PICOMETRICS to S.V.A.). J.P.-J. and S.M. acknowledge financial support from the MCIN/AEI/10.13039/501100011033 (Grants No. PID2019-108954RB-I00) and EU Horizon 2020 research and innovation program under grant agreement no. 883390 (SERSing). J.V., S.B., S.V.A., and L.G. acknowledge funding from the Flemish government (iBOF-21-085 PERsist). Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:202771 Serial 9053  
Permanent link to this record
 

 
Author Bhatia, H.; Keshavarz, M.; Martin, C.; Van Gaal, L.; Zhang, Y.; de Coen, B.; Schrenker, N.J.; Valli, D.; Ottesen, M.; Bremholm, M.; Van de Vondel, J.; Bals, S.; Hofkens, J.; Debroye, E. pdf  url
doi  openurl
  Title Achieving High Moisture Tolerance in Pseudohalide Perovskite Nanocrystals for Light-Emitting Diode Application Type A1 Journal Article
  Year 2023 Publication ACS Applied Optical Materials Abbreviated Journal ACS Appl. Opt. Mater.  
  Volume 1 Issue 6 Pages 1184-1191  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The addition of potassium thiocyanate (KSCN) to the FAPbBr3 structure and subsequent post-treatment of nanocrystals (NCs) lead to high quantum confinement, resulting in a photoluminescent quantum yield (PLQY) approaching unity and microsecond decay times. This synergistic approach demonstrated exceptional stability under humid conditions, retaining 70% of the PLQY for over a month, while the untreated NCs degrade within 24 h. Additionally, the devices incorporating the post-treated NCs displayed 1.5% external quantum efficiency (EQE), a 5-fold improvement over untreated devices. These results provide promising opportunities for the use of perovskites in moisture-stable optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2771-9855 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Hercules Foundation, HER/11/14 ; European Commission; Ministerio de Ciencia e Innovaci?n, PID2021-128761OA-C22 ; European Regional Development Fund; Vlaamse regering, CASAS2 Meth/15/04 ; Fonds Wetenschappelijk Onderzoek, 1238622N 1514220N 1S45223N G.0B39.15 G.0B49.15 G098319N S002019N ZW15_09-GOH6316 ; Onderzoeksraad, KU Leuven, C14/19/079 db/21/006/bm iBOF-21-085 STG/21/010 ; Junta de Comunidades de Castilla-La Mancha, SBPLY/21/180501/000127 ; H2020 European Research Council, 642196 815128 ; Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:201011 Serial 8975  
Permanent link to this record
 

 
Author Goris, B.; De Beenhouwer, J.; de Backer, A.; Zanaga, D.; Batenburg, J.; Sanchez-Iglesias, A.; Liz-Marzan, L.; Van Aert, S.; Sijbers, J.; Van Tendeloo, G.; Bals, S. doi  openurl
  Title Investigating lattice strain in Au nanodecahedrons Type P1 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 11-12  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2016-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 978-3-527-80846-5 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:145813 Serial 5144  
Permanent link to this record
 

 
Author Batenburg, K.J.; Bals, S.; Sijbers, J.; Van Tendeloo, G. openurl 
  Title DART explained: how to carry out a discrete tomography reconstruction Type P1 Proceeding
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages 295-296  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Berlin Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 978-3-540-85154-7 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:77914 Serial 606  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: