toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Martin, J.M.L.; François, J.P.; Gijbels, R. doi  openurl
  Title Accurate ab initio quartic force fields and thermochemistry of FNO and CINO Type A1 Journal article
  Year 1994 Publication The journal of physical chemistry Abbreviated Journal  
  Volume 98 Issue 44 Pages 11394-11400  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The quartic force fields of FNO and CINO have been computed at the CCSD(T)/cc-pVTZ level. Using an ''augmented'' basis set dramatically improves results for FNO but has no significant effect for CINO. The best computed force field for FNO yields harmonic frequencies and fundamentals in excellent agreement with experiment. Overall, the force fields proposed in the present work are probably the most reliable ones ever published for these molecules. Total atomization energies have been computed using basis sets of spdfg quality: our best estimates are Sigma D-0 = 208.5 +/- 1 and 185.4 +/- 1 kcal/mol for FN0 and CINO, respectively. The computed value for FNO suggests a problem with the established experimental heat of formation. Thermodynamic tables in JANAF style at 100-2000 K are presented for both FNO and CINO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos A1994PP89400022 Publication Date 2005-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-3654;1541-5740; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 21 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:12310 Serial 44  
Permanent link to this record
 

 
Author Van Tendeloo, G.; van Heurck, C.; van Landuyt, J.; Amelinckx, S.; Verheijen, M.A.; van Loosdrecht, P.H.M.; Meijer, G. pdf  doi
openurl 
  Title Phase transitions in C60 and the related microstructure: a study by electron diffraction and electron microscopy Type A1 Journal article
  Year 1992 Publication Journal of physical chemistry Abbreviated Journal  
  Volume 96 Issue Pages 7424-7430  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1992JM58600054 Publication Date 2005-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-3654;1541-5740; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 33 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:4101 Serial 2594  
Permanent link to this record
 

 
Author Kovba, M.L.; Skolis, Y.Y.; Abakumov, A.M.; Hadermann, J.; Sukhushina, I.S. pdf  doi
openurl 
  Title The synthesis and thermodynamic properties of strontium fluoromanganite Sr2.5Mn6O12.5-\deltaF2 Type A1 Journal article
  Year 2010 Publication Russian journal of physical chemistry A Abbreviated Journal Russ J Phys Chem A+  
  Volume 84 Issue 12 Pages 2033-2038  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The existence of the [SrF(0.8)O(0.1)](2.5)[Mn(6)O(12)] = Sr(2.5)Mn(6)O(12.5 – delta)F(2) compound was established in the SrO-Mn(2)O(3)-SrF(2) system at 900A degrees C and p(O(2)) = 1 atm. The crystal structure of strontium fluoromanganite was determined from the X-ray powder diffraction data, electron diffraction, and high-resolution electron microscopy. It can be described in the monoclynic system with four Miller hklm indices: hklm: H = h a* + k b* + l c (1) (*) + m q (1), q (1), q (1) = c (2) (*) = gamma c (1) (*) , gamma a parts per thousand 0.632, a a parts per thousand a a parts per thousand 9.72 , b a parts per thousand 9.55 , c (1) a parts per thousand 2.84 , c (2) a parts per thousand 4.49 , monoclinic angle gamma a parts per thousand 95.6A degrees. The electromotive force method with a solid fluorine ion electrolyte was used to refine the composition of fluoromanganite and determine the thermodynamic functions of its formation from phases neighboring in the phase diagram (SrMn(3)O(6), Mn(2)O(3), SrF(2), and oxygen), Delta GA degrees, kJ/mol = -(111.7 +/- 1.9) + (89.5 +/- 1.5) x 10(-3) T.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000284775000004 Publication Date 2011-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0036-0244;1531-863X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.581 Times cited 1 Open Access  
  Notes Approved Most recent IF: 0.581; 2010 IF: 0.503  
  Call Number UA @ lucian @ c:irua:99190 Serial 3601  
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C. pdf  url
doi  openurl
  Title Distribution pattern of metal atoms in bimetal-doped pyridinic-N₄ pores determines their potential for electrocatalytic N₂ reduction Type A1 Journal article
  Year 2022 Publication Journal Of Physical Chemistry A Abbreviated Journal J Phys Chem A  
  Volume 126 Issue 20 Pages 3080-3089  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Doping two single transition-metal (TM) atoms on a substrate host opens numerous possibilities for catalyst design. However, what if the substrate contains more than one vacancy site? Then, the combination of two TMs along with their distribution patterns becomes a design parameter potentially complementary to the substrate itself and the bimetal composition. In this study, we investigate ammonia synthesis under mild electrocatalytic conditions on a transition-metal-doped porous C24N24 catalyst using density functional theory (DFT). The TMs studied include Ti, Mn, and Cu in a 2:4 dopant ratio (Ti2Mn4@C24N24 and Ti2Cu4@N-24(24)). Our computations show that a single Ti atom in both catalysts exhibits the highest selectivity for N-2 fixation at ambient conditions. This work is a good theoretical model to establish the structure-activity relationship, and the knowledge earned from the metal-N-4 moieties may help studies of related nanomaterials, especially those with curved structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000804119800003 Publication Date 2022-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1089-5639; 1520-5215 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.9  
  Call Number UA @ admin @ c:irua:189023 Serial 7146  
Permanent link to this record
 

