toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Delfino, C.L.; Hao, Y.; Martin, C.; Minoia, A.; Gopi, E.; Mali, K.S.; Van der Auweraer, M.; Geerts, Y.H.; Van Aert, S.; Lazzaroni, R.; De Feyter, S. pdf  url
doi  openurl
  Title Conformation-Dependent Monolayer and Bilayer Structures of an Alkylated TTF Derivative Revealed using STM and Molecular Modeling Type A1 Journal Article
  Year 2023 Publication The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C  
  Volume 127 Issue 47 Pages 23023-23033  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract In this study, the multi-layer self-assembled molecular network formation of an alkylated tetrathiafulvalene compound is studied at the liquid-solid interface between 1-phenyloctane and graphite. A combined theoretical/experimental approach associating force-field and quantum-chemical calculations with scanning tunnelling microscopy is used to determine the two-dimensional self-assembly beyond the monolayer, but also to further the understanding of the molecular adsorption conformation and its impact on the molecular packing within the assemblies at the monolayer and bilayer level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001111637100001 Publication Date 2023-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN (down) Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Financial support from the Research Foundation-Flanders (FWO G081518N, G0A3220N) and KU Leuven–Internal Funds (C14/19/079) is acknowledged. This work was in part supported by FWO and F. R. S.-FNRS under the Excellence of Science EOS program (project 30489208 and 40007495). C.M. acknowledges the financial support: Grants PID2021-128761OA-C22 and CNS2022-136052 funded by MCIN/AEI/10.13039/501100011033 by the “European Union” and SBPLY/21/180501/000127 funded by JCCM and by the EU through “Fondo Europeo de Desarollo Regional” (FEDER). Research in Mons is also supported by the Belgian National Fund for Scientific Research (FRS-FNRS) within the Consortium des Équipements de Calcul Intensif – CÉCI, under Grant 2.5020.11, and by the Walloon Region (ZENOBE Tier-1 supercomputer, under grant 1117545). Approved Most recent IF: 3.7; 2023 IF: 4.536  
  Call Number EMAT @ emat @c:irua:201671 Serial 8974  
Permanent link to this record
 

 
Author Vandemeulebroucke, D.; Batuk, M.; Hajizadeh, A.; Wastiaux, M.; Roussel, P.; Hadermann, J. pdf  url
doi  openurl
  Title Incommensurate Modulations and Perovskite Growth in LaxSr2–xMnO4−δAffecting Solid Oxide Fuel Cell Conductivity Type A1 Journal article
  Year 2024 Publication Chemistry of materials Abbreviated Journal Chem. Mater.  
  Volume Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ruddlesden-Popper La????Sr2−????MnO4−???? materials are interesting symmetric solid oxide

fuel cell electrodes due to their good redox stability, mixed ionic and electronic conducting behavior and thermal expansion that matches well with common electrolytes. In reducing environments – as at a solid oxide fuel cell anode – the x = 0.5 member, i.e. La0.5Sr1.5MnO4−????, has a much higher total conductivity than compounds with a different La/Sr ratio, although all those compositions have the same K2NiF4-type I4/mmm structure. The origin for this conductivity difference is not yet known in literature. Now, a combination of in-situ and ex-situ 3D electron diffraction, high-resolution imaging, energy-dispersive X-ray analysis and electron energy-loss spectroscopy uncovered clear differences between x=0.25 and x=0.5 in the pristine structure, as well as in the transformations upon high-temperature reduction. In La0.5Sr1.5MnO4−????, Ruddlesden-Popper n=2 layer defects and an amorphous surface layer are present, but not in La0.25Sr1.75MnO4−????. After annealing at 700°C in 5% H2/Ar, La0.25Sr1.75MnO4−???? transforms to a tetragonal 2D incommensurately modulated structure with modulation vectors ⃗????1 = 0.2848(1) · (⃗????* +⃗????*) and ⃗????2 =0.2848(1) · (⃗????* – ⃗????*), whereas La0.5Sr1.5MnO4−???? only partially transforms to an orthorhombic 1D incommensurately modulated structure,

with ⃗???? = 0.318(2) · ⃗????*. Perovskite domains grow at the crystal edge at 700°C in 5%

H2 or vacuum, due to the higher La concentration on the surface compared to the bulk, which leads to a different thermodynamic equilibrium. Since it is known that a lower degree of oxygen vacancy ordering and a higher amount of perovskite blocks enhance oxygen mobility, those differences in defect structure and structural transformation upon reduction, might all contribute to the higher conductivity of La0.5Sr1.5MnO4−???? in solid oxide fuel cell anode conditions compared to other La/Sr ratios.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 001174840900001 Publication Date 2024-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN (down) Additional Links UA library record; WoS full record  
  Impact Factor 8.6 Times cited Open Access Not_Open_Access  
  Notes Universiteit Antwerpen, BOF TOP 38689 ; Fonds Wetenschappelijk Onderzoek, I003218N ; European Commission NanED, 956099 ; Approved Most recent IF: 8.6; 2024 IF: 9.466  
  Call Number EMAT @ emat @c:irua:204354 Serial 8997  
Permanent link to this record
 

 
Author Gerrits, N.; Jackson, B.; Bogaerts, A. file  url
doi  openurl
  Title Accurate Reaction Probabilities for Translational Energies on Both Sides of the Barrier of Dissociative Chemisorption on Metal Surfaces Type A1 Journal Article
  Year 2024 Publication The Journal of Physical Chemistry Letters Abbreviated Journal J. Phys. Chem. Lett.  
  Volume 15 Issue 9 Pages 2566-2572  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Molecular dynamics simulations are essential for a better understanding of dissociative chemisorption on metal surfaces, which is often the rate-controlling step in heterogeneous and plasma catalysis. The workhorse quasi-classical trajectory approach ubiquitous in molecular dynamics is able to accurately predict reactivity only for high translational and low vibrational energies. In contrast, catalytically relevant conditions generally involve low translational and elevated vibrational energies. Existing quantum dynamics approaches are intractable or approximate as a result of the large number of degrees of freedom present in molecule−metal surface reactions. Here, we extend a ring polymer molecular dynamics approach to fully include, for the first time, the degrees of freedom of a moving metal surface. With this approach, experimental sticking probabilities for the dissociative chemisorption of methane on Pt(111) are reproduced for a large range of translational and vibrational energies by including nuclear quantum effects and employing full-dimensional simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001177959900001 Publication Date 2024-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN (down) Additional Links UA library record; WoS full record  
  Impact Factor 5.7 Times cited Open Access  
  Notes Nick Gerrits has been financially supported through a Dutch Research Council (NWO) Rubicon grant (019.202EN.012). The computational resources and services used in this work were provided by the high performance computing (HPC) core facility CalcUA of the Universiteit Antwerpen and the Flemish Supercomputer Center (VSC) funded by the Research Foundation−Flanders (FWO) and the Flemish Government. The authors thank Mark Somers for useful discussions. Approved Most recent IF: 5.7; 2024 IF: 9.353  
  Call Number PLASMANT @ plasmant @c:irua:204818 Serial 9114  
Permanent link to this record
 

 
Author De Meyer, R.; Gorbanev, Y.; Ciocarlan, R.-G.; Cool, P.; Bals, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Importance of plasma discharge characteristics in plasma catalysis: Dry reforming of methane vs. ammonia synthesis Type A1 Journal article
  Year 2024 Publication Chemical engineering journal Abbreviated Journal Chemical Engineering Journal  
  Volume 488 Issue Pages 150838  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is a rapidly growing field, often employing a packed-bed dielectric barrier discharge plasma reactor. Such dielectric barrier discharges are complex, especially when a packing material (e.g., a catalyst) is introduced in the discharge volume. Catalysts are known to affect the plasma discharge, though the underlying mechanisms influencing the plasma physics are not fully understood. Moreover, the effect of the catalysts on the plasma discharge and its subsequent effect on the overall performance is often overlooked. In this work, we deliberately design and synthesize catalysts to affect the plasma discharge in different ways. These Ni or Co alumina-based catalysts are used in plasma-catalytic dry reforming of methane and ammonia synthesis. Our work shows that introducing a metal to the dielectric packing can affect the plasma discharge, and that the distribution of the metal is crucial in this regard. Further, the altered discharge can greatly influence the overall performance. In an atmospheric pressure dielectric barrier discharge reactor, this apparently more uniform plasma yields a significantly better performance for ammonia synthesis compared to the more conventional filamentary discharge, while it underperforms in dry reforming of methane. This study stresses the importance of analyzing the plasma discharge in plasma catalysis experiments. We hope this work encourages a more critical view on the plasma discharge characteristics when studying various catalysts in a plasma reactor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001221606600001 Publication Date 2024-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN (down) Additional Links UA library record; WoS full record  
  Impact Factor 15.1 Times cited Open Access  
  Notes This research was supported through long-term structural funding (Methusalem FFB15001C) and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme with grant agreement No 810182 (SCOPE ERC Synergy project) and with grant agreement No 815128 (REALNANO). We acknowledge the practical contribution of Senne Van Doorslaer. Approved Most recent IF: 15.1; 2024 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:205154 Serial 9115  
Permanent link to this record
 

