toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Marchetti, A.; Gori, A.; Ferretti, A.M.; Esteban, D.A.; Bals, S.; Pigliacelli, C.; Metrangolo, P.
  Title Templated Out‐of‐Equilibrium Self‐Assembly of Branched Au Nanoshells (Small 12/2023) Type A1 Journal Article
  Year 2023 Publication Small Abbreviated Journal Small
  Volume 19 Issue 12 Pages
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract Out-of-equilibrium self-assembly of metal nanoparticles (NPs) has been devised using different

types of strategies and fuels, but the achievement of finite 3D structures with a controlled

morphology through this assembly mode is still rare. Here we used a spherical peptide-gold

superstructure (PAuSS) as a template to control the out-of-equilibrium self-assembly of Au NPs,

obtaining a transient 3D branched Au-nanoshell (BAuNS) stabilized by sodium dodecyl sulphate

(SDS). The BAuNS dismantled upon concentration gradient equilibration over time in the solution,

leading to NPs disassembly. Notably, BAuNS assembly and disassembly favoured temporary

interparticle plasmonic coupling, leading to a remarkable oscillation of their optical properties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2023-03-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1613-6810 ISBN (up) Additional Links UA library record
  Impact Factor 13.3 Times cited Open Access Not_Open_Access
  Notes P.M. is grateful to the European Research Council (ERC) for the Starting Grant ERC-2012- StG_20111012 FOLDHALO (Grant Agreement no. 307108) and the Proof-of-Concept Grant ERC-2017-PoC MINIRES (Grant Agreement no.789815). A. M. and P. M. are thankful to the project Hydrogex funded by Cariplo Foundation (grant no. 2018-1720). D.A.E. and S.B. acknowledges financial support from ERC Consolidator Grant Number 815128 REALNANO and Grant Agreement No. 731019 (EUSMI). Approved Most recent IF: 13.3; 2023 IF: 8.643
  Call Number EMAT @ emat @c:irua:200859 Serial 8960
Permanent link to this record
 

 
Author Van den Broek, W.; Jannis, D.; Verbeeck, J.
  Title Convexity constraints on linear background models for electron energy-loss spectra Type A1 Journal Article
  Year 2023 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 254 Issue Pages 113830
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract In this paper convexity constraints are derived for a background model of electron energy loss spectra (EELS) that is linear in the fitting parameters. The model outperforms a power-law both on experimental and simulated backgrounds, especially for wide energy ranges, and thus improves elemental quantification results. Owing to the model’s linearity, the constraints can be imposed through fitting by quadratic programming. This has important advantages over conventional nonlinear power-law fitting such as high speed and a guaranteed unique solution without need for initial parameters. As such, the need for user input is significantly reduced, which is essential for unsupervised treatment of large datasets. This is demonstrated on a demanding spectrum image of a semiconductor device sample with a high number of elements over a wide energy range.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2023-08-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991 ISBN (up) Additional Links UA library record
  Impact Factor 2.2 Times cited Open Access Not_Open_Access
  Notes ECSEL, 875999 ; Horizon 2020; Horizon 2020 Framework Programme; Electronic Components and Systems for European Leadership; Approved Most recent IF: 2.2; 2023 IF: 2.843
  Call Number EMAT @ emat @c:irua:200588 Serial 8961
Permanent link to this record
 

 
Author Bercx, M.; Mayda, S.; Depla, D.; Partoens, B.; Lamoen, D.
  Title Plasmonic effects in the neutralization of slow ions at a metallic surface Type A1 Journal Article
  Year 2023 Publication Contributions to Plasma Physics Abbreviated Journal Contrib. Plasma Phys
  Volume Issue Pages
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract Secondary electron emission is an important process that plays a significant role in several plasma‐related applications. As measuring the secondary electron yield experimentally is very challenging, quantitative modelling of this process to obtain reliable yield data is critical as input for higher‐scale simulations. Here, we build upon our previous work combining density functional theory calculations with a model originally developed by Hagstrum to extend its application to metallic surfaces. As plasmonic effects play a much more important role in the secondary electron emission mechanism for metals, we introduce an approach based on Poisson point processes to include both surface and bulk plasmon excitations to the process. The resulting model is able to reproduce the yield spectra of several available experimental results quite well but requires the introduction of global fitting parameters, which describe the strength of the plasmon interactions. Finally, we use an in‐house developed workflow to calculate the electron yield for a list of elemental surfaces spanning the periodic table to produce an extensive data set for the community and compare our results with more simplified approaches from the literature.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001067651300001 Publication Date 2023-09-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0863-1042 ISBN (up) Additional Links UA library record; WoS full record
  Impact Factor 1.6 Times cited Open Access Not_Open_Access
  Notes We acknowledge the financial support of FWO-Vlaanderen through project G.0216.14N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 1.6; 2023 IF: 1.44
  Call Number EMAT @ emat @c:irua:200330 Serial 8962
Permanent link to this record
 

 
Author Van Gordon, K.; Baúlde, S.; Mychinko, M.; Heyvaert, W.; Obelleiro-Liz, M.; Criado, A.; Bals, S.; Liz-Marzán, L.M.; Mosquera, J.
  Title Tuning the Growth of Chiral Gold Nanoparticles Through Rational Design of a Chiral Molecular Inducer Type A1 Journal Article
  Year 2023 Publication Nano Letters Abbreviated Journal Nano Lett.
  Volume Issue Pages
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract The bottom-up production of chiral gold nanomaterials holds great potential for the advancement of biosensing and nano-optics, among other applications. Reproducible preparations of colloidal nanomaterials with chiral morphology have been reported, using cosurfactants or chiral inducers such as thiolated amino acids. However, the underlying growth mechanisms for these nanomaterials remain insufficiently understood. We introduce herein a purposely devised chiral inducer, a cysteine modified with a hydrophobic chain, as a versatile chiral inducer. The amphiphilic and chiral features of this molecule provide control over the chiral morphology and the chiroptical signature of the obtained nanoparticles by simply varying the concentration of chiral inducer. These results are supported by circular dichroism and electromagnetic modeling as well as electron tomography to analyze structural evolution at the facet scale. Our observations suggest complex roles for the factors involved in chiral synthesis: the chemical nature of the chiral inducers and the influence of cosurfactants.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001092787000001 Publication Date 2023-10-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984 ISBN (up) Additional Links UA library record; WoS full record
  Impact Factor 10.8 Times cited Open Access OpenAccess
  Notes J.M. Taboada and F. Obelleiro are thanked for support with electromagnetic simulations. The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S. Bals; ERC AdG No. 787510, 4DbioSERS to L.M.L.-M.) and from MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future” (Grant PID2020-117779RB-I00 to L.M.L.-M., Grant RYC2020-030183-I to A.C., and Grants RYC2019-027842-I, PID2020-117885GA-I00 to J.M.). Approved Most recent IF: 10.8; 2023 IF: 12.712
  Call Number EMAT @ emat @c:irua:200590 Serial 8963
Permanent link to this record
 

 
Author de la Croix, T.; Claes, N.; Eyley, S.; Thielemans, W.; Bals, S.; De Vos, D.
  Title Heterogeneous Pt-catalyzed transfer dehydrogenation of long-chain alkanes with ethylene Type A1 Journal Article
  Year 2023 Publication Catalysis Science & Technology Abbreviated Journal Catal. Sci. Technol.
  Volume Issue Pages
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract The dehydrogenation of long-chain alkanes to olefins and alkylaromatics is a challenging endothermic reaction, typically requiring harsh conditions which can lead to low selectivity and coking. More favorable thermodynamics can be achieved by using a hydrogen acceptor, such as ethylene. In this work, the potential of heterogeneous platinum catalysts for the transfer dehydrogenation of long-chain alkanes is investigated, using ethylene as a convenient hydrogen acceptor. Pt/C and Pt–Sn/C catalysts were prepared<italic>via</italic>a simple polyol method and characterized with CO pulse chemisorption, HAADF-STEM, and EDX measurements. Conversion of ethylene was monitored<italic>via</italic>gas-phase FTIR, and distribution of liquid products was analyzed<italic>via</italic>GC-FID, GC-MS, and 1H-NMR. Compared to unpromoted Pt/C, Sn-promoted catalysts show lower initial reaction rates, but better resistance to catalyst deactivation, while increasing selectivity towards alkylaromatics. Both reaction products and ethylene were found to inhibit the reaction significantly. At 250 °C for 22 h, TON up to 28 and 86 mol per mol Pt were obtained for Pt/C and PtSn<sub>2</sub>/C, respectively, with olefin selectivities of 94% and 53%. The remaining products were mainly unbranched alkylaromatics. These findings show the potential of simple heterogeneous catalysts in alkane transfer dehydrogenation, for the preparation of valuable olefins and alkylaromatics, or as an essential step in various tandem reactions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001104905100001 Publication Date 2023-11-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2044-4753 ISBN (up) Additional Links UA library record; WoS full record
  Impact Factor 5 Times cited Open Access OpenAccess
  Notes T. de la Croix gratefully acknowledges the support of the Flanders Research Foundation (FWO) under project 11F6622N. D. De Vos is grateful to FWO for support of project G0D3721N, and to KU Leuven for the iBOF project 21/016/C3. S. Bals and N. Claes acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grant No. 815128- REALNANO). W. Thielemans and S. Eyley thank KU Leuven (grant C14/18/061) and FWO (G0A1219N) for financial support. Approved Most recent IF: 5; 2023 IF: 5.773
  Call Number EMAT @ emat @c:irua:201010 Serial 8968
Permanent link to this record
 

 
Author Bhatia, H.; Keshavarz, M.; Martin, C.; Van Gaal, L.; Zhang, Y.; de Coen, B.; Schrenker, N.J.; Valli, D.; Ottesen, M.; Bremholm, M.; Van de Vondel, J.; Bals, S.; Hofkens, J.; Debroye, E.
  Title Achieving High Moisture Tolerance in Pseudohalide Perovskite Nanocrystals for Light-Emitting Diode Application Type A1 Journal Article
  Year 2023 Publication ACS Applied Optical Materials Abbreviated Journal ACS Appl. Opt. Mater.
  Volume 1 Issue 6 Pages 1184-1191
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract The addition of potassium thiocyanate (KSCN) to the FAPbBr3 structure and subsequent post-treatment of nanocrystals (NCs) lead to high quantum confinement, resulting in a photoluminescent quantum yield (PLQY) approaching unity and microsecond decay times. This synergistic approach demonstrated exceptional stability under humid conditions, retaining 70% of the PLQY for over a month, while the untreated NCs degrade within 24 h. Additionally, the devices incorporating the post-treated NCs displayed 1.5% external quantum efficiency (EQE), a 5-fold improvement over untreated devices. These results provide promising opportunities for the use of perovskites in moisture-stable optoelectronics.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2023-06-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2771-9855 ISBN (up) Additional Links UA library record
  Impact Factor Times cited Open Access OpenAccess
  Notes Hercules Foundation, HER/11/14 ; European Commission; Ministerio de Ciencia e Innovaci?n, PID2021-128761OA-C22 ; European Regional Development Fund; Vlaamse regering, CASAS2 Meth/15/04 ; Fonds Wetenschappelijk Onderzoek, 1238622N 1514220N 1S45223N G.0B39.15 G.0B49.15 G098319N S002019N ZW15_09-GOH6316 ; Onderzoeksraad, KU Leuven, C14/19/079 db/21/006/bm iBOF-21-085 STG/21/010 ; Junta de Comunidades de Castilla-La Mancha, SBPLY/21/180501/000127 ; H2020 European Research Council, 642196 815128 ; Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:201011 Serial 8975
Permanent link to this record
 

 
Author Delfino, C.L.; Hao, Y.; Martin, C.; Minoia, A.; Gopi, E.; Mali, K.S.; Van der Auweraer, M.; Geerts, Y.H.; Van Aert, S.; Lazzaroni, R.; De Feyter, S.
  Title Conformation-Dependent Monolayer and Bilayer Structures of an Alkylated TTF Derivative Revealed using STM and Molecular Modeling Type A1 Journal Article
  Year 2023 Publication The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C
  Volume 127 Issue 47 Pages 23023-23033
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract In this study, the multi-layer self-assembled molecular network formation of an alkylated tetrathiafulvalene compound is studied at the liquid-solid interface between 1-phenyloctane and graphite. A combined theoretical/experimental approach associating force-field and quantum-chemical calculations with scanning tunnelling microscopy is used to determine the two-dimensional self-assembly beyond the monolayer, but also to further the understanding of the molecular adsorption conformation and its impact on the molecular packing within the assemblies at the monolayer and bilayer level.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001111637100001 Publication Date 2023-11-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447 ISBN (up) Additional Links UA library record; WoS full record
  Impact Factor 3.7 Times cited Open Access OpenAccess
  Notes Financial support from the Research Foundation-Flanders (FWO G081518N, G0A3220N) and KU Leuven–Internal Funds (C14/19/079) is acknowledged. This work was in part supported by FWO and F. R. S.-FNRS under the Excellence of Science EOS program (project 30489208 and 40007495). C.M. acknowledges the financial support: Grants PID2021-128761OA-C22 and CNS2022-136052 funded by MCIN/AEI/10.13039/501100011033 by the “European Union” and SBPLY/21/180501/000127 funded by JCCM and by the EU through “Fondo Europeo de Desarollo Regional” (FEDER). Research in Mons is also supported by the Belgian National Fund for Scientific Research (FRS-FNRS) within the Consortium des Équipements de Calcul Intensif – CÉCI, under Grant 2.5020.11, and by the Walloon Region (ZENOBE Tier-1 supercomputer, under grant 1117545). Approved Most recent IF: 3.7; 2023 IF: 4.536
  Call Number EMAT @ emat @c:irua:201671 Serial 8974
Permanent link to this record
 