 
Author Cordeiro, R.M.; Yusupov, M.; Razzokov, J.; Bogaerts, A. pdf  url
doi  openurl
  Title Parametrization and Molecular Dynamics Simulations of Nitrogen Oxyanions and Oxyacids for Applications in Atmospheric and Biomolecular Sciences Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry B Abbreviated Journal J Phys Chem B  
  Volume 124 Issue 6 Pages 1082-1089  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nitrogen oxyanions and oxyacids are important agents in atmospheric chemistry and medical biology. Although their chemical behavior in solution is relatively well understood, they may behave very differently at the water/air interface of atmospheric aerosols or at the membrane/water interface of cells. Here, we developed a fully classical model for molecular dynamics simulations of NO3−, NO2−, HNO3, and HNO2 in the framework of the GROMOS 53A6 and 54A7 force field versions. The model successfully accounted for the poorly structured solvation shell and ion pairing tendency of NO3−. Accurate pure-liquid properties and hydration free energies were obtained for the oxyacids. Simulations at the water/air interface showed a local enrichment of HNO3 and depletion of NO3−. The effect was discussed in light of earlier spectroscopic data and ab initio calculations, suggesting that HNO3 behaves as a weaker acid at the surface of water. Our model will hopefully allow for efficient and accurate simulations of nitrogen oxyanions and oxyacids in solution and at microheterogeneous interface environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000512222500015 Publication Date 2020-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1520-6106 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited Open Access  
  Notes We thank Universidade Federal do ABC for providing the computational resources needed for completion of this work. This study was financed in part by the Coordenaçaõ de Aperfeiçoamento de Pessoal de Nı ́vel Superior – Brasil (CAPES) – Finance Code 001. Approved Most recent IF: 3.3; 2020 IF: 3.177  
  Call Number PLASMANT @ plasmant @c:irua:166488 Serial 6340  
Permanent link to this record
 

 
Author Cassiers, K.; van der Voort, P.; Linssen, T.; Vansant, E.F.; Lebedev, O.; van Landuyt, J. doi  openurl
  Title A counterion-catalyzed (S0H+)(X-I+) pathway toward heat- and steam-stable mesostructured silica assembled from amines in acidic conditions Type A1 Journal article
  Year 2003 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B  
  Volume 107 Issue 16 Pages 3690-3696  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract An alternative pathway to assemble mesoporous molecular sieve silicas is developed using nonionic alkylamines and N,N-dimethylalkylamines (SO) as structure-directing agents in acidic conditions. The synthesized mesostructures possess wormhole-like frameworks with pore sizes and pore volumes in the range of 20-90 Angstrom and 0.5-1.3 cm(3)/g, respectively. The formation of the mesophase is controlled by a counterion-mediated mechanism of the type (S(0)H(+))(X(-)I(+)), where S(0)H(+) are protonated water molecules that are hydrogen bonded to the lone electron pairs on the amine surfactant headgroups (S(0)H(+)), X(-) is the counteranion originating from the acid, and I(+) are the positively charged (protonated) silicate species. We found that the stronger the ion X(-) is bonded to S(0)H(+), the more it catalyzes the silica condensation into (S(0)H(+))(X(-)I(+)). Br(-) is shown to be a strong binding anion and therefore a fast silica polymerization promoter compared to Cl(-) resulting in the formation of a higher quality mesophase for the Br(-) syntheses. We also showed that the polymerization rate of the silica, dictated by the counterion, controls the morphology of the mesostructures from nonuniform agglomerated blocks in the case of Br(-) syntheses to spherical particles for the Cl(-) syntheses. Next to many benefits such as low temperature, short synthesis time, and the use of inexpensive, nontoxic, and easily extractable amine templates, the developed materials have a remarkable higher thermal and hydrothermal stability compared to hexagonal mesoporous silica, which is also prepared with nonionic amines but formed through the S(0)I(0) mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000182350200005 Publication Date 2003-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 9 Open Access  
  Notes Approved Most recent IF: 3.177; 2003 IF: 3.679  
  Call Number UA @ lucian @ c:irua:103300 Serial 24  
Permanent link to this record
 

 
Author Collart, O.; Cool, P.; van der Voort, P.; Meynen, V.; Vansant, E.F.; Houthoofd, K.J.; Grobet, P.J.; Lebedev, O.I.; Van Tendeloo, G. pdf  doi
openurl 
  Title Aluminum incorporation into MCM-48 toward the creation of Brønsted acidity Type A1 Journal article
  Year 2004 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B  
  Volume 108 Issue Pages 13905-13912  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000224164000003 Publication Date 2004-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 13 Open Access  
  Notes Fwo; Iuap P5/01 Approved Most recent IF: 3.177; 2004 IF: 3.834  
  Call Number UA @ lucian @ c:irua:49014 Serial 92  
Permanent link to this record
 

 
Author Howard, I.A.; Zutterman, F.; Deroover, G.; Lamoen, D.; van Alsenoy, C. doi  openurl
  Title Approaches to calculation of exciton interaction energies for a molecular dimer Type A1 Journal article
  Year 2004 Publication Journal Of Physical Chemistry B Abbreviated Journal J Phys Chem B  
  Volume 108 Issue Pages 19155-19162  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000225695100015 Publication Date 2004-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 35 Open Access  
  Notes Approved Most recent IF: 3.177; 2004 IF: 3.834  
  Call Number UA @ lucian @ c:irua:50259 Serial 147  
Permanent link to this record
 

 
Author Kolen'ko, Y.V.; Kovnir, K.A.; Gavrilov, A.I.; Garshev, A.V.; Frantti, J.; Lebedev, O.I.; Churagulov, B.R.; Van Tendeloo, G.; Yoshimura, M. pdf  doi
openurl 
  Title Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide Type A1 Journal article
  Year 2006 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B  
  Volume 110 Issue 9 Pages 4030-4038  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000235944500033 Publication Date 2006-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 234 Open Access  
  Notes Approved Most recent IF: 3.177; 2006 IF: 4.115  
  Call Number UA @ lucian @ c:irua:56988 Serial 1540  
Permanent link to this record
 