 
Author Gorbanev, Y.; Fedirchyk, I.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma catalysis in ammonia production and decomposition: Use it, or lose it? Type A1 Journal Article
  Year 2024 Publication Current Opinion in Green and Sustainable Chemistry Abbreviated Journal Current Opinion in Green and Sustainable Chemistry  
  Volume 47 Issue Pages 100916  
  Keywords A1 Journal Article; Plasma Nitrogen fixation Ammonia Plasma catalysis Production and decomposition; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract The combination of plasma with catalysis for the synthesis and decomposition of NH3 is an attractive route to the production of carbon-neutral fertiliser and energy carriers and its conversion into H2. Recent years have seen fast developments in the field of plasma-catalytic NH3 life cycle. This work summarises the most recent advances in plasma-catalytic and related NH3-focussed processes, identifies some of the most important discoveries, and addresses plausible strategies for future developments in plasma-based NH3 technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2452-2236 ISBN (down) Additional Links  
  Impact Factor 9.3 Times cited Open Access  
  Notes The work was supported by the Fund for Scientific Research (FWO) Flanders Bioeconomy project (grant G0G2322N) funded by the European Union-NextGe- nerationEU, the HyPACT project funded by the Belgian Energy Transition Fund, and the MSCA4Ukraine project 1233629 funded by the European Union. Approved Most recent IF: 9.3; 2024 IF: NA  
  Call Number PLASMANT @ plasmant @ Serial 9117  
Permanent link to this record
 

 
Author Cai, Y.; Mei, D.; Chen, Y.; Bogaerts, A.; Tu, X. url  doi
openurl 
  Title Machine learning-driven optimization of plasma-catalytic dry reforming of methane Type A1 Journal Article
  Year 2024 Publication Journal of Energy Chemistry Abbreviated Journal Journal of Energy Chemistry  
  Volume 96 Issue Pages 153-163  
  Keywords A1 Journal Article; Plasma catalysis Machine learning Process optimization Dry reforming of methane Syngas production; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This study investigates the dry reformation of methane (DRM) over Ni/Al2O3 catalysts in a dielectric barrier discharge (DBD) non-thermal plasma reactor. A novel hybrid machine learning (ML) model is developed to optimize the plasma-catalytic DRM reaction with limited experimental data. To address the non-linear and complex nature of the plasma-catalytic DRM process, the hybrid ML model integrates three well-established algorithms: regression trees, support vector regression, and artificial neural networks. A genetic algorithm (GA) is then used to optimize the hyperparameters of each algorithm within the hybrid ML model. The ML model achieved excellent agreement with the experimental data, demonstrating its efficacy in accurately predicting and optimizing the DRM process. The model was subsequently used to investigate the impact of various operating parameters on the plasma-catalytic DRM performance. We found that the optimal discharge power (20 W), CO2/CH4 molar ratio (1.5), and Ni loading (7.8 wt%) resulted in the maximum energy yield at a total flow rate of 51 mL/min. Furthermore, we investigated the relative significance of each operating parameter on the performance of the plasmacatalytic DRM process. The results show that the total flow rate had the greatest influence on the conversion, with a significance exceeding 35% for each output, while the Ni loading had the least impact on the overall reaction performance. This hybrid model demonstrates a remarkable ability to extract valuable insights from limited datasets, enabling the development and optimization of more efficient and selective plasma-catalytic chemical processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-4956 ISBN (down) Additional Links  
  Impact Factor 13.1 Times cited Open Access  
  Notes This project received funding from the European Union’s Hori- zon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 813393. Approved Most recent IF: 13.1; 2024 IF: 2.594  
  Call Number PLASMANT @ plasmant @ Serial 9124  
Permanent link to this record
 