 
Author Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J.
  Title In Situ Plasma Studies Using a Direct Current Microplasma in a Scanning Electron Microscope Type A1 Journal Article
  Year 2024 Publication Advanced Materials Technologies Abbreviated Journal Adv Materials Technologies
  Volume Issue Pages
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract Microplasmas can be used for a wide range of technological applications and to improve the understanding of fundamental physics. Scanning electron microscopy, on the other hand, provides insights into the sample morphology and chemistry of materials from the mm‐ down to the nm‐scale. Combining both would provide direct insight into plasma‐sample interactions in real‐time and at high spatial resolution. Up till now, very few attempts in this direction have been made, and significant challenges remain. This work presents a stable direct current glow discharge microplasma setup built inside a scanning electron microscope. The experimental setup is capable of real‐time in situ imaging of the sample evolution during plasma operation and it demonstrates localized sputtering and sample oxidation. Further, the experimental parameters such as varying gas mixtures, electrode polarity, and field strength are explored and experimental<italic>V</italic>–<italic>I</italic>curves under various conditions are provided. These results demonstrate the capabilities of this setup in potential investigations of plasma physics, plasma‐surface interactions, and materials science and its practical applications. The presented setup shows the potential to have several technological applications, for example, to locally modify the sample surface (e.g., local oxidation and ion implantation for nanotechnology applications) on the µm‐scale.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001168639900001 Publication Date 2024-02-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2365-709X ISBN (up) Additional Links UA library record; WoS full record
  Impact Factor 6.8 Times cited Open Access OpenAccess
  Notes L.G., S.B., and J.V. acknowledge support from the iBOF-21-085 PERsist research fund. D.C., S.V.A., and J.V. acknowledge funding from a TOPBOF project of the University of Antwerp (FFB 170366). R.D.M., A.B., and J.V. acknowledge funding from the Methusalem project of the University of Antwerp (FFB 15001A, FFB 15001C). A.O. and J.V. acknowledge funding from the Research Foundation Flanders (FWO, Belgium) project SBO S000121N. Approved Most recent IF: 6.8; 2024 IF: NA
  Call Number EMAT @ emat @c:irua:204363 Serial 8995
Permanent link to this record
 

 
Author Şentürk, D.G.; De Backer, A.; Van Aert, S.
  Title Element specific atom counting for heterogeneous nanostructures: Combining multiple ADF STEM images for simultaneous thickness and composition determination Type A1 Journal Article
  Year 2024 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 259 Issue Pages 113941
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract In this paper, a methodology is presented to count the number of atoms in heterogeneous nanoparticles based on the combination of multiple annular dark field scanning transmission electron microscopy (ADF STEM) images. The different non-overlapping annular detector collection regions are selected based on the principles of optimal statistical experiment design for the atom-counting problem. To count the number of atoms, the total intensities of scattered electrons for each atomic column, the so-called scattering cross-sections, are simultaneously compared with simulated library values for the different detector regions by minimising the squared differences. The performance of the method is evaluated for simulated Ni@Pt and Au@Ag core-shell nanoparticles. Our approach turns out to be a dose efficient alternative for the investigation of beam-sensitive heterogeneous materials as compared to the combination of ADF STEM and energy dispersive X-ray spectroscopy.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2024-02-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991 ISBN (up) Additional Links UA library record
  Impact Factor 2.2 Times cited Open Access OpenAccess
  Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S. Van Aert). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0346.21N, GOA7723N, and EOS 40007495) and a postdoctoral grant to A. De Backer. S. Van Aert acknowledges funding from the University of Antwerp Research fund (BOF). Approved Most recent IF: 2.2; 2024 IF: 2.843
  Call Number EMAT @ emat @c:irua:204353 Serial 8996
Permanent link to this record
 

 
Author Vandemeulebroucke, D.; Batuk, M.; Hajizadeh, A.; Wastiaux, M.; Roussel, P.; Hadermann, J.
  Title Incommensurate Modulations and Perovskite Growth in LaxSr2–xMnO4−δAffecting Solid Oxide Fuel Cell Conductivity Type A1 Journal Article
  Year 2024 Publication Chemistry of Materials Abbreviated Journal Chem. Mater.
  Volume Issue Pages
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract Ruddlesden-Popper La????Sr2−????MnO4−???? materials are interesting symmetric solid oxide

fuel cell electrodes due to their good redox stability, mixed ionic and electronic conducting behavior and thermal expansion that matches well with common electrolytes. In reducing environments – as at a solid oxide fuel cell anode – the x = 0.5 member, i.e. La0.5Sr1.5MnO4−????, has a much higher total conductivity than compounds with a different La/Sr ratio, although all those compositions have the same K2NiF4-type I4/mmm structure. The origin for this conductivity difference is not yet known in literature. Now, a combination of in-situ and ex-situ 3D electron diffraction, high-resolution imaging, energy-dispersive X-ray analysis and electron energy-loss spectroscopy uncovered clear differences between x=0.25 and x=0.5 in the pristine structure, as well as in the transformations upon high-temperature reduction. In La0.5Sr1.5MnO4−????, Ruddlesden-Popper n=2 layer defects and an amorphous surface layer are present, but not in La0.25Sr1.75MnO4−????. After annealing at 700°C in 5% H2/Ar, La0.25Sr1.75MnO4−???? transforms to a tetragonal 2D incommensurately modulated structure with modulation vectors ⃗????1 = 0.2848(1) · (⃗????* +⃗????*) and ⃗????2 =0.2848(1) · (⃗????* – ⃗????*), whereas La0.5Sr1.5MnO4−???? only partially transforms to an orthorhombic 1D incommensurately modulated structure,

with ⃗???? = 0.318(2) · ⃗????*. Perovskite domains grow at the crystal edge at 700°C in 5%

H2 or vacuum, due to the higher La concentration on the surface compared to the bulk, which leads to a different thermodynamic equilibrium. Since it is known that a lower degree of oxygen vacancy ordering and a higher amount of perovskite blocks enhance oxygen mobility, those differences in defect structure and structural transformation upon reduction, might all contribute to the higher conductivity of La0.5Sr1.5MnO4−???? in solid oxide fuel cell anode conditions compared to other La/Sr ratios.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 001174840900001 Publication Date 2024-02-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN (up) Additional Links UA library record; WoS full record
  Impact Factor 8.6 Times cited Open Access Not_Open_Access
  Notes Universiteit Antwerpen, BOF TOP 38689 ; Fonds Wetenschappelijk Onderzoek, I003218N ; European Commission NanED, 956099 ; Approved Most recent IF: 8.6; 2024 IF: 9.466
  Call Number EMAT @ emat @c:irua:204354 Serial 8997
Permanent link to this record
 

 
Author Chakraborty, J.; Chatterjee, A.; Molkens, K.; Nath, I.; Arenas Esteban, D.; Bourda, L.; Watson, G.; Liu, C.; Van Thourhout, D.; Bals, S.; Geiregat, P.; Van der Voort, P.
  Title Decoding Excimer Formation in Covalent–Organic Frameworks Induced by Morphology and Ring Torsion Type A1 Journal Article
  Year 2024 Publication Advanced Materials Abbreviated Journal Advanced Materials
  Volume Issue Pages
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract A thorough and quantitative understanding of the fate of excitons in covalent–organic frameworks (COFs) after photoexcitation is essential for their augmented optoelectronic and photocatalytic applications via precise structure tuning. The synthesis of a library of COFs having identical chemical backbone with impeded conjugation, but varied morphology and surface topography to study the effect of these physical properties on the photophysics of the materials is herein reported. The variation of crystallite size and surface topography substantified different aggregation pattern in the COFs, which leads to disparities in their photoexcitation and relaxation properties. Depending on aggregation, an inverse correlation between bulk luminescence decay time and exciton binding energy of the materials is perceived. Further transient absorption spectroscopic analysis confirms the presence of highly localized, immobile, Frenkel excitons (of diameter 0.3–0.5 nm) via an absence of annihilation at high density, most likely induced by structural torsion of the COF skeletons, which in turn preferentially relaxes via long‐lived (nanosecond to microsecond) excimer formation (in femtosecond scale) over direct emission. These insights underpin the importance of structural and topological design of COFs for their targeted use in photocatalysis.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001206226700001 Publication Date 2024-04-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0935-9648 ISBN (up) Additional Links UA library record; WoS full record
  Impact Factor 29.4 Times cited Open Access
  Notes PVDV, JC, AC, and IN acknowledge the FWO-Vlaanderen for research grant G020521N and the research board of UGent (BOF) through a Concerted Research Action (GOA010-17). JC acknowledges UGent for BOF postdoctoral grant (2022.0032.01). AC acknowledges FWO- Vlaanderen for postdoctoral grant (12T7521N). KM, DVT and PG acknowledges FWO- Vlaanderen for research grant G0B2921N. SB and DAE acknowledge financial support from ERC Consolidator Grant Number 815128 REALNANO. CHL acknowledges China Scholarship Council doctoral grant (201908110280). PVDV acknowledges Hercules Project AUGE/17/07 for the UV VIS DRS spectrometer and UGent BASBOF BOF20/BAS/015 for the powder X-Ray Diffractometer. PG thanks UGent for support of the Core Facility NOLIMITS. Approved Most recent IF: 29.4; 2024 IF: 19.791
  Call Number EMAT @ emat @c:irua:205967 Serial 9118
Permanent link to this record
 

 
Author Esteban, D.A.; Chamocho, E.G.; Carretero González, J.; Urones Garrote, E.; Otero Díaz, L.C.; Brande, D.Á.
  Title Enhancing Electrochemical Properties of Walnut Shell Activated Carbon with Embedded MnO Clusters for Supercapacitor Applications Type A1 Journal Article
  Year 2024 Publication Batteries & Supercaps Abbreviated Journal Batteries &amp; Supercaps
  Volume Issue Pages
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract Activated carbon (AC) materials from renewable sources are widely used in electrochemical applications due to their well‐known high surface area. However, their application as electrode material in double‐layer electrochemical devices may be limited due to their relatively low electrical conductivity and lightweight. To overcome these limitations, the incorporation of pseudocapacitance metal oxide nanoparticles is an optimum approach. These nanoparticles can provide a second energy storage mechanism to the composite, mitigating the loss of surface area associated with their incorporation. As a result, the composite material is endowed with increased conductivity and higher density, making it more suitable for practical implementation in real devices. In this study, we have incorporated a fine dispersion of 1 % of MnO clusters into a highly porous activated carbon synthesized from walnut shells (WAC). The high‐resolution electron microscopy studies, combined with their related analytical techniques, allow us to determine the presence of the cluster within the matrix carbon precisely. The resulting MnO@WAC composite demonstrated significantly improved capacitive behavior compared with the WAC material, with increased volumetric capacitance and higher charge retention at higher current densities. The composite‘s electrochemical performance suggests its potential as a promising electrode material for supercapacitors, addressing drawbacks associated with traditional AC materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001198179300001 Publication Date 2024-04-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2566-6223 ISBN (up) Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes Grants PID2020-112848RB-C21 funded by MCIN/AEI/ 10.13039/501100011033 and by the European Union PRTR funding through projects are acknowledged. Access to the ICTS- CNME for TEM is also acknowledged. Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:205463 Serial 9119
Permanent link to this record
 

 
Author Ignatova, K.; Vlasov, E.; Seddon, S.D.; Gauquelin, N.; Verbeeck, J.; Wermeille, D.; Bals, S.; Hase, T.P.A.; Arnalds, U.B.
  Title Phase coexistence induced surface roughness in V2O3/Ni magnetic heterostructures Type A1 Journal Article
  Year 2024 Publication APL Materials Abbreviated Journal
  Volume 12 Issue 4 Pages
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract We present an investigation of the microstructure changes in V2O3 as it goes through its inherent structural phase transition. Using V2O3 films with a well-defined crystal structure deposited by reactive magnetron sputtering on r-plane Al2O3 substrates, we study the phase coexistence region and its impact on the surface roughness of the films and the magnetic properties of overlying Ni magnetic layers in V2O3/Ni hybrid magnetic heterostructures. The simultaneous presence of two phases in V2O3 during its structural phase transition was identified with high resolution x-ray diffraction and led to an increase in surface roughness observed using x-ray reflectivity. The roughness reaches its maximum at the midpoint of the transition. In V2O3/Ni hybrid heterostructures, we find a concomitant increase in the coercivity of the magnetic layer correlated with the increased roughness of the V2O3 surface. The chemical homogeneity of the V2O3 is confirmed through transmission electron microscopy analysis. High-angle annular dark field imaging and electron energy loss spectroscopy reveal an atomically flat interface between Al2O3 and V2O3, as well as a sharp interface between V2O3 and Ni.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001202661800003 Publication Date 2024-04-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2166-532X ISBN (up) Additional Links UA library record; WoS full record
  Impact Factor 6.1 Times cited Open Access
  Notes This work was supported by the funding from the University of Iceland Research Fund, the Icelandic Research Fund Grant No. 207111. Instrumentation funding from the Icelandic Infrastructure Fund is acknowledged. This work was based on experiments per- formed at the BM28 (XMaS) beamline at the European Synchrotron Radiation Facility, Grenoble, France. XMaS is a National Research Facility funded by the UK EPSRC and managed by the Universi- ties of Liverpool and Warwick. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 823717—ESTEEM3. Approved Most recent IF: 6.1; 2024 IF: 4.335
  Call Number EMAT @ emat @c:irua:205569 Serial 9120
Permanent link to this record
 

 
Author Vlasov, E.; Heyvaert, W.; Ni, B.; Van Gordon, K.; Girod, R.; Verbeeck, J.; Liz-Marzán, L.M.; Bals, S.
  Title High-Throughput Morphological Chirality Quantification of Twisted and Wrinkled Gold Nanorods Type A1 Journal Article
  Year 2024 Publication ACS Nano Abbreviated Journal ACS Nano
  Volume Issue Pages
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract Chirality in gold nanostructures offers an exciting opportunity to tune their differential optical response to left- and right-handed circularly polarized light, as well as their interactions with biomolecules and living matter. However, tuning and understanding such interactions demands quantification of the structural features that are responsible for the chiral behavior. Electron tomography (ET) enables structural characterization at the single-particle level and has been used to quantify the helicity of complex chiral nanorods. However, the technique is time-consuming and consequently lacks statistical value. To address this issue, we introduce herein a high-throughput methodology that combines images acquired by secondary electron-based electron beam-induced current (SEEBIC) with quantitative image analysis. As a result, the geometric chirality of hundreds of nanoparticles can be quantified in less than 1 h. When combining the drastic gain in data collection efficiency of SEEBIC with a limited number of ET data sets, a better understanding of how the chiral structure of individual chiral nanoparticles translates into the ensemble chiroptical response can be reached.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2024-04-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851 ISBN (up) Additional Links
  Impact Factor 17.1 Times cited Open Access
  Notes The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S.B.) and from MCIN/AEI/10.13039/501100011033 (Grant PID2020-117779RB-I00 to L.M.L.-M and FPI Fellowship PRE2021-097588 to K.V.G.). Funded by the European Union under Project 101131111 − DELIGHT, JV acknowledges the eBEAM project supported by the European Union’s Horizon 2020 research and innovation program FETPROACT-EIC-07- 2020: emerging paradigms and communities. Approved Most recent IF: 17.1; 2024 IF: 13.942
  Call Number EMAT @ emat @ Serial 9121
Permanent link to this record
 

 
Author Guerrero, R.M.; Lemir, I.D.; Carrasco, S.; Fernández-Ruiz, C.; Kavak, S.; Pizarro, P.; Serrano, D.P.; Bals, S.; Horcajada, P.; Pérez, Y.
  Title Scaling-Up Microwave-Assisted Synthesis of Highly Defective Pd@UiO-66-NH2Catalysts for Selective Olefin Hydrogenation under Ambient Conditions Type A1 Journal Article
  Year 2024 Publication ACS Applied Materials & Interfaces Abbreviated Journal ACS Appl. Mater. Interfaces
  Volume Issue Pages
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract The need to develop green and cost-effective industrial catalytic processes has led to growing interest in preparing more robust, efficient, and selective heterogeneous catalysts at a large scale. In this regard, microwave-assisted synthesis is a fast method for fabricating heterogeneous catalysts (including metal oxides, zeolites, metal–organic frameworks, and supported metal nanoparticles) with enhanced catalytic properties, enabling synthesis scale-up. Herein, the synthesis of nanosized UiO-66-NH2 was optimized via a microwave-assisted hydrothermal method to obtain defective matrices essential for the stabilization of metal nanoparticles, promoting catalytically active sites for hydrogenation reactions (760 kg·m–3·day–1 space time yield, STY). Then, this protocol was scaled up in a multimodal microwave reactor, reaching 86% yield (ca. 1 g, 1450 kg·m–3·day–1 STY) in only 30 min. Afterward, Pd nanoparticles were formed in situ decorating the nanoMOF by an effective and fast microwave-assisted hydrothermal method, resulting in the formation of Pd@UiO-66-NH2 composites. Both the localization and oxidation states of Pd nanoparticles (NPs) in the MOF were achieved using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray photoelectron spectroscopy (XPS), respectively. The optimal composite, loaded with 1.7 wt % Pd, exhibited an extraordinary catalytic activity (>95% yield, 100% selectivity) under mild conditions (1 bar H2, 25 °C, 1 h reaction time), not only in the selective hydrogenation of a variety of single alkenes (1-hexene, 1-octene, 1-tridecene, cyclohexene, and tetraphenyl ethylene) but also in the conversion of a complex mixture of alkenes (i.e., 1-hexene, 1-tridecene, and anethole). The results showed a powerful interaction and synergy between the active phase (Pd NPs) and the catalytic porous scaffold (UiO-66-NH2), which are essential for the selectivity and recyclability.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2024-04-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1944-8244 ISBN (up) Additional Links
  Impact Factor 9.5 Times cited Open Access
  Notes The authors gratefully acknowledge financial support from “Comunidad de Madrid” and European Regional Development Fund-FEDER through the project HUB MADRID+CIRCULAR; the State Research Agency (MCIN/AEI /10.13039/501100011033) through the grant with reference number CEX2019-000931-M received in the 2019 call for “Severo Ochoa Centres of Excellence” and “María de Maeztu Units of Excellence” of the State Programme for Knowledge Generation and Scientific and Technological Strengthening of the R&D&I System; and MICIU through the project “NAPOLION” (PID2022-139956OB-I00). S.K. acknowledges the Flemish Fund for Scientific Research (FWO Vlaanderen) through a PhD research grant (1181124N). Approved Most recent IF: 9.5; 2024 IF: 7.504
  Call Number EMAT @ emat @ Serial 9126
Permanent link to this record
 

 
Author Leinders, G.; Grendal, O.G.; Arts, I.; Bes, R.; Prozheev, I.; Orlat, S.; Fitch, A.; Kvashnina, K.; Verwerft, M.
  Title Refinement of the uranium dispersion corrections from anomalous diffraction Type A1 Journal Article
  Year 2024 Publication Journal of Applied Crystallography Abbreviated Journal J Appl Cryst
  Volume 57 Issue 2 Pages 284-295
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract The evolution of the uranium chemical state in uranium compounds, principally in the oxides, is of concern in the context of nuclear fuel degradation under storage and repository conditions, and in accident scenarios. The U–O system shows complicated phase relations between single-valence uranium dioxide (UO<sub>2</sub>) and different mixed-valence compounds (<italic>e.g.</italic>U<sub>4</sub>O<sub>9</sub>, U<sub>3</sub>O<sub>7</sub>and U<sub>3</sub>O<sub>8</sub>). To try resolving the electronic structure associated with unique atomic positions, a combined application of diffraction and spectroscopic techniques, such as diffraction anomalous fine structure (DAFS), can be considered. Reported here is the application of two newly developed routines for assessing a DAFS data set, with the aim of refining the uranium X-ray dispersion corrections. High-resolution anomalous diffraction data were acquired from polycrystalline powder samples of UO<sub>2</sub>(containing tetravalent uranium) and potassium uranate (KUO<sub>3</sub>, containing pentavalent uranium) using synchrotron radiation in the vicinity of the U<italic>L</italic><sub>3</sub>edge (17.17 keV). Both routines are based on an iterative refinement of the dispersion corrections, but they differ in either using the intensity of a selection of reflections or doing a full-pattern (Rietveld method) refinement. The uranium dispersion corrections obtained using either method are in excellent agreement with each other, and they show in great detail the chemical shifts and differences in fine structure expected for tetravalent and pentavalent uranium. This approach may open new possibilities for the assessment of other, more complicated, materials such as mixed-valence compounds. Additionally, the DAFS methodology can offer a significant resource optimization because each data set contains both structural (diffraction) and chemical (spectroscopy) information, which can avoid the requirement to use multiple experimental stations at synchrotron sources.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001208800100008 Publication Date 2024-04-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1600-5767 ISBN (up) Additional Links UA library record; WoS full record
  Impact Factor 6.1 Times cited Open Access
  Notes FPS Economy, SF-CORMOD; Approved Most recent IF: 6.1; 2024 IF: 2.495
  Call Number EMAT @ emat @c:irua:206011 Serial 9127
Permanent link to this record
 

 
Author Van Gordon, K.; Ni, B.; Girod, R.; Mychinko, M.; Bevilacqua, F.; Bals, S.; Liz‐Marzán, L.M.
  Title Single Crystal and Pentatwinned Gold Nanorods Result in Chiral Nanocrystals with Reverse Handedness Type A1 Journal Article
  Year 2024 Publication Angewandte Chemie International Edition Abbreviated Journal Angew Chem Int Ed
  Volume Issue Pages
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract Handedness is an essential attribute of chiral nanocrystals, having a major influence on their properties. During chemical growth, the handedness of nanocrystals is usually tuned by selecting the corresponding enantiomer of chiral molecules involved in asymmetric growth, often known as chiral inducers. We report that, even using the same chiral inducer enantiomer, the handedness of chiral gold nanocrystals can be reversed by using Au nanorod seeds with either single crystalline or pentatwinned structure. This effect holds for chiral growth induced both by amino acids and by chiral micelles. Although it was challenging to discern the morphological handedness for<italic>L</italic>‐cystine‐directed particles, even using electron tomography, both cases showed circular dichroism bands of opposite sign, with nearly mirrored chiroptical signatures for chiral micelle‐directed growth, along with quasi‐helical wrinkles of inverted handedness. These results expand the chiral growth toolbox with an effect that might be exploited to yield a host of interesting morphologies with tunable optical properties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2024-05-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1433-7851 ISBN (up) Additional Links
  Impact Factor 16.6 Times cited Open Access
  Notes Ana Sánchez-Iglesias is acknowledged for support in the synthesis of pentatwinned gold nanorods. The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S.B.), from MCIN/AEI/10.13039/501100011033 (Grant PID2020- 117779RB-I00 to L.M.L.-M and FPI Fellowship PRE2021- 097588 to K.V.G.), and by KU Leuven (C14/22/085). This work has been funded by the European Union under Project 101131111—DELIGHT. Funding for open access charge: Universidade de Vigo/ CRUE-CISUG. Approved Most recent IF: 16.6; 2024 IF: 11.994
  Call Number EMAT @ emat @ Serial 9129
Permanent link to this record
 

 
Author Chakraborty, J.; Chatterjee, A.; Molkens, K.; Nath, I.; Arenas Esteban, D.; Bourda, L.; Watson, G.; Liu, C.; Van Thourhout, D.; Bals, S.; Geiregat, P.; Van der Voort, P.
  Title Decoding Excimer Formation in Covalent–Organic Frameworks Induced by Morphology and Ring Torsion Type A1 Journal Article
  Year 2024 Publication Advanced Materials Abbreviated Journal Advanced Materials
  Volume Issue Pages
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract A thorough and quantitative understanding of the fate of excitons in covalent–organic frameworks (COFs) after photoexcitation is essential for their augmented optoelectronic and photocatalytic applications via precise structure tuning. The synthesis of a library of COFs having identical chemical backbone with impeded conjugation, but varied morphology and surface topography to study the effect of these physical properties on the photophysics of the materials is herein reported. The variation of crystallite size and surface topography substantified different aggregation pattern in the COFs, which leads to disparities in their photoexcitation and relaxation properties. Depending on aggregation, an inverse correlation between bulk luminescence decay time and exciton binding energy of the materials is perceived. Further transient absorption spectroscopic analysis confirms the presence of highly localized, immobile, Frenkel excitons (of diameter 0.3–0.5 nm) via an absence of annihilation at high density, most likely induced by structural torsion of the COF skeletons, which in turn preferentially relaxes via long‐lived (nanosecond to microsecond) excimer formation (in femtosecond scale) over direct emission. These insights underpin the importance of structural and topological design of COFs for their targeted use in photocatalysis.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001206226700001 Publication Date 2024-04-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0935-9648 ISBN (up) Additional Links UA library record; WoS full record
  Impact Factor 29.4 Times cited Open Access
  Notes PVDV, JC, AC, and IN acknowledge the FWO-Vlaanderen for research grant G020521N and the research board of UGent (BOF) through a Concerted Research Action (GOA010-17). JC acknowledges UGent for BOF postdoctoral grant (2022.0032.01). AC acknowledges FWOVlaanderen for postdoctoral grant (12T7521N). KM, DVT and PG acknowledges FWOVlaanderen for research grant G0B2921N. SB and DAE acknowledge financial support from ERC Consolidator Grant Number 815128 REALNANO. CHL acknowledges China Scholarship Council doctoral grant (201908110280). PVDV acknowledges Hercules Project AUGE/17/07 for the UV VIS DRS spectrometer and UGent BASBOF BOF20/BAS/015 for the powder X-Ray Diffractometer. PG thanks UGent for support of the Core Facility NOLIMITS. Approved Most recent IF: 29.4; 2024 IF: 19.791
  Call Number EMAT @ emat @c:irua:205967 Serial 9130
Permanent link to this record
 

 
Author Cioni, M.; Delle Piane, M.; Polino, D.; Rapetti, D.; Crippa, M.; Arslan Irmak, E.; Van Aert, S.; Bals, S.; Pavan, G.M.
  Title Sampling real-time atomic dynamics in metal nanoparticles by combining experiments, simulations, and machine learning Type A1 Journal article
  Year 2024 Publication Advanced Science Abbreviated Journal
  Volume Issue Pages 1-13
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Even at low temperatures, metal nanoparticles (NPs) possess atomic dynamics that are key for their properties but challenging to elucidate. Recent experimental advances allow obtaining atomic-resolution snapshots of the NPs in realistic regimes, but data acquisition limitations hinder the experimental reconstruction of the atomic dynamics present within them. Molecular simulations have the advantage that these allow directly tracking the motion of atoms over time. However, these typically start from ideal/perfect NP structures and, suffering from sampling limits, provide results that are often dependent on the initial/putative structure and remain purely indicative. Here, by combining state-of-the-art experimental and computational approaches, how it is possible to tackle the limitations of both approaches and resolve the atomistic dynamics present in metal NPs in realistic conditions is demonstrated. Annular dark-field scanning transmission electron microscopy enables the acquisition of ten high-resolution images of an Au NP at intervals of 0.6 s. These are used to reconstruct atomistic 3D models of the real NP used to run ten independent molecular dynamics simulations. Machine learning analyses of the simulation trajectories allow resolving the real-time atomic dynamics present within the NP. This provides a robust combined experimental/computational approach to characterize the structural dynamics of metal NPs in realistic conditions. Experimental and computational techniques are bridged to unveil atomic dynamics in gold nanoparticles (NPs), using annular dark-field scanning transmission electron microscopy and molecular dynamics simulations informed by machine learning. The approach provides unprecedented insights into the real-time structural behaviors of NPs, merging state-of-the-art techniques to accurately characterize their dynamics under realistic conditions. image
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001206888000001 Publication Date 2024-04-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2198-3844 ISBN (up) Additional Links UA library record; WoS full record
  Impact Factor 15.1 Times cited Open Access
  Notes This work was supported by the funding received by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 818776- DYNAPOL, no. 770887 PICOMETRICS and no. 815128 REALNANO). The authors also acknowledge the computational resources provided by the Swiss National Supercomputing Center (CSCS), by CINECA, and the Research Foundation Flanders (FWO, Belgium) G.0346.21N. Approved Most recent IF: 15.1; 2024 IF: 9.034
  Call Number UA @ admin @ c:irua:205442 Serial 9171
Permanent link to this record
 

 
Author Arisnabarreta, N.; Hao, Y.; Jin, E.; Salame, A.; Muellen, K.; Robert, M.; Lazzaroni, R.; Van Aert, S.; Mali, K.S.; De Feyter, S.
  Title Single-layered imine-linked porphyrin-based two-dimensional covalent organic frameworks targeting CO₂ reduction Type A1 Journal article
  Year 2024 Publication Advanced energy materials Abbreviated Journal
  Volume Issue Pages
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The reduction of carbon dioxide (CO2) using porphyrin-containing 2D covalent organic frameworks (2D-COFs) catalysts is widely explored nowadays. While these framework materials are normally fabricated as powders followed by their uncontrolled surface heterogenization or directly grown as thin films (thickness >200 nm), very little is known about the performance of substrate-supported single-layered (approximate to 0.5 nm thickness) 2D-COFs films (s2D-COFs) due to its highly challenging synthesis and characterization protocols. In this work, a fast and straightforward fabrication method of porphyrin-containing s2D-COFs is demonstrated, which allows their extensive high-resolution visualization via scanning tunneling microscopy (STM) in liquid conditions with the support of STM simulations. The as-prepared single-layered film is then employed as a cathode for the electrochemical reduction of CO2. Fe porphyrin-containing s2D-COF@graphite used as a single-layered heterogeneous catalyst provided moderate-to-high carbon monoxide selectivity (82%) and partial CO current density (5.1 mA cm(-2)). This work establishes the value of using single-layered films as heterogene ous catalysts and demonstrates the possibility of achieving high performance in CO2 reduction even with extremely low catalyst loadings.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001177577200001 Publication Date 2024-02-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1614-6832; 1614-6840 ISBN (up) Additional Links UA library record; WoS full record
  Impact Factor 27.8 Times cited Open Access
  Notes N.A. acknowledges a postdoctoral fellowship from the Research Foundation- Flanders (FWO) via grant 12ZS623N. S.D.F. acknowledges support from FWO (G0A4120N, G0H2122N, G0A5U24N), KU Leuven Internal Funds (grants C14/18/06, C14/19/079, C14/23/090), European Union under the Horizon Europe grant 101046231 (FantastiCOF), and M-ERA.NET via FWO (G0K9822N). S.D.F., K.M., Y.H., R.L., and S.V.A. were thankful to the FWO and FNRS for the financial support through the EOS program (grant 30489208, 40007495). Research in Mons was also supported by the Belgian National Fund for Scientific Research (FRS-FNRS) within the Consortium des Équipements de Calcul Intensif- CÉCI, and by the Walloon Region (ZENOBE and LUCIA Tier-1 supercomputers). E.J. appreciated the support from the Alexander von Humboldt Foundation, the Max Planck Society, the FLAG-ERA Grant OPERA by DFG 437130745, the National Natural Science Foundation of China (22288101), and the 111 Project (B17020). Partial financial support to M.R. from the Institut Universitaire de France (IUF) was warmly thanked. Approved Most recent IF: 27.8; 2024 IF: 16.721
  Call Number UA @ admin @ c:irua:204856 Serial 9172
Permanent link to this record
 

 
Author Ni, S.; Houwman, E.; Gauquelin, N.; Chezganov, D.; Van Aert, S.; Verbeeck, J.; Rijnders, G.; Koster, G.
  Title Stabilizing perovskite Pb(Mg0.33Nb0.67)O3-PbTiO3 thin films by fast deposition and tensile mismatched growth template Type A1 Journal article
  Year 2024 Publication ACS applied materials and interfaces Abbreviated Journal
  Volume 16 Issue 10 Pages 12744-12753
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Because of its low hysteresis, high dielectric constant, and strong piezoelectric response, Pb(Mg1/3Nb2/3)O-3-PbTiO3 (PMN-PT) thin films have attracted considerable attention for the application in PiezoMEMS, field-effect transistors, and energy harvesting and storage devices. However, it remains a great challenge to fabricate phase-pure, pyrochlore-free PMN-PT thin films. In this study, we demonstrate that a high deposition rate, combined with a tensile mismatched template layer can stabilize the perovskite phase of PMN-PT films and prevent the nucleation of passive pyrochlore phases. We observed that an accelerated deposition rate promoted mixing of the B-site cation and facilitated relaxation of the compressively strained PMN-PT on the SrTiO3 (STO) substrate in the initial growth layer, which apparently suppressed the initial formation of pyrochlore phases. By employing La-doped-BaSnO3 (LBSO) as the tensile mismatched buffer layer, 750 nm thick phase-pure perovskite PMN-PT films were synthesized. The resulting PMN-PT films exhibited excellent crystalline quality close to that of the STO substrate.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001176343700001 Publication Date 2024-02-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1944-8244 ISBN (up) Additional Links UA library record; WoS full record
  Impact Factor 9.5 Times cited Open Access
  Notes We would like to acknowledge the Netherlands Organization for Scientific Research (NWO) for the financial support of this work. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 823717-ESTEEM3. Approved Most recent IF: 9.5; 2024 IF: 7.504
  Call Number UA @ admin @ c:irua:204754 Serial 9174
Permanent link to this record
 

 
Author Van Aert, S.; den Dekker, A.J.; van den Bos, A.; Van Dyck, D.
  Title High resolution electron microscopy from imaging towards measuring Type H2 Book chapter
  Year 2001 Publication ... IEEE International Instrumentation and Measurement Technology Conference T2 – Rediscovering measurement in the age of informatics : proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference (IMTC), 2001: vol 3 Abbreviated Journal
  Volume Issue Pages 2081-2086
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
  Abstract
  Address
  Corporate Author Thesis
  Publisher Ieee Place of Publication Editor
  Language Wos Publication Date 2002-11-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN (up) 0-7803-6646-8 Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:136870 Serial 4501
Permanent link to this record
 

 
Author Amelinckx, S.; van Dyck, D.; van Landuyt, J.; Van Tendeloo, G.
  Title Handbook of microscopy: applications in materials science, solid-state physics and chemistry Type ME1 Book as editor or co-editor
  Year 1997 Publication Abbreviated Journal
  Volume Issue Pages
  Keywords ME1 Book as editor or co-editor; Electron microscopy for materials research (EMAT); Vision lab
  Abstract
  Address
  Corporate Author Thesis
  Publisher Vch Place of Publication Weinheim Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN (up) 3-527-29280-2 Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:21417 Serial 1407
Permanent link to this record
 

 
Author Amelinckx, S.; van Dyck, D.; van Landuyt, J.; Van Tendeloo, G.
  Title Electron microscopy: principles and fundamentals Type ME1 Book as editor or co-editor
  Year 1997 Publication Abbreviated Journal
  Volume Issue Pages
  Keywords ME1 Book as editor or co-editor; Electron microscopy for materials research (EMAT); Vision lab
  Abstract
  Address
  Corporate Author Thesis
  Publisher Vch Place of Publication Weinheim Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN (up) 3-527-29479-1 Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:22089 Serial 967
Permanent link to this record
 

 
Author Bals, S.; Stes, A.; Celis, V.
  Title Klassieke toetsing in de praktijk Type H2 Book chapter
  Year 2009 Publication Abbreviated Journal
  Volume Issue Pages 211-225
  Keywords H2 Book chapter; Educational sciences; EduBROn; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher LannooCampus Place of Publication Leuven Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN (up) 978 90 209 8819 2 Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:79658 Serial 1762
Permanent link to this record
 

 
Author Fatermans, J.; de Backer, A.; den Dekker, A.J.; Van Aert, S.
  Title Atom column detection Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
  Volume Issue Pages 177-214
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
  Abstract By combining statistical parameter estimation and model-order selection using a Bayesian framework, the maximum a posteriori (MAP) probability rule is proposed in this chapter as an objective and quantitative method to detect atom columns from high-resolution scanning transmission electron microscopy (HRSTEM) images. The validity and usefulness of this approach is demonstrated to both simulated and experimental annular dark-field (ADF) STEM images, but also to simultaneously acquired annular bright-field (ABF) and ADF STEM image data.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2021-03-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume 217 Series Issue Edition
  ISSN ISBN (up) 978-0-12-824607-8; 1076-5670 Additional Links UA library record
  Impact Factor Times cited Open Access Not_Open_Access
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:177531 Serial 6775
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S.
  Title Atom counting Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
  Volume Issue Pages 91-144
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
  Abstract In this chapter, a statistical model-based method to count the number of atoms of monotype crystalline nanostructures from high-resolution annular dark-field (ADF) scanning transmission electron microscopy (STEM) images is discussed in detail together with a thorough study on the possibilities and inherent limitations. We show that this method can be applied to nanocrystals of arbitrary shape, size, and atom type. The validity of the atom-counting results is confirmed by means of detailed image simulations and it is shown that the high sensitivity of our method enables us to count atoms with single atom sensitivity.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2021-03-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume 217 Series Issue Edition
  ISSN ISBN (up) 978-0-12-824607-8; 1076-5670 Additional Links UA library record
  Impact Factor Times cited Open Access Not_Open_Access
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:177529 Serial 6776
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S.
  Title Efficient fitting algorithm Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
  Volume Issue Pages 73-90
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT)
  Abstract An efficient model-based estimation algorithm is introduced to quantify the atomic column positions and intensities from atomic-resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for overlap between neighboring columns, enabling the analysis of a large field of view. To provide end-users with this well-established quantification method, a user friendly program, StatSTEM, is developed which is freely available under a GNU public license. In this chapter, this efficient algorithm is applied to three different nanostructures for which the analysis of a large field of view is required.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2021-03-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume 217 Series Issue Edition
  ISSN ISBN (up) 978-0-12-824607-8; 1076-5670 Additional Links UA library record
  Impact Factor Times cited Open Access Not_Open_Access
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:177528 Serial 6778
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S.
  Title General conclusions and future perspectives Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
  Volume Issue Pages 243-253
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
  Abstract This chapter provides an overview of statistical and quantitative methodologies that have pushed (scanning) transmission electron microscopy ((S)TEM) toward accurate and precise measurements of unknown structure parameters for understanding the relation between the structure of a material and its properties. Hereby, statistical parameter estimation theory has extensively been used which enabled not only measuring atomic column positions, but also quantifying the number of atoms, and detecting atomic columns as accurately and precisely as possible from experimental images. As a general conclusion, it can be stated that advanced statistical techniques are ideal tools to perform quantitative electron microscopy at the atomic scale. In the future, statistical methods will continue to be developed and novel quantification procedures will open up new possibilities for studying material structures at the atomic scale.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2021-03-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume 217 Series Issue Edition
  ISSN ISBN (up) 978-0-12-824607-8; 1076-5670 Additional Links UA library record
  Impact Factor Times cited Open Access Not_Open_Access
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:177533 Serial 6781
Permanent link to this record
 

 
Author Fatermans, J.; de Backer, A.; den Dekker, A.J.; Van Aert, S.
  Title Image-quality evaluation and model selection with maximum a posteriori probability Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
  Volume Issue Pages 215-242
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
  Abstract The maximum a posteriori (MAP) probability rule for atom column detection can also be used as a tool to evaluate the relation between scanning transmission electron microscopy (STEM) image quality and atom detectability. In this chapter, a new image-quality measure is proposed that correlates well with atom detectability, namely the integrated contrast-to-noise ratio (ICNR). Furthermore, the working principle of the MAP probability rule is described in detail showing a close relation to the principles of model-selection methods.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2021-03-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume 217 Series Issue Edition
  ISSN ISBN (up) 978-0-12-824607-8; 1076-5670 Additional Links UA library record
  Impact Factor Times cited Open Access Not_Open_Access
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:177532 Serial 6782
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: