|
Record |
Links |
|
Author |
Pacquets, L.; Van den Hoek, J.; Arenas Esteban, D.; Ciocarlan, R.-G.; Cool, P.; Baert, K.; Hauffman, T.; Daems, N.; Bals, S.; Breugelmans, T. |
|
|
Title |
Use of nanoscale carbon layers on Ag-based gas diffusion electrodes to promote CO production |
Type |
A1 Journal article |
|
Year |
2022 |
Publication |
ACS applied nano materials |
Abbreviated Journal |
|
|
|
Volume |
5 |
Issue |
6 |
Pages |
7723-7732 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Applied Electrochemistry & Catalysis (ELCAT) |
|
|
Abstract |
A promising strategy for the inhibition of the hydrogen evolution reaction along with the stabilization of the electrocatalyst in electrochemical CO2 reduction cells involves the application of a nanoscale amorphous carbon layer on top of the active catalyst layer in a gas diffusion electrode. Without modifying the chemical nature of the electrocatalyst itself, these amorphous carbon layers lead to the stabilization of the electrocatalyst, and a significant improvement with respect to the inhibition of the hydrogen evolution reaction was also obtained. The faradaic efficiencies of hydrogen could be reduced from 31.4 to 2.1% after 1 h of electrolysis with a 5 nm thick carbon layer. Furthermore, the impact of the carbon layer thickness (5–30 nm) on this inhibiting effect was investigated. We determined an optimal thickness of 15 nm where the hydrogen evolution reaction was inhibited and a decent stability was obtained. Next, a thickness of 15 nm was selected for durability measurements. Interestingly, these durability measurements revealed the beneficial impact of the carbon layer already after 6 h by suppressing the hydrogen evolution such that an increase of only 37.9% exists compared to 56.9% without the use of an additional carbon layer, which is an improvement of 150%. Since carbon is only applied afterward, it reveals its great potential in terms of electrocatalysis in general. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000818507900001 |
Publication Date |
2022-05-19 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2574-0970 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
5.9 |
Times cited |
3 |
Open Access |
OpenAccess |
|
|
Notes |
L.P. was supported through a Ph.D. fellowship strategic basic research (1S56920N) of the Research Foundation-Flanders (FWO). S.B. acknowledges financial support from ERC Consolidator Grant Number 815128 REALNANO. This research was financed by the Research Council of the University of Antwerp (BOF-GOA 33928). P.C. and R.-G.C. acknowledge financial support by FWO Flanders (project no. G038215N). The authors recognize the contribution of S. Pourbabak and T. Derez for the assistance with the Ag and carbon coating, Indah Prihatiningtyas and Bart Van der Bruggen for the assistance with the contact angle measurements, Daniel Choukroun for the use of the in-house-made hybrid flow cell, and Stijn Van den Broeck for his assistance with the FIB measurements.; sygma_SB |
Approved |
Most recent IF: 5.9 |
|
|
Call Number |
UA @ admin @ c:irua:188887 |
Serial |
7099 |
|
Permanent link to this record |