 
Author Xu, W.; Van Alphen, S.; Galvita, V.V.; Meynen, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Effect of Gas Composition on Temperature and CO2Conversion in a Gliding Arc Plasmatron reactor: Insights for Post‐Plasma Catalysis from Experiments and Computation Type A1 Journal Article
  Year 2024 Publication ChemSusChem Abbreviated Journal ChemSusChem  
  Volume Issue Pages  
  Keywords A1 Journal Article; CO2 conversion · Plasma · Gliding arc plasmatron · Temperature profiles · Computational modelling; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma‐based CO<sub>2</sub>conversion has attracted increasing interest. However, to understand the impact of plasma operation on post‐plasma processes, we studied the effect of adding N<sub>2</sub>, N<sub>2</sub>/CH<sub>4</sub>and N<sub>2</sub>/CH<sub>4</sub>/H<sub>2</sub>O to a CO<sub>2</sub>gliding arc plasmatron (GAP) to obtain valuable insights into their impact on exhaust stream composition and temperature, which will serve as feed gas and heat for post‐plasma catalysis (PPC). Adding N<sub>2</sub>improves the CO<sub>2</sub>conversion from 4 % to 13 %, and CH<sub>4</sub>addition further promotes it to 44 %, and even to 61 % at lower gas flow rate (6 L/min), allowing a higher yield of CO and hydrogen for PPC. The addition of H<sub>2</sub>O, however, reduces the CO<sub>2</sub>conversion from 55 % to 22 %, but it also lowers the energy cost, from 5.8 to 3 kJ/L. Regarding the temperature at 4.9 cm post‐plasma, N<sub>2</sub>addition increases the temperature, while the CO<sub>2</sub>/CH<sub>4</sub>ratio has no significant effect on temperature. We also calculated the temperature distribution with computational fluid dynamics simulations. The obtained temperature profiles (both experimental and calculated) show a decreasing trend with distance to the exhaust and provide insights in where to position a PPC bed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001200297300001 Publication Date 2024-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access  
  Notes We acknowledge the VLAIO Catalisti Moonshot project D2M and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692) for financial support. We acknowledge Gilles Van Loon for his help to make the quartz and steel devices for the reactor. Vladimir V. Galvita also acknowledges a personal grant from the Research Fund of Ghent University (BOF; 01N16319). Approved Most recent IF: 8.4; 2024 IF: 7.226  
  Call Number PLASMANT @ plasmant @c:irua:205101 Serial 9128  
Permanent link to this record
 

 
Author Van Gordon, K.; Ni, B.; Girod, R.; Mychinko, M.; Bevilacqua, F.; Bals, S.; Liz‐Marzán, L.M. pdf  url
doi  openurl
  Title Single Crystal and Pentatwinned Gold Nanorods Result in Chiral Nanocrystals with Reverse Handedness Type A1 Journal Article
  Year 2024 Publication Angewandte Chemie International Edition Abbreviated Journal Angew Chem Int Ed  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Handedness is an essential attribute of chiral nanocrystals, having a major influence on their properties. During chemical growth, the handedness of nanocrystals is usually tuned by selecting the corresponding enantiomer of chiral molecules involved in asymmetric growth, often known as chiral inducers. We report that, even using the same chiral inducer enantiomer, the handedness of chiral gold nanocrystals can be reversed by using Au nanorod seeds with either single crystalline or pentatwinned structure. This effect holds for chiral growth induced both by amino acids and by chiral micelles. Although it was challenging to discern the morphological handedness for<italic>L</italic>‐cystine‐directed particles, even using electron tomography, both cases showed circular dichroism bands of opposite sign, with nearly mirrored chiroptical signatures for chiral micelle‐directed growth, along with quasi‐helical wrinkles of inverted handedness. These results expand the chiral growth toolbox with an effect that might be exploited to yield a host of interesting morphologies with tunable optical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001230287700001 Publication Date 2024-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851 ISBN (down) Additional Links UA library record; WoS full record  
  Impact Factor 16.6 Times cited Open Access  
  Notes Ana Sánchez-Iglesias is acknowledged for support in the synthesis of pentatwinned gold nanorods. The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S.B.), from MCIN/AEI/10.13039/501100011033 (Grant PID2020- 117779RB-I00 to L.M.L.-M and FPI Fellowship PRE2021- 097588 to K.V.G.), and by KU Leuven (C14/22/085). This work has been funded by the European Union under Project 101131111—DELIGHT. Funding for open access charge: Universidade de Vigo/ CRUE-CISUG. Approved Most recent IF: 16.6; 2024 IF: 11.994  
  Call Number EMAT @ emat @c:irua:206328 Serial 9129  
Permanent link to this record
 

