|
Record |
Links |
|
Author |
Kus, M.; Altantzis, T.; Vercauteren, S.; Caretti, I.; Leenaerts, O.; Batenburg, K.J.; Mertens, M.; Meynen, V.; Partoens, B.; Van Doorslaer, S.; Bals, S.; Cool, P. |
|
|
Title |
Mechanistic Insight into the Photocatalytic Working of Fluorinated Anatase {001} Nanosheets |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
The journal of physical chemistry: C : nanomaterials and interfaces |
Abbreviated Journal |
J Phys Chem C |
|
|
Volume |
121 |
Issue |
121 |
Pages |
26275-26286 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Laboratory of adsorption and catalysis (LADCA) |
|
|
Abstract |
Anatase nanosheets with exposed {001} facets
have gained increasing interest for photocatalytic applications. To
fully understand the structure-to-activity relation, combined
experimental and computational methods have been exploited.
Anatase nanosheets were prepared under hydrothermal conditions
in the presence of fluorine ions. High resolution scanning
transmission electron microscopy was used to fully characterize
the synthesized material, confirming the TiO2 nanosheet
morphology. Moreover, the surface structure and composition
of a single nanosheet could be determined by annular bright-field
scanning transmission electron microscopy (ABF-STEM) and
STEM electron energy loss spectroscopy (STEM-EELS). The photocatalytic activity was tested for the decomposition of organic
dyes rhodamine 6G and methyl orange and compared to a reference TiO2 anatase sample. The anatase nanosheets with exposed
{001} facets revealed a significantly lower photocatalytic activity compared to the reference. In order to understand the
mechanism for the catalytic performance, and to investigate the role of the presence of F−, light-induced electron paramagnetic
resonance (EPR) experiments were performed. The EPR results are in agreement with TEM, proving the presence of Ti3+
species close to the surface of the sample and allowing the analysis of the photoinduced formation of paramagnetic species.
Further, ab initio calculations of the anisotropic effective mass of electrons and electron holes in anatase show a very high effective
mass of electrons in the [001] direction, having a negative impact on the mobility of electrons toward the {001} surface and thus
the photocatalysis. Finally, motivated by the experimental results that indicate the presence of fluorine atoms at the surface, we
performed ab initio calculations to determine the position of the band edges in anatase slabs with different terminations of the
{001} surface. The presence of fluorine atoms near the surface is shown to strongly shift down the band edges, which indicates
another reason why it can be expected that the prepared samples with a large amount of {001} surface, but with fluorine atoms
near the surface, show only a low photocatalytic activity. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000417228500017 |
Publication Date |
2017-11-30 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1932-7447 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.536 |
Times cited |
20 |
Open Access |
OpenAccess |
|
|
Notes |
The authors acknowledge the University of Antwerp for financial support in the frame of a GOA project. S.B. acknowledges funding from the European Research Council under the Seventh Framework Program (FP7), ERC Grant No. 335078 COLOURATOM. S.V.D. and V.M. acknowledge funding from the Fund for Scientific Research-Flanders (G.0687.13). T.A. acknowledges financial support from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); saraecas; ECAS_Sara; |
Approved |
Most recent IF: 4.536 |
|
|
Call Number |
EMAT @ emat @c:irua:147240UA @ admin @ c:irua:147240 |
Serial |
4771 |
|
Permanent link to this record |