

This item is the archived peer-reviewed author-version of:

 CO_2 conversion in a gliding arc plasmatron : multidimensional modeling for improved efficiency

Reference:

Trenchev Georgi, Kolev St., Wang Weizong, Ramakers Marleen, Bogaerts Annemie.- CO_2 conversion in a gliding arc plasmatron : multidimensional modeling for improved efficiency

The journal of physical chemistry : C : nanomaterials and interfaces - ISSN 1932-7455 - 121:44(2017), p. 24470-24479

Full text (Publisher's DOI): https://doi.org/10.1021/ACS.JPCC.7B08511

Full text (Publisher's DOI): https://doi.org/10.1140/EPJC/S10052-017-5140-Y

To cite this reference: https://hdl.handle.net/10067/1471930151162165141

uantwerpen.be

Institutional repository IRUA

CO₂ Conversion in a Gliding Arc Plasmatron: Multi-Dimensional Modelling for Improved Efficiency

Supporting information

G Trenchev¹, St Kolev², W Wang¹, M Ramakers¹ and A Bogaerts¹*

¹Research group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium ²Eagulty of Physics, Sofia University, 5 James Bourshier Bouleverd, 1164 Sofia, Bulgaria

²Faculty of Physics, Sofia University, 5 James Bourchier Boulevard, 1164 Sofia, Bulgaria

1. Gas flow model

The flow calculation is performed by means of the CFD module in COMSOL¹. This module includes several sub-modules for different applications. Typical CFD applications involve solving the Navier-Stokes equations for momentum and mass continuity. Simpler cases may use a Stokes flow approximation, where the inertial term is omitted. High-velocity and complex geometry problems should use turbulent models, which reduce the computational costs in comparison with methods like the Direct Numerical Simulation (DNS), which solves the full equations, or the Large Eddy Simulation, which solves only the most significant turbulent features in the flow completely. The turbulent model chosen in our study is the RANS (Reynolds-Averaged-Navier-Stokes) SST (Shear Stress Tensor) model².

In general, all RANS models solve the following equations:

$$\nabla . \left(\rho \overline{u_g}\right) = 0 \tag{1}$$

$$\rho(\overrightarrow{u_g},\nabla)\overrightarrow{u_g} = \nabla \left[-p\overrightarrow{l} + (\mu + \mu_T)\left(\nabla \overrightarrow{u_g} + \nabla(\overrightarrow{u_g})^T\right) - \frac{2}{3}(\mu + \mu_T)\left(\nabla . \overrightarrow{u_g}\right)\overrightarrow{l} - \frac{2}{3}\rho s_T\overrightarrow{l}\right] + \overrightarrow{F}$$
(2)

Equations 1 and 2 represent the mass and momentum continuity equations in the RANS model, where ρ stands for the gas density, $\vec{u_g}$ is the gas flow velocity vector, superscript *T* stands for transposition, *p* is the gas pressure, μ is the dynamic viscosity of the fluid, μ_T is the turbulent viscosity of the fluid, s_T is the turbulent kinetic energy, \vec{l} is the unity tensor and \vec{F} is the body force vector, which in our case is not used. The viscous layer at the boundaries is fully resolved, i.e. the model is more accurate for the flow near the walls than in models where so-called wall functions are used, i.e., analytical solutions for the behavior near the walls. The model includes two more equations, in addition to equations 1 and 2, i.e., for the turbulent kinetic energy s_T and the specific dissipation ω :

$$\rho(\overrightarrow{u_g} \cdot \nabla) s_T = \nabla \cdot [(\mu + \mu_T \sigma_k) \nabla s_T] + P - \beta_0 \rho \omega s_T$$
(3)

$$\rho(\overrightarrow{u_g} \cdot \nabla) s_T = \nabla \cdot \left[(\mu + \mu_T \sigma_\omega) \nabla \omega \right] + \frac{\gamma}{\mu_T} \rho P - \rho \beta_0 \omega^2 + 2(1 - f_{\nu 1}) \frac{\sigma_{\omega 2}}{\omega} \nabla s_T \cdot \nabla \omega \tag{4}$$

Where:

$$P = \min(P_k 10\rho\beta_0 s_T \omega) \tag{5}$$

$$P_{k} = \mu_{T} \left(\nabla \overrightarrow{u_{g}}: \left(\nabla \overrightarrow{u_{g}} + \left(\nabla \overrightarrow{u_{g}} \right)^{T} \right) - \frac{2}{3} \left(\nabla \cdot \overrightarrow{u_{g}} \right)^{2} \right) - \frac{2}{3} \rho s_{T} \nabla \cdot \overrightarrow{u_{g}}$$
(6)

$$\mu_T = \frac{\rho a_1 s_T}{max(a_1\omega, Sf_{\nu 2})} \tag{7}$$

$$S = \sqrt{2S_{ij}S_{ij}} \tag{8}$$

In equation (8), S stands for the characteristic magnitude of the mean velocity gradients. β_0 is a model interpolation constant. In equation (7), f_{v2} stands for interpolation function:

$$f_{\nu 2} = tanh(\theta_2^2) \tag{9}$$

$$\theta_2 = max \left(\frac{2\sqrt{s_T}}{\beta_0 \omega l_w^2}\right) \tag{10}$$

The boundary conditions implemented in this model are summarized in Table S1.

Boundary	Expression	Note
Walls	$\overrightarrow{u_q} = 0$	Zero velocity
Inlet	$\vec{u} = -u_0 \vec{n}$	Velocity
Outlet	$\left[-p\vec{I} + (\mu + \mu_T)\left(\nabla \vec{u_g} + \left(\nabla \vec{u_g}\right)^T\right) - \frac{2}{3}(\mu + \mu_T)\left(\nabla \cdot \vec{u_g}\right)\vec{I} - \frac{2}{3}\rho S_T \vec{I}\right]\vec{n} = -\widehat{p_0}\vec{n}$	Pressure
Outlet	$-\widehat{p_0} \le p_0$	Suppress

Table S1. Boundary conditions for the flow model.

 \vec{n} is the normal vector, \vec{l} is the unity tensor, p_0 is the atmospheric pressure, $\widehat{p_0}$ is the adjusted pressure

A stationary solver with a wall distance l_w initialization is used to compute the model.

2. Turbulent heat transfer

The turbulent heat transfer is computed by enabling the multi-physics node in $COMSOL^1$. The turbulent flow module (described above) is combined with the Heat Transfer module. In essence, a distribution of the turbulent heat conductivity is computed by the turbulent model output variables. Then, an effective heat conductivity, which combines the turbulent one with the static gas conductivity, is used in the heat transfer equation. The heat transfer equation is denoted as:

$$\rho C_p \frac{\partial T_g}{\partial t} + \rho C_p \overrightarrow{u_g} \cdot \nabla T_g - \nabla \cdot \left(\left(k_g + k_T \right) \nabla T_g \right) = Q \tag{11}$$

where C_p is the specific heat capacity of the gas, k_g is the temperature-dependent gas thermal conductivity (based on a material look-up table), k_T is the turbulent heat conductivity of the fluid, T_g is the gas temperature and Q accounts for the gas heating due to elastic and inelastic collisions between electrons and heavy particles in the plasma.

The Kays-Crawford model³ accounts for the resulting turbulent heat conductivity. It is solved for the turbulent Prandtl number, which is the ratio of the momentum eddy diffusivity and heat transfer eddy diffusivity. It is expressed with the following equation:

$$Pr_{T} = \left(\frac{1}{2Pr_{T\infty}} + \frac{0.3}{\sqrt{Pr_{T\infty}}}\frac{C_{p}\mu_{T}}{k_{g}} - \left(0.3\frac{C_{p}\mu_{T}}{k_{g}}\right)^{2} \left(1 - e^{-k_{g}/(0.3C_{p}\mu_{T}\sqrt{Pr_{T\infty}})}\right)\right)^{-1}$$
(12)

where Pr_T is the turbulent Prandtl number and $Pr_{T\infty}$ is the turbulent Prandtl number at infinity (~0.85). For turbulent models, the turbulent heat conductivity is given as:

$$k_T = \frac{C_P \mu_T}{P r_T} \tag{13}$$

The conductive heat flux in equation 5 is then defined using the sum of the gas thermal conductivity and the turbulent thermal conductivity:

$$q = -(k_g + k_T)\nabla T_g \tag{14}$$

In this way, turbulence acts as an enhancement to the gas thermal conductivity through intense eddy mixing, resulting in a higher effective value for heat conduction for the conditions of the considered discharge, i.e. heat transfer is dominated by turbulent effects.

3. 3D argon plasma model

The 3D plasma model is based on the simplified argon chemistry, presented in previous works ⁴. This model is comparable with more complex chemistry models ⁵. It is a fluid plasma model, built upon the assumption of a quasi-neutral plasma, i.e. ion and electron densities are equal. The model is constructed using the Math module in COMSOL. The following equation is solved for the ion density:

$$\frac{\partial n_i}{\partial t} + \nabla . \left(-D_i \nabla n_i + \mu_i n_i \overline{E_{amb}} \right) + \left(\vec{u}_g . \nabla \right) n_i = R_i$$
⁽¹⁵⁾

where n_i stands for the ion density, μ_i stands for the ion mobility, $\overline{E_{amb}}$ is the ambipolar electric field, \vec{u}_g is the gas flow velocity vector, D_i is the ion diffusion coefficient, and R_i stands for the ion production and loss rates due to chemical reactions. The electron density n_e is derived from the quasi-neutrality condition, which in this case is $n_e = n_i$ since only a single type of ion is considered in the model. The average electron energy $\bar{\varepsilon}_e$ is calculated through:

$$\frac{\partial n_e \bar{\varepsilon}_e}{\partial t} + \nabla \left(-\mu_{\varepsilon,e} n_e \vec{E} - D_{\varepsilon,e} \nabla (n_e \bar{\varepsilon}_e) \right) + \left(\vec{u}_g \cdot \nabla \right) n_e \bar{\varepsilon}_e = q_e \vec{E} \cdot \vec{G}_e + n_e \Delta \bar{\varepsilon}_e + Q_{bg} \tag{16}$$

Where Q_{bg} stands for the stabilizing background heat source and the electron flux is derived from:

$$G_e = -D_e \nabla n_e - \mu_e n_e \overline{E_{amb}} \tag{17}$$

The terms $\mu_{\varepsilon,e}$ and $D_{\varepsilon,e}$ stand for the energy mobility and diffusion, respectively:

$$\mu_{\varepsilon,e} = \frac{5}{3}\mu_e \tag{18}$$

$$D_{\varepsilon,e} = \frac{2}{3} \mu_{\varepsilon,e} \bar{\varepsilon_e} \tag{19}$$

The balance for the excited species is solved as:

$$\frac{\partial n_*}{\partial t} + \nabla . \left(D_* \nabla n_* \right) = R_* \tag{20}$$

The ambipolar electric field is solved as follows:

$$\overline{E_{amb}} = \frac{\nabla n_i (-D_e + D_i)}{n_i (\mu_i + \mu_e)}$$
(21)

Instead of the Poisson equation, the charge conservation equation is solved:

$$\nabla \left[\sigma_{pl}(-\nabla\varphi)\right] = 0 \tag{22}$$

where σ_{pl} stands for the plasma conductivity and φ stands for electric potential.

$$\sigma_{pl} = |q_e|(\mu_e n_e + \mu_i n_i) \tag{23}$$

A reduced set of electron collisions is used in the model, as presented in Table S2. The reaction rates are obtained from argon cross-sections with Bolsig+.

<u>^</u>		
Reaction	Rate coefficient	Ref.
$e + Ar \rightarrow e + Ar$	BS^a	6
$e + Ar \rightarrow e + Ar(4s)$	BS	6
$e + Ar(4s) \rightarrow 2e + Ar^+$	BS	6
$Ar^+ + e + Ar \rightarrow Ar + Ar$	$k(m^{6}/c) = 1.5 \times 10^{-40} \left(\frac{T_{g}}{c}\right)^{-2.5} b$	5
- 1		

Table S2. Electron impact reaction set assumed in the model.

^aBoltzmann solver, ^bT_g in K

The boundary conditions implemented in the model are presented in table S3:

Boundary	Expression	Note
Walls	$-\vec{n}\cdot\left(-D_i abla n_i-\mu_i n_i\overline{E_{amb}} ight)=0$	No flux
Walls	$-\vec{n} \cdot \left(-\mu_{\varepsilon,e} n_e \overline{E_{amb}} - D_{\varepsilon,e} \nabla(n_e \overline{\varepsilon_e})\right) = 0$	No flux
Walls	$-\vec{n}\cdot(D_*\nabla n_*)=0$	No flux
Walls	$-\vec{n}\cdot\left(-k\nabla T_g\right)=0$	Adiabatic wall
Cathode	U = -1000V	Cathode voltage
Anode	U = 0V	Ground

Table S3. Boundary conditions used in the model.