 
Author Maerivoet, S.; Tsonev, I.; Slaets, J.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Coupled multi-dimensional modelling of warm plasmas: Application and validation for an atmospheric pressure glow discharge in CO2/CH4/O2 Type A1 Journal Article
  Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal  
  Volume 492 Issue Pages 152006  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract To support experimental research into gas conversion by warm plasmas, models should be developed to explain the experimental observations. These models need to describe all physical and chemical plasma properties in a coupled way. In this paper, we present a modelling approach to solve the complete set of assumed relevant equations, including gas flow, heat balance and species transport, coupled with a rather extensive chemistry set, consisting of 21 species, obtained by reduction of a more detailed chemistry set, consisting of 41 species. We apply this model to study the combined CO2 and CH4 conversion in the presence of O2, in a direct current atmospheric pressure glow discharge. Our model can predict the experimental trends, and can explain why higher O2 fractions result in higher CH4 conversion, namely due to the higher gas temperature, rather than just by additional chemical reactions. Indeed, our model predicts that when more O2 is added, the energy required to reach any set temperature (i.e., the enthalpy) drops, allowing the system to reach higher temperatures with similar amounts of energy. This is in turn related to the higher H2O fraction and lower H2 fraction formed in the plasma, as demonstrated by our model. Altogether, our new self-consistent model can capture the main physics and chemistry occurring in this warm plasma, which is an important step towards predictive modelling for plasma-based gas conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN (down) Additional Links  
  Impact Factor 15.1 Times cited Open Access  
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID G0I1822N; EOS ID 40007511) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 810182–SCOPE ERC Synergy project, and grant agreement No. 101081162–PREPARE ERC Proof of Concept project). computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. Approved Most recent IF: 15.1; 2024 IF: 6.216  
  Call Number PLASMANT @ plasmant @ Serial 9132  
Permanent link to this record
 

 
Author Cai, Y.; Michiels, R.; De Luca, F.; Neyts, E.; Tu, X.; Bogaerts, A.; Gerrits, N. url  doi
openurl 
  Title Improving Molecule–Metal Surface Reaction Networks Using the Meta-Generalized Gradient Approximation: CO2Hydrogenation Type A1 Journal Article
  Year 2024 Publication The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C  
  Volume 128 Issue 21 Pages 8611-8620  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Density functional theory is widely used to gain insights into molecule−metal surface reaction networks, which is important for a better understanding of catalysis. However, it is well-known that generalized gradient approximation (GGA)

density functionals (DFs), most often used for the study of reaction networks, struggle to correctly describe both gas-phase molecules and metal surfaces. Also, GGA DFs typically underestimate reaction barriers due to an underestimation of the selfinteraction energy. Screened hybrid GGA DFs have been shown to reduce this problem but are currently intractable for wide usage. In this work, we use a more affordable meta-GGA (mGGA) DF in combination with a nonlocal correlation DF for the first time to study and gain new insights into a catalytically important surface

reaction network, namely, CO2 hydrogenation on Cu. We show that the mGGA DF used, namely, rMS-RPBEl-rVV10, outperforms typical GGA DFs by providing similar or better predictions for metals and molecules, as well as molecule−metal surface adsorption

and activation energies. Hence, it is a better choice for constructing molecule−metal surface reaction networks.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN (down) Additional Links  
  Impact Factor 3.7 Times cited Open Access  
  Notes H2020 Marie Sklodowska-Curie Actions, 813393 ; Fonds Wetenschappelijk Onderzoek, 1114921N ; H2020 European Research Council, 810182 ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 019.202EN.012 ; Approved Most recent IF: 3.7; 2024 IF: 4.536  
  Call Number PLASMANT @ plasmant @ Serial 9248  
Permanent link to this record
 

 
Author Michiels, R.; Gerrits, N.; Neyts, E.; Bogaerts, A. file  url
doi  openurl
  Title Plasma Catalysis Modeling: How Ideal Is Atomic Hydrogen for Eley–Rideal? Type A1 Journal Article
  Year 2024 Publication The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C  
  Volume 128 Issue 27 Pages 11196-11209  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma catalysis is an emerging technology, but a lot of questions about the underlying surface mechanisms remain unanswered. One of these questions is how important Eley−Rideal (ER) reactions are, next to Langmuir−Hinshelwood reactions. Most plasma catalysis kinetic models predict ER reactions to be important and sometimes even vital for the surface chemistry. In this work, we take a critical look at how ER reactions involving H radicals are incorporated in kinetic models describing CO2 hydrogenation and NH3 synthesis. To this end, we construct potential energy surface (PES) intersections, similar to elbow plots constructed for dissociative chemisorption. The results of the PES intersections are in agreement with ab initio molecular dynamics (AIMD) findings in literature while being computationally much cheaper. We find that, for the reactions studied here, adsorption is more probable than a reaction via the hot atom (HA) mechanism, which in turn is more probable than a reaction via the ER mechanism. We also conclude that kinetic models of plasma-catalytic systems tend to overestimate the importance if ER reactions. Furthermore, as opposed to what is often assumed in kinetic models, the choice of catalyst will influence the ER reaction probability. Overall, the description of ER reactions is too much “ideal” in models. Based on our indings, we make a number of recommendations on how to incorporate ER reactions in kinetic models to avoid overestimation of their importance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN (down) Additional Links  
  Impact Factor 3.7 Times cited Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, 1114921N ; Horizon 2020 Framework Programme, 810182 ; Approved Most recent IF: 3.7; 2024 IF: 4.536  
  Call Number PLASMANT @ plasmant @ Serial 9251  
Permanent link to this record
 

 
Author Quintelier, M.; Hajizadeh, A.; Zintler, A.; Gonçalves, B.F.; Fernández de Luis, R.; Esrafili Dizaji, L.; Vande Velde, C.M.L.; Wuttke, S.; Hadermann, J. pdf  url
doi  openurl
  Title In SituStudy of the Activation Process of MOF-74 Using Three-Dimensional Electron Diffraction Type A1 Journal Article
  Year 2024 Publication Chemistry of Materials Abbreviated Journal Chem. Mater.  
  Volume Issue Pages  
  Keywords A1 Journal Article; 3DED; MOFs; in situ; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Metal–organic framework (MOF)-74 is known for its effectiveness in selectively capturing carbon dioxide (CO2). Especially the Zn and Cu versions of MOF-74 show high efficiency of this material for CO2. However, the activation of this MOF, which is a crucial step for its utilization, is so far not well understood. Here, we are closing the knowledge gap by examining the activation using, for the first time in the MOF, three-dimensional electron diffraction (3DED) during in situ heating. The use of state-of-the-art direct electron detectors enables rapid acquisition and minimal exposure times, therefore minimizing beam damage to the very electron beam-sensitive MOF material. The activation process of Zn-MOF-74 and Cu-MOF-74 is systematically studied in situ, proving the creation of open metal sites. Differences in thermal stability between Zn-MOF-74 and Cu-MOF-74 are attributed to the strength of the metal–oxygen bonds and Jahn–Teller distortions. In the case of Zn-MOF-74, we observe previously unknown remaining electrostatic potentials inside the MOF pores, which indicate the presence of remaining atoms that might impede gas flow throughout the structure when using the MOF for absorption purposes. We believe our study exemplifies the significance of employing advanced characterization techniques to enhance our material understanding, which is a crucial step for unlocking the full potential of MOFs in various applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001275 Publication Date 2024-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN (down) Additional Links UA library record; WoS full record  
  Impact Factor 8.6 Times cited Open Access  
  Notes European Regional Development Fund, PID2021-122940OB-C31 ; H2020 Energy, 101022633 ; Universiteit Antwerpen, BOF TOP 38689 ; H2020 Marie Sklodowska-Curie Actions, 956099 ; Fonds Wetenschappelijk Onderzoek, I003218N ; Japan Science and Technology Agency, JPMJSC2102 ; Funda??o de Amparo ? Pesquisa do Estado de S?o Paulo; Agencia Estatal de Investigaci?n,Ministerio de Ciencia, Innovaci?n y Universidades, PID2021-122940OB-C31 TED2021-130621B-C42 ; Approved Most recent IF: 8.6; 2024 IF: 9.466  
  Call Number EMAT @ emat @c:irua:207555 Serial 9255  
Permanent link to this record
 

 
Author Pedrazo-Tardajos, A.; Claes, N.; Wang, D.; Sánchez-Iglesias, A.; Nandi, P.; Jenkinson, K.; De Meyer, R.; Liz-Marzán, L.M.; Bals, S. url  doi
openurl 
  Title Direct visualization of ligands on gold nanoparticles in a liquid environment Type A1 Journal Article
  Year 2024 Publication Nature Chemistry Abbreviated Journal Nat. Chem.  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The interaction among Au nanoparticles, their surface ligands and the solvent critically influences the properties of nanoparticles. Despite employing spectroscopic and scattering techniques to investigate their ensemble structure, a comprehensive understanding at the nanoscale remains elusive. Electron microscopy enables characterization of the local structure and composition but is limited by insufficient contrast, electron beam sensitivity and ultra-high vacuum, which prevent the investigation of dynamic