 
Author Liu, S.; Cool, P.; Collart, O.; van der Voort, P.; Vansant, E.F.; Lebedev, O.I.; Van Tendeloo, G.; Jiang, M. pdf  doi
openurl 
  Title The influence of the alcohol concentration on the structural ordering of mesoporous silica: cosurfactant versus cosolvent Type A1 Journal article
  Year 2003 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B  
  Volume 107 Issue Pages 10405-10411  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000185401900013 Publication Date 2003-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 134 Open Access  
  Notes Approved Most recent IF: 3.177; 2003 IF: 3.679  
  Call Number UA @ lucian @ c:irua:46264 Serial 1643  
Permanent link to this record
 

 
Author Stevens, W.J.J.; Lebeau, K.; Mertens, M.; Van Tendeloo, G.; Cool, P.; Vansant, E.F. doi  openurl
  Title Investigation of the morphology of the mesoporous SBA-16 and SBA-15 materials Type A1 Journal article
  Year 2006 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B  
  Volume 110 Issue 18 Pages 9183-9187  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000237451300042 Publication Date 2006-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 109 Open Access  
  Notes Approved Most recent IF: 3.177; 2006 IF: 4.115  
  Call Number UA @ lucian @ c:irua:58264 Serial 1738  
Permanent link to this record
 

 
Author Linssen, T.; Cool, P.; Baroudi, M.; Cassiers, K.; Vansant, E.F.; Lebedev, O.; van Landuyt, J. doi  openurl
  Title Leached natural saponite as the silicate source in the synthesis of aluminosilicate hexagonal mesoporous materials Type A1 Journal article
  Year 2002 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B  
  Volume 106 Issue Pages 4470-4476  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000175356900019 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 23 Open Access  
  Notes Approved Most recent IF: 3.177; 2002 IF: 3.611  
  Call Number UA @ lucian @ c:irua:46279 Serial 1811  
Permanent link to this record
 

 
Author Kolen'ko, Y.V.; Kovnir, K.A.; Gavrilov, A.I.; Garshev, A.V.; Meskin, P.E.; Churagulov, B.R.; Bouchard, M.; Colbeau-Justin, C.; Lebedev, O.I.; Van Tendeloo, G.; Yoshimura, M. pdf  doi
openurl 
  Title Structural, textural, and electronic properties of a nanosized mesoporous ZnxTi1-xO2-x solid solution prepared by a supercritical drying route Type A1 Journal article
  Year 2005 Publication Journal of physical chemistry B Abbreviated Journal J Phys Chem B  
  Volume 109 Issue 43 Pages 20303-20309  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000232959800037 Publication Date 2005-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 34 Open Access  
  Notes Approved Most recent IF: 3.177; 2005 IF: 4.033  
  Call Number UA @ lucian @ c:irua:54886 Serial 3264  
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A. openurl 
  Title Numerical study of the size-dependent melting mechanisms of nickel nanoclusters Type A1 Journal article
  Year 2009 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 113 Issue 7 Pages 2771-2776  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics simulations were used to investigate the size-dependent melting mechanism of nickel nanoclusters of various sizes. The melting process was monitored by the caloric curve, the overall cluster Lindemann index, and the atomic Lindemann index. Size-dependent melting temperatures were determined, and the correct linear dependence on inverse diameter was recovered. We found that the melting mechanism gradually changes from dynamic coexistence melting to surface melting with increasing cluster size. These findings are of importance in better understanding carbon nanotube growth by catalytic chemical vapor deposition as the phase state of the catalyst nanoparticle codetermines the growth mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access  
  Notes Approved Most recent IF: 4.536; 2009 IF: 4.224  
  Call Number UA @ lucian @ c:irua:76495 Serial 2410  
Permanent link to this record
 

 
Author Tarasov, A.; Hu, Z.-Y.; Meledina, M.; Trusov, G.; Goodilin, E.; Van Tendeloo, G.; Dobrovolsky, Y. pdf  url
doi  openurl
  Title One-Step Microheterogeneous Formation of Rutile@Anatase Core–Shell Nanostructured Microspheres Discovered by Precise Phase Mapping Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 121 Pages 4443-4450  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanostructured core−shell microspheres with a rough rutile core and a thin anatase shell are synthesized via a one-step heterogeneous templated hydrolysis process of TiCl4 vapor on the aerosol water−air interface. The rutile-in-anatase core−shell structure has been evidenced by different electron microscopy techniques, including electron energy-loss spectroscopy and 3D electron tomography. A new mechanism for the formation of a crystalline rutile core inside the anatase shell is proposed based on a statistical evaluation of a large number of electron microscopy data. We found that the control over the TiCl4 vapor pressure, the ratio between TiCl4 and H2O aerosol, and the reaction conditions plays a crucial role in the formation of the core−shell morphology and increases the yield of nanostructured microspheres.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000395616200038 Publication Date 2017-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 4 Open Access OpenAccess  
  Notes Z.-Y.H., M. M., and G.V.T. acknowledge support from the the EC Framework 7 program ESTEEM2 (Reference 312483). Approved Most recent IF: 4.536  
  Call Number EMAT @ emat @ c:irua:141720 Serial 4472  
Permanent link to this record
 