The gliding arc current is calculated from a discharge control circuit featuring a ballast resistor.

Figure S1. Electrical scheme of the model with cathode (red) and anode (blue).

In figure S1, the ballast resistor limits the arc current, and it can be set in accordance with the desired current (i.e. 1320 Ω for 240 mA in the 3D argon model). The capacitor Cb (100pF) serves for reducing the voltage spikes. The electrodes are depicted in red (cathode) and blue (anode).

4. 2D CO₂ plasma model

The CO_2 plasma model uses the principle described above, and its chemistry is adopted from ⁷. The species included in the model are described in the main paper, while the electron impact reactions, ion reactions and vibrational energy transfer reactions are summarized in tables S4-S7.

Process	Reaction	Rate coefficient
Elastic collision ^a	$e + CO_2 \rightarrow e + CO_2$	EEDF
Ionization ^a	$e + CO_2 \rightarrow e + e + CO_2^+$	EEDF
Dissociative attachment ^b	$e + CO_2 \rightarrow O^- + CO$	EEDF
Dissociation ^{b, d}	$e + CO_2 \rightarrow e + CO + O$	EEDF
Electronic excitation ^a	$e + CO_2 \rightarrow e + CO_2 e1$	EEDF
Vibrational excitation	$e + CO_2 \rightarrow e + CO_2 v_a$	EEDF
Vibrational excitation	$e + CO_2 \rightarrow e + CO_2 v_b$	EEDF
Vibrational excitation	$e + CO_2 \rightarrow e + CO_2 v_c$	EEDF
Vibrational excitation	$e + CO_2 \rightarrow e + CO_2 v_d$	EEDF
Vibrational excitation	$e + CO_2 \rightarrow e + CO_2 v_i (i = 1 - 21)$	EEDF
Elastic collision	$e + CO \rightarrow e + CO$	EEDF
Dissociation	$e + CO \rightarrow e + C + O$	EEDF
Dissociative attachment	$e + CO \rightarrow C + O^{-}$	EEDF
Elastic collision ^a	$e + O_2 -> e + O_2$	EEDF
Dissociation ^b	$e + O_2 \rightarrow e + O + O$	EEDF
Ionization ^a	$e + O_2 -> e + e + O_2^+$	EEDF

Table S4. Electron impact reactions included in the model

Dissociative attachment ^b	$e + O_2 -> O + O^-$	EEDF
Attachment ^a	$e + O_2 + M -> M + O_2^-$	EEDF
Vibrational excitation	$e + O_2 \rightarrow e + O_2 v_{1, 2, 3}$	EEDF
Attachment	$e + O + M \rightarrow M + O^-$	1×10^{-31}
Electron-ion recombination	$e + CO_2^+ \rightarrow CO + O$	$2 \times 10^{-5} T_e^{-0.5} / T_g$
Electron-ion recombination	$e + CO_2^+ \to C + O_2$	$3.94 \times 10^{-7} T_e^{-0.4}$
Electron-ion recombination	$e + O_2^+ + M -> O_2 + M$	1×10^{-26}
Electron-ion recombination	$e + O_2^+ -> O + O$	$6 \times 10^{-7} T_e^{-0.5} T_g^{-0.5}$

^aSame cross section used for reactions of CO_2v_i , and idem for O_2v_i .

^bCross section also used for reactions of CO_2v_i , and for O_2v_i , but modified by lowering the energy threshold by the excited state energy.

^cCross section also used for reactions of CO₂vi, but scaled and shifted in energy using Fridman's approximation ⁸.

^dDissociation through electron impact excitation with 7.0 eV threshold.

Most rate coefficients are calculated from the cross sections and the electron energy distribution function, calculated in BOLSIG+, as indicated in the table by EEDF. Some rate coefficients (e.g. for electron–ion recombination) are directly adopted from literature. They are expressed in $(\text{cm}^3 \cdot \text{s}^{-1})$ or $(\text{cm}^6 \cdot \text{s}^{-1})$ for the two-body and three-body reactions, respectively. T_e is in eV and T_g is in K.

Table S5. Ion reactions included in the model

Process	Reaction	Rate coefficient	
Recombination	$O^{-} + CO_2 + M -> CO_3^{-} + M$	9.0×10^{-29}	
Electron detachment	$O^- + CO \rightarrow CO_2 + e$	5.5×10^{-10}	
Electron detachment	$CO_3^- + CO \rightarrow 2CO_2 + e$	5.0×10^{-13}	
Recombination	$CO_3^- + CO_2^+ \rightarrow 2CO_2 + O$	5.0×10^{-7}	
Electron detachment	$O^{-} + M - e + O + M$	4.0×10^{-12}	
Electron detachment	$O^{-} + O -> e + O_{2}$	2.3×10^{-10}	
Charge transfer	$O_2^- + O -> O^- + O_2$	3.3×10^{-10}	
Electron detachment	$O_2^- + O_2 -> O_2 + O_2 + e$	2.18×10^{-18}	
Electron detachment	$O_2^- + M -> O_2 + M + e$	$2.70 \times 10^{-10} (T_a/300)^{0.5} \exp(-5590/T_a)$	
Charge transfer	$O + CO_3^> CO_2 + O_2^-$	8.0×10^{-11}	
Recombination	$O_2^- + CO_2^+ -> CO + O_2 + O$	6.0×10^{-7}	
Charge transfer	$O_2 + CO_2^+ \rightarrow CO_2 + O_2^+$	5.3×10^{-11}	
Charge transfer	$O + CO_2^+ -> CO_2 + O_2^+$	1.64×10^{-10}	
Recombination	$O_2^+ + CO_3^- \rightarrow CO_2 + O_2 + O_2$	3.0×10^{-7}	
Recombination	$O_2^+ + O_2^> O_2 + O_2$	2.0×10^{-7}	
Recombination	$O_2^+ + O_2^> O_2 + O + O$	4.2×10^{-7}	
Recombination	$O_2^+ + O_2^- + M \rightarrow O_2 + O_2 + M$	2.0×10^{-25}	
Recombination	$O_2^+ + O^> O_2 + O$	1.0×10^{-7}	
Recombination	$O_2^+ + O_2^- \rightarrow O_2 + O + O$	2.6×10^{-8}	

M represents any neutral species taken into account in the model. The same rate coefficient is used for every species. The rate coefficients are in $(cm^3 \cdot s^{-1})$ or $(cm^6 \cdot s^{-1})$ for the two-body and three-body reactions, respectively.

Table S6. Vibrational energy transfer reactions included in the model

Process	Reaction	Rate coefficient
VT relaxation ^a	$CO_2 v_{a, b, c, d} + M \rightarrow CO_2 + M$	$7.14 \times 10^{-8} exp(-177/T_g^{-1/3} + 451/T_g^{-2/3})$
VT relaxation ^{a, b}	$CO_2v_I + M \rightarrow CO_2v_a + M$	$0.43exp(-407/T_g^{-1/3}+824/T_g^{-2/3})$
VT relaxation ^{a, b}	$CO_2v_l + M \rightarrow CO_2v_b + M$	$0.86exp(-404/T_g^{-1/3} + 1096/T_g^{-2/3})$
VT relaxation ^{a, b}	$CO_2v_1 + M \rightarrow CO_2v_c + M$	$1.43 \times 10^{-5} exp(-252/T_g^{-1/3} + 685/T_g^{-2/3})$
VV relaxation	$CO_2v_i + CO_2 -> CO_2v_{i-1} + CO_2v_{a,b}$ $(i \ge 2)$	$2.13 \times 10^{-5} exp(-242/T_g^{-1/3} + 633/T_g^{-2/3})$
VV relaxation ^c	$CO_2v_i + CO_2v_j \rightarrow CO_2v_{i-1} + CO_2v_{j+1}$ ($20 \ge j \ge 0$) ($21 \ge i \ge 1$)	$1.80 \times 10^{-11} exp\left(24.7/T_g^{-\frac{1}{3}} - 65.7/T_g^{-2/3}\right)$

VV relaxation ^{a, c}	$O_2v_i + M \rightarrow O_2v_{i-1} + M$	(i = 1, 2, 3)	$7.99 \times 10^{-5} exp(-320/T_g^{-1/3} + 615/T_g^{-2/3})$	
93.6				1

 ^{a}M represents any neutral species taken into account in the model. The same rate coefficient is used for every species.

^bThese reactions are also taken into account for v_i (i > 1), but then they are not considered separately, and the rate coefficient is then taken as the sum of (i), (ii) and (iii), leading to level CO_2v_{i-1} , because for the higher levels, no individual symmetric mode levels are included in the model. See Kozák and Bogaerts ^{9, 10} for more information. ^c v_0 means the ground state of CO₂ or O₂. The rate coefficients are in (cm³ · s⁻¹) and T_g is in K. The rate coefficients are given for the reaction between ground state and first vibrational level, and they are scaled for the higher transitions.

VT: Vibrational - Translational; VV: Vibrational - Vibrational

Table 57. Redulti reactions included in the model			
Process	Reaction	Rate coefficient	
Neutral reaction	$CO_2 + M \rightarrow CO + O + M$	$4.39 \times 10^{-7} \exp(-65000/T_{\rm g})$	
Neutral reaction	$CO_2 + O \rightarrow CO + O_2$	$7.77 \times 10^{-12} \exp(-16600/T_g)$	
Neutral reaction	$CO + O + M \rightarrow CO_2 + M$	$8.20 \times 10^{-34} \exp(-1560/T_g)$	
Neutral reaction	$CO + O_2 \rightarrow CO_2 + M$	$1.28 \times 10^{-12} \exp(-12800/T_g)$	
Neutral reaction	$CO_2 + C \rightarrow CO + CO$	1.00×10^{-15}	
Neutral reaction	$O_2 + C \rightarrow CO + O$	3.00×10^{-11}	
Neutral reaction	$CO + M \rightarrow C + O + M$	$1.52 \times 10^{-4} \exp(T_g/298)^{-3.1} \exp(-12800/T_g)$	
Neutral reaction	$C + O + M \rightarrow CO + M$	$2.14 \times 10^{-29} \exp(T_g/300)^{-3.08} \exp(-2114/T_g)$	
Neutral reaction	$O + O + M \rightarrow O_2 + M$	$1.27 \times 10^{-32} \exp(T_g/300)^{-1} \exp(-170/T_g)$	

Table S7. Neutral reactions included in the model

The rate coefficients are in $(\text{cm}^3 \cdot \text{s}^{-1})$ or $(\text{cm}^6 \cdot \text{s}^{-1})$ for the two-body and three-body reactions, respectively. See Wang ⁷ and Kozák and Bogaerts ^{9, 10} for more information. T_g is in K.

References

1. Comsol Multiphysics, version 5.0; User's Guide, 2015, <u>www.comsol.com (accessed December 2015)</u>

2. Menter, F. R.; Kuntz, M.; Langtry, R. Ten Years of Industrial Experience with the SST Turbulence Model, Turbulence, *Heat and Mass Transfer* **2003**, *4*, 625-632

3. Weigand, B.; An Extended Kays and Crawford turbulent Prandtl number model, Int. J. Heat Mass Transf. 1997, 40, 4191-4196

4. Trenchev, G.; Kolev, St.; Bogaerts, A. A 3D model of a reverse vortex flow gliding arc reactor, *Plasma Sources Sci. Tech.* **2016**, *25*, 035014

5. Kolev, St.; Bogaerts, A. A 2D model for a gliding arc discharge, *Plasma Sources Sci. Technol.* 2015, 24, 015025

6. BIAGI-v7.1 database, <u>www.lxcat.laplace.univ-tlse.fr;</u> Transcribed from SF Biagi's Fortran code MAGBOLTZ, <u>http://consult.cern.ch/writeup/magboltz</u> (accessed December 2015)

7. Wang, W.; Berthelot A.; Kolev, St.; Tu, X.; Bogaerts, A. CO₂ conversion in a gliding arc plasma: 1D cylindrical discharge model, *Plasma Sources Sci. Technol.* **2016**, *25*, 065012

8. Fridman, A. Plasma Chemistry, Cambridge University Press, New York, US 2008

9. Kozák, T.; Bogaerts, A. Splitting of CO₂ by vibrational excitation in non-equilibrium plasmas: a reaction kinetics model, *Plasma Sources Sci. Technol.* **2014**, *23*, 045004

10. Kozák, T.; Bogaerts A. Evaluation of the energy efficiency of CO₂ conversion in microwave discharges using a reaction kinetics model, *Plasma Sources Sci. Technol.* **2015**, *24*, 015024