|
Record |
Links |
|
Author |
Van Gordon, K.; Baúlde, S.; Mychinko, M.; Heyvaert, W.; Obelleiro-Liz, M.; Criado, A.; Bals, S.; Liz-Marzán, L.M.; Mosquera, J. |


|
|
Title |
Tuning the Growth of Chiral Gold Nanoparticles Through Rational Design of a Chiral Molecular Inducer |
Type |
A1 Journal Article |
|
Year  |
2023 |
Publication |
Nano Letters |
Abbreviated Journal |
Nano Lett. |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
A1 Journal Article; Electron Microscopy for Materials Science (EMAT) |
|
|
Abstract |
The bottom-up production of chiral gold nanomaterials holds great potential for the advancement of biosensing and nano-optics, among other applications. Reproducible preparations of colloidal nanomaterials with chiral morphology have been reported, using cosurfactants or chiral inducers such as thiolated amino acids. However, the underlying growth mechanisms for these nanomaterials remain insufficiently understood. We introduce herein a purposely devised chiral inducer, a cysteine modified with a hydrophobic chain, as a versatile chiral inducer. The amphiphilic and chiral features of this molecule provide control over the chiral morphology and the chiroptical signature of the obtained nanoparticles by simply varying the concentration of chiral inducer. These results are supported by circular dichroism and electromagnetic modeling as well as electron tomography to analyze structural evolution at the facet scale. Our observations suggest complex roles for the factors involved in chiral synthesis: the chemical nature of the chiral inducers and the influence of cosurfactants. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
001092787000001 |
Publication Date |
2023-10-25 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1530-6984 |
ISBN |
|
Additional Links |
UA library record; WoS full record |
|
|
Impact Factor |
10.8 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
J.M. Taboada and F. Obelleiro are thanked for support with electromagnetic simulations. The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S. Bals; ERC AdG No. 787510, 4DbioSERS to L.M.L.-M.) and from MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future” (Grant PID2020-117779RB-I00 to L.M.L.-M., Grant RYC2020-030183-I to A.C., and Grants RYC2019-027842-I, PID2020-117885GA-I00 to J.M.).; Sygma_SB |
Approved |
Most recent IF: 10.8; 2023 IF: 12.712 |
|
|
Call Number |
EMAT @ emat @c:irua:200590 |
Serial |
8963 |
|
Permanent link to this record |