 
Author Khalilov, U.; Yusupov, M.; Bogaerts, A.; Neyts, E.C. url  doi
openurl 
  Title Selective Plasma Oxidation of Ultrasmall Si Nanowires Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 120 Issue 120 Pages 472-477  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Device performance of Si|SiOx core-shell based nanowires critically depends on the exact control over the oxide thickness. Low-temperature plasma oxidation is a highly promising alternative to thermal oxidation allowing for improved control over the oxidation process, in particular for ultrasmall Si nanowires. We here elucidate the room temperature plasma oxidation mechanisms of ultrasmall Si nanowires using hybrid molecular dynamics / force-bias Monte Carlo simulations. We demonstrate how the oxidation and concurrent water formation mechanisms are a function of the oxidizing plasma species and we demonstrate how the resulting core-shell oxide thickness can be controlled through these species. A new mechanism of water formation is discussed in detail. The results provide a detailed atomic level explanation of the oxidation process of highly curved Si surfaces. These results point out a route toward plasma-based formation of ultrathin core-shell Si|SiOx nanowires at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368562200057 Publication Date 2015-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 3 Open Access  
  Notes U.K. and M.Y. gratefully acknowledge financial support from the Research Foundation – Flanders (FWO), Grants 12M1315N and 1200216N. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We thank Prof. A. C. T. van Duin for sharing the ReaxFF code. Approved Most recent IF: 4.536  
  Call Number c:irua:130677 Serial 4002  
Permanent link to this record
 

 
Author Alyörük, M.M.; Aierken, Y.; Çakır, D.; Peeters, F.M.; Sevik, C. pdf  url
doi  openurl
  Title Promising Piezoelectric Performance of Single Layer Transition-Metal Dichalcogenides and Dioxides Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 119 Issue 119 Pages 23231-23237  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Piezoelectricity is a unique material property that allows one to convert mechanical energy into electrical one or vice versa. Transition metal dichalcogenides (TMDC) and transition metal dioxides (TMDO) are expected to have great potential for piezoelectric device applications due to their noncentrosymmetric and two-dimensional crystal structure. A detailed theoretical investigation of the piezoelectric stress (e 11 ) and piezoelectric strain (d 11 ) coefficients of single layer TMDCs and TMDOs with chemical formula MX 2 (where M= Cr, Mo, W, Ti, Zr, Hf, Sn and X = O, S, Se, Te) is presented by using first-principles calculations based on density func- tional theory. We predict that not only the Mo- and W-based members of this family but also the other materials with M= Cr, Ti, Zr and Sn exhibit highly promising piezoelectric properties. CrTe 2 has the largest e 11 and d 11 coefficients among the group VI elements (i.e., Cr, Mo, and W). In addition, the relaxed-ion e 11 and d 11 coefficients of SnS 2 are almost the same as those of CrTe 2 . Furthermore, TiO 2 and ZrO 2 pose comparable or even larger e 11 coefficients as compared to Mo- and W-based TMDCs and TMDOs. Our calculations reveal that TMDC and TMDO structures are strong candidates for future atomically thin piezoelectric applications such as transducers, sensors, and energy harvesting devices due to their piezoelectric coefficients that are comparable (even larger) to currently used bulk piezoelectric materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362702100054 Publication Date 2015-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 134 Open Access  
  Notes M.M.A and C.S. acknowledges the support from Scientific and Technological Research Council of Turkey (TUBITAK- 113F333). C.S. acknowledges support from Anadolu University (BAP-1407F335, -1505F200), and Turkish Academy of Sciences (TUBA-GEBIP). Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:129418 Serial 4035  
Permanent link to this record
 

 
Author Serrano-Montes, A.B.; Langer, J.; Henriksen-Lacey, M.; Jimenez de Aberasturi, D.; Solís, D.M.; Taboada, J.M.; Obelleiro, F.; Sentosun, K.; Bals, S.; Bekdemir, A.; Stellacci, F.; Liz-Marzán, L.M. url  doi
openurl 
  Title Gold Nanostar-Coated Polystyrene Beads as Multifunctional Nanoprobes for SERS Bioimaging Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 120 Issue 120 Pages 20860-20868  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Hybrid colloidal nanocomposites comprising polystyrene beads and plasmonic gold nanostars are reported as multifunctional optical nanoprobes. Such self-assembled structures are excellent Raman enhancers for bio-applications as they feature plasmon modes in the near infrared “first biological transparency window”. In this proof of concept study, we used 4- mercaptobenzoic acid as a Raman-active molecule to optimize the density of gold nanostars on polystyrene beads, improving SERS performance and thereby allowing in vitro cell culture imaging. Interestingly, intermediate gold nanostar loadings were found to yield higher SERS response, which was confirmed by electromagnetic modeling. These engineered hybrid nanostructures notably improve the possibilities of using gold nanostars as SERS tags. Additionally, when fluorescently labeled polystyrene bead are used as colloidal carriers, the composite particles can be applied as promising tools for multimodal bioimaging.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384034600045 Publication Date 2016-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 64 Open Access OpenAccess  
  Notes Funding is acknowledged from the European Commission (Grant #310445-2 SAVVY), the European Research Council (ERC Advanced Grant #267867 Plasmaquo, and ERC Starting Grant #335078 Colouratom) and the Spanish MINECO (Project MAT2013-46101-R). We thank IKERLAT Polymers for the non-fluorescent PS beads and Prof. Juan Mareque, Prof. Soledad Penades and Dr. Sergio Moya (CIC biomagune) for borrowing various cell lines. D.M.S., J.M.T, and F.O. acknowledge funding from the European Regional Development Fund (ERDF) and the Spanish MINECO (Projects MAT2014-58201-C2-1-R, MAT2014- 58201-C2-2-R), from the ERDF and the Galician Regional Government under agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC), and from the ERDF and the Extremadura Regional Government (Junta de Extremadura) under Project IB13185. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ; ECAS_Sara; Approved Most recent IF: 4.536  
  Call Number c:irua:133952 Serial 4082  
Permanent link to this record
 

 
Author Huygh, S.; Bogaerts, A.; Neyts, E.C. pdf  url
doi  openurl
  Title How Oxygen Vacancies Activate CO2 Dissociation on TiO2 Anatase (001) Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 120 Issue 120 Pages 21659-21669  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The adsorption, dissociation, and diffusion of CO2 on the anatase (001) surface was studied using DFT by means of the generalized gradient approximation using the Perdew−Burcke−Ernzerhof (PBE)-functional and applying corrections for long-range dispersion interactions. Different stable adsorption configurations were identified for the fully oxidized surface. The most stable adsorption configuration is the monodentated carbonate-like structure. Small energy barriers were identified for the conversion of a physisorbed to a chemisorbed configuration.

CO2 dissociation is found to be unfeasible on the stoichiometric surface. The introduction of oxygen vacancy defects gives rise to new highly stable adsorption configurations with a stronger activation of the C−O bonds. This leads to the possibility of exothermic dissociation of CO2 with barriers up to 22.2 kcal/mol,

corresponding to chemical lifetimes of less than 4 s at 300 K. These reactions cause a CO molecule to be formed, which will easily desorb, and the reduced surface to become oxidized. It is clear that oxygen vacancy defects play a key role in the catalytic activity of an anatase (001) surface. Oxygen vacancies play an important role in the dissociation of CO2 on the anatase (001) surface, and will play a significant role in complex problems, such as the catalytic conversion of CO2 to value-added chemicals.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384626800055 Publication Date 2016-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 49 Open Access  
  Notes Stijn Huygh is funded as an aspirant of the Research Foundation Flanders (FWO, project number 11C0115N). This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UAntwerpen. Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @ c:irua:136164 Serial 4291  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Influence of the Material Dielectric Constant on Plasma Generation inside Catalyst Pores Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 120 Issue 120 Pages 25923-25934  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is gaining increasing interest for various environmental applications, but the crucial question is whether plasma can be created inside catalyst pores and under which conditions. In practice, various catalytic support materials are used, with various dielectric constants. We investigate here the influence of the dielectric constant on the plasma properties inside catalyst pores and in the sheath in front of the pores, for various pore sizes. The calculations are performed by a two-dimensional fluid model for an atmospheric pressure dielectric barrier discharge in helium. The electron impact ionization rate, electron temperature, electron and ion density, as well as the potential distribution and surface charge density, are analyzed for a better understanding of the discharge behavior inside catalyst pores. The results indicate that, in a 100 μm pore, the electron impact ionization in the pore, which is characteristic for the plasma generation inside the pore, is greatly enhanced for dielectric constants below 300. Smaller pore sizes only yield enhanced ionization for smaller dielectric constants, i.e., up to εr = 200, 150, and 50 for pore sizes of 50, 30, and 10 μm. Thus, the most common catalyst supports, i.e., Al2O3 and SiO2, which have dielectric constants around εr = 8−11 and 4.2, respectively, should allow more easily that microdischarges can be formed inside catalyst pores, even for smaller pore sizes. On the other hand, ferroelectric materials with dielectric constants above 300 never seem to yield plasma enhancement inside catalyst pores, not even for 100 μm pore sizes. Furthermore, it is clear that the dielectric constant of the material has a large effect on the extent of plasma enhancement inside the catalyst pores, especially in the range between εr = 4 and εr = 200. The obtained results are explained in detail based on the surface charge density at the pore walls,

and the potential distribution and electron temperature inside and above the pores. The results obtained with this model are

important for plasma catalysis, as the production plasma species in catalyst pores might affect the catalyst properties, and thus

improve the applications of plasma catalysis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388429100029 Publication Date 2016-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 34 Open Access  
  Notes This work was supported by the Fund for Scientific Research Flanders (FWO) (Grant G.0217.14N), the National Natural Science Foundation of China (Grant 11405019), and the China Postdoctoral Science Foundation (Grant 2015T80244). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the University of Antwerp. Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @ c:irua:138602 Serial 4319  
Permanent link to this record
 

 
Author De Bie, C.; van Dijk, J.; Bogaerts, A. pdf  url
doi  openurl
  Title CO2Hydrogenation in a Dielectric Barrier Discharge Plasma Revealed Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 120 Issue 120 Pages 25210-25224  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The hydrogenation of carbon dioxide in a dielectric barrier discharge plasma is studied with a one-dimensional fluid model. The spatially averaged densities of the most important end products formed in the CO2/H2 mixture are determined as a function of the initial gas mixing ratio. CO and H2O are found to be present at the highest densities and to a lower content also CH4, C2H6, CH2O, CH3OH, O2, and some other higher hydrocarbons and oxygenates. The main underlying reaction

pathways for the conversion of the inlet gases and the formation of CO, CH4, CH2O, and CH3OH are pointed out for various gas mixing ratios. The CO2 conversion and the production of value added products is found to be quite low, also in comparison to a CO2/CH4 mixture, and this can be explained by the model.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000387737900007 Publication Date 2016-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 16 Open Access  
  Notes Federaal Wetenschapsbeleid; Fonds Wetenschappelijk Onderzoek; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @ c:irua:140082 c:irua:139167 Serial 4414  
Permanent link to this record
 

 
Author Verlackt, C.C.W.; Van Boxem, W.; Dewaele, D.; Lemière, F.; Sobott, F.; Benedikt, J.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Mechanisms of Peptide Oxidation by Hydroxyl Radicals: Insight at the Molecular Scale Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 121 Pages 5787-5799  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics (MD) simulations were performed to provide atomic scale insight in the initial interaction between hydroxyl radicals (OH) and peptide systems in solution. These OH radicals are representative reactive oxygen species produced by cold atmospheric plasmas. The use of plasma for biomedical applications is gaining increasing interest, but the fundamental mechanisms behind the plasma modifications still remain largely elusive. This study helps to gain more insight in the underlying mechanisms of plasma medicine but is also more generally applicable to peptide oxidation, of interest for other applications. Combining both reactive and nonreactive MD simulations, we are able to elucidate the reactivity of the amino acids inside the peptide systems and their effect on their structure up to 1 μs. Additionally, experiments were performed, treating the simulated peptides with a plasma jet. The computational results presented here correlate well with the obtained experimental data and highlight the importance of the chemical environment for the reactivity of the individual amino acids, so that specific amino acids are attacked in higher numbers than expected. Furthermore, the long time scale simulations suggest that a single oxidation has an effect on the 3D conformation due to an increase in hydrophilicity and intra- and intermolecular interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000396969900037 Publication Date 2017-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 5 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G012413N ; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @ c:irua:142202 Serial 4537  
Permanent link to this record
 

 
Author Mernissi Cherigui, E.A.; Sentosun, K.; Bouckenooge, P.; Vanrompay, H.; Bals, S.; Terryn, H.; Ustarroz, J. url  doi
openurl 
  Title A Comprehensive Study of the Electrodeposition of Nickel Nanostructures from Deep Eutectic Solvents: Self-Limiting Growth by Electrolysis of Residual Water Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 121 Pages 9337-9347  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The electrodeposition of nickel nanostructures on glassy carbon was investigated in 1:2 choline chloride – urea (1:2 ChCl-U) deep eutectic solvent (DES). By combining electrochemical techniques with ex-situ FE-SEM, XPS, HAADF-STEM and EDX, the electrochemical processes occurring during nickel deposition were better understood. Special attention was given to the interaction between the solvent and the growing nickel nanoparticles. The application of a suffciently negative potential results into the electrocatlytic hydrolisis of residual water in the DES, which leads to the formation of a mixed layer of Ni/Ni(OH)2(ads). In addition, hydrogen bonds between hydroxide species and the DES components could be formed, quenching the growth of the nickel clusters favouring their aggregation. Due to these processes, a highly dense distribution of nickel nanostructures can be obtained within a wide potential range. Understanding the role of residual water and the interactions at the interface during metal electrodeposition from DESs is essential to produce supported nanostructures in a controllable way for a broad range of applications and technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000400881100027 Publication Date 2017-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 66 Open Access OpenAccess  
  Notes E.A. Mernissi Cherigui acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, research project G019014N). S. Bals acknowledges funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). H.V. gratefully acknowledges financial support by the Flemish Fund for Scientifi c Research (FWO Vlaanderen). Finally, J. Ustarroz acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 4.536  
  Call Number EMAT @ emat @ c:irua:142208UA @ admin @ c:irua:142208 Serial 4551  
Permanent link to this record
 

 
Author Berthelot, A.; Bogaerts, A. pdf  url
doi  openurl
  Title Modeling of CO2Splitting in a Microwave Plasma: How to Improve the Conversion and Energy Efficiency Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 121 Pages 8236-8251  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Microwave plasmas are one of the most promising techniques for CO2 conversion into value-added chemicals and fuels since they are very energy efficient. Nevertheless, experiments show that this high energy efficiency is only reached at low pressures and significantly drops toward atmospheric pressure, which is a clear limitation for industrial applications. In this paper, we use a zerodimensional reaction kinetics model to simulate a CO2 microwave plasma in a pressure range from 50 mbar to 1 bar, in order to evaluate the reasons for this decrease in energy efficiency at atmospheric pressure. The code includes a detailed description of the vibrational kinetics of CO2, CO, and O2 as well as the energy exchanges between them because the vibrational kinetics is known to be crucial for energy efficient CO2 splitting. First, we use a self-consistent gas temperature calculation in order to assess the key performance indicators for CO2 splitting, i.e., the CO2 conversion and corresponding energy efficiency. Our results indicate that lower pressures and higher power densities lead to more vibrational excitation, which is beneficial for the conversion. We also demonstrate the key role of the gas temperature. The model predicts the highest conversion and energy efficiencies at pressures around 300 mbar, which is in agreement with experiments from the literature. We also show the beneficial aspect of fast gas cooling in the afterglow at high pressure. In a second step, we study in more detail the effects of pressure, gas temperature, and power density on the vibrational distribution function and on the dissociation and recombination mechanisms of CO2, which define the CO2 splitting efficiency. This study allows us to identify the limiting factors of CO2 conversion and to propose potential solutions to improve the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000400039300002 Publication Date 2017-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 47 Open Access OpenAccess  
  Notes Federaal Wetenschapsbeleid; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @ c:irua:142809 Serial 4567  
Permanent link to this record
 

 
Author Benetti, G.; Caddeo, C.; Melis, C.; Ferrini, G.; Giannetti, C.; Winckelmans, N.; Bals, S.; J Van Bael, M.; Cavaliere, E.; Gavioli, L.; Banfi, F. pdf  url
doi  openurl
  Title Bottom-Up Mechanical Nanometrology of Granular Ag Nanoparticles Thin Films Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 121 Pages 22434-22441  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Ultrathin metal nanoparticles coatings, synthesized by gas-phase deposition, are emerging as go-to materials in a variety of fields ranging from pathogens control, sensing to energy storage. Predicting their morphology and mechanical properties beyond a trial-and-error approach is a crucial issue limiting their exploitation in real-life applications. The morphology and mechanical properties of Ag nanoparticles ultrathin films, synthesized by supersonic cluster beam deposition, are here assessed adopting a bottom-up, multi-technique approach. A virtual film model is proposed merging high resolution scanning transmission electron microscopy, supersonic cluster beam dynamics and molecular dynamics simulations. The model is validated against mechanical nanometrology measurements and is readily extendable to metals other than Ag. The virtual film is shown to be a flexible and reliable predictive tool to access morphology-dependent properties such as mesoscale gas-dynamics and elasticity of ultrathin films synthesized by gas-phase deposition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413131700072 Publication Date 2017-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 30 Open Access OpenAccess  
  Notes ; All authors thank Prof. Dr. Luciano Colombo for enlightening discussions. C.C. and F.B. acknowledge financial support from the MIUR Futuro in ricerca 2013 Grant in the frame of the ULTRANANO Project (Project No. RBFR13NEA4). F.B., G.F., and C.G. acknowledge support from Universita Cattolica del Sacro Cuore through D.2.2 and D.3.1 grants. F.B. acknowledges financial support from Fondazione E.U.L.O. The authors acknowledge financial support from the European Union through the seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). ; Approved Most recent IF: 4.536  
  Call Number EMAT @ emat @c:irua:145828UA @ admin @ c:irua:145828 Serial 4706  
Permanent link to this record
 

 
Author Trenchev, G.; Kolev, S.; Wang, W.; Ramakers, M.; Bogaerts, A. pdf  url
doi  openurl
  Title CO2Conversion in a Gliding Arc Plasmatron: Multidimensional Modeling for Improved Efficiency Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 44 Pages 24470-24479  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The gliding arc plasmatron (GAP) is a highly efficient atmospheric plasma source, which is very promising for CO2 conversion applications. To understand its operation principles and to improve its application, we present here comprehensive modeling results, obtained by means of computational fluid dynamics simulations and plasma modeling. Because of the complexity of the CO2 plasma, a full 3D plasma model would be computationally impractical. Therefore, we combine a 3D turbulent gas flow model with a 2D plasma and gas heating model in order to calculate the plasma parameters and CO2 conversion characteristics. In addition, a complete 3D gas flow and plasma model with simplified argon chemistry is used to evaluate the gliding arc evolution in space and time. The calculated values are compared with experimental data from literature as much as possible in order to validate the model. The insights obtained in this study are very helpful for improving the application of CO2 conversion, as they allow us to identify the limiting factors in the performance, based on which solutions can be provided on how to further improve the capabilities of CO2 conversion in the GAP.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000415140400014 Publication Date 2017-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access OpenAccess  
  Notes H2020 Marie Sklodowska-Curie Actions, 657304 ; Fonds Wetenschappelijk Onderzoek, 11U5316N G038316N ; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:147193 Serial 4765  
Permanent link to this record
 

 
Author Kus, M.; Altantzis, T.; Vercauteren, S.; Caretti, I.; Leenaerts, O.; Batenburg, K.J.; Mertens, M.; Meynen, V.; Partoens, B.; Van Doorslaer, S.; Bals, S.; Cool, P. pdf  url
doi  openurl
  Title Mechanistic Insight into the Photocatalytic Working of Fluorinated Anatase {001} Nanosheets Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 121 Pages 26275-26286  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Anatase nanosheets with exposed {001} facets

have gained increasing interest for photocatalytic applications. To

fully understand the structure-to-activity relation, combined

experimental and computational methods have been exploited.

Anatase nanosheets were prepared under hydrothermal conditions

in the presence of fluorine ions. High resolution scanning

transmission electron microscopy was used to fully characterize

the synthesized material, confirming the TiO2 nanosheet

morphology. Moreover, the surface structure and composition

of a single nanosheet could be determined by annular bright-field

scanning transmission electron microscopy (ABF-STEM) and

STEM electron energy loss spectroscopy (STEM-EELS). The photocatalytic activity was tested for the decomposition of organic

dyes rhodamine 6G and methyl orange and compared to a reference TiO2 anatase sample. The anatase nanosheets with exposed

{001} facets revealed a significantly lower photocatalytic activity compared to the reference. In order to understand the

mechanism for the catalytic performance, and to investigate the role of the presence of F−, light-induced electron paramagnetic

resonance (EPR) experiments were performed. The EPR results are in agreement with TEM, proving the presence of Ti3+

species close to the surface of the sample and allowing the analysis of the photoinduced formation of paramagnetic species.

Further, ab initio calculations of the anisotropic effective mass of electrons and electron holes in anatase show a very high effective

mass of electrons in the [001] direction, having a negative impact on the mobility of electrons toward the {001} surface and thus

the photocatalysis. Finally, motivated by the experimental results that indicate the presence of fluorine atoms at the surface, we

performed ab initio calculations to determine the position of the band edges in anatase slabs with different terminations of the

{001} surface. The presence of fluorine atoms near the surface is shown to strongly shift down the band edges, which indicates

another reason why it can be expected that the prepared samples with a large amount of {001} surface, but with fluorine atoms

near the surface, show only a low photocatalytic activity.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000417228500017 Publication Date 2017-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 20 Open Access OpenAccess  
  Notes The authors acknowledge the University of Antwerp for financial support in the frame of a GOA project. S.B. acknowledges funding from the European Research Council under the Seventh Framework Program (FP7), ERC Grant No. 335078 COLOURATOM. S.V.D. and V.M. acknowledge funding from the Fund for Scientific Research-Flanders (G.0687.13). T.A. acknowledges financial support from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 4.536  
  Call Number EMAT @ emat @c:irua:147240UA @ admin @ c:irua:147240 Serial 4771  
Permanent link to this record
 

 
Author Heijkers, S.; Bogaerts, A. pdf  url
doi  openurl
  Title CO2Conversion in a Gliding Arc Plasmatron: Elucidating the Chemistry through Kinetic Modeling Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 41 Pages 22644-22655  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract By means of chemical kinetics modeling, it is possible to elucidate the main dissociation mechanisms of CO2 in a gliding arc plasmatron (GAP). We obtain good agreement between the calculated and experimental conversions and energy efficiencies, indicating that the model can indeed be used to study the underlying mechanisms. The calculations predict that vibration-induced dissociation is the main dissociation mechanism of CO2, but it occurs mainly from the lowest vibrational levels because of fast thermalization of the vibrational distribution. Based on these findings, we propose ideas for improving the performance of the GAP, but testing of these ideas in the simulations reveals that they do not always lead to significant enhancement, because of other side effects, thus illustrating the complexity of the process. Nevertheless, the model allows more insight into the underlying mechanisms to be obtained and limitations to be identified.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413617900007 Publication Date 2017-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 6 Open Access OpenAccess  
  Notes Federaal Wetenschapsbeleid, IAP/7 ; Fonds Wetenschappelijk Onderzoek, G.0383.16N ; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:147436 Serial 4801  
Permanent link to this record
 

 
Author Winckelmans, N.; Altantzis, T.; Grzelczak, M.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Bals, S. url  doi
openurl 
  Title Multimode Electron Tomography as a Tool to Characterize the Internal Structure and Morphology of Gold Nanoparticles Type A1 Journal article
  Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 122 Pages 13522-13528  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Three dimensional (3D) characterization of structural defects in nanoparticles by transmission electron microscopy is far from straightforward. We propose the use of a dose-efficient approach, so-called multimode tomography, during which tilt series of low and high angle annular dark field scanning transmission electron microscopy projection images are acquired simultaneously. In this manner, not only reliable information can be obtained concerning the shape of the nanoparticles, but also the twin planes can be clearly visualized in 3D. As an example, we demonstrate the application of this approach to identify the position of the seeds with respect to the twinning planes in anisotropic gold nanoparticles synthesized using a seed mediated growth approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000437811500036 Publication Date 2018-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 23 Open Access OpenAccess  
  Notes S.B. and N.W. acknowledge funding from the European Research Council under the Seventh Framework Program (FP7), ERC Grant No. 335078 COLOURATOM. S.B. and T.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0369.15N and G.0218.14N) and a postdoctoral research grant to T.A. L.M.L.-M. and M.G. acknowledge funding from the Spanish Ministerio de Economía y Competitividad (grant MAT2013-46101-R). L.M.L.-M. and S.B. acknowledge funding from the European Commission (grant EUSMI 731019). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 4.536  
  Call Number EMAT @ emat @c:irua:148164UA @ admin @ c:irua:148164 Serial 4807  
Permanent link to this record
 

 
Author Yang, Z.; Altantzis, T.; Bals, S.; Tendeloo, G.V.; Pileni, M.-P. url  doi
openurl 
  Title Do Binary Supracrystals Enhance the Crystal Stability? Type A1 Journal article
  Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 122 Pages 13515-13521  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We study the oxygen thermal stability of two binary

systems. The larger particles are magnetic amorphous Co (7.2 nm) or

Fe3O4 (7.5 nm) nanocrystals, whereas the smaller ones (3.7 nm) are

Au nanocrystals. The nanocrystal ordering as well as the choice of the

magnetic nanoparticles very much influence the stability of the binary

system. A perfect crystalline structure is obtained with the Fe3O4/Au

binary supracrystals. For the Co/Au binary system, oxidation of Co

results in the chemical transformation from Co to CoO, where the size

of the amorphous Co nanoparticles increases from 7.2 to 9.8 nm in

diameter. During the volume expansion of the Co nanoparticles, Au

nanoparticles within the binary assemblies coalesce and are at the

origin of the instability of the binary nanoparticle supracrystals. On the

other hand, for the Fe3O4/Au binary system, the oxidation of Fe3O4 to

γ-Fe2O3 does not lead to a size change of the nanoparticles, which

maintains the stability of the binary nanoparticle supracrystals. A similar behavior is observed for an AlB2-type Co−Ag binary

system: The crystalline structure is maintained, whereas in disordered assemblies, coalescence of Ag nanocrystals is observed.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000437811500035 Publication Date 2018-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 5 Open Access OpenAccess  
  Notes The research leading to these results has been supported by an Advanced Grant of the European Research Council under Grant 267129. The authors appreciate financial support by the European Union under the Framework 7 program under a contract for an Integrated Infrastructure Initiative (Reference No. 262348 ESMI). S.B. acknowledges funding from ERC Starting Grant COLOURATOMS (335078). T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO, Belgium). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ecas_sara Approved Most recent IF: 4.536  
  Call Number EMAT @ emat @c:irua:149388UA @ admin @ c:irua:149388 Serial 4812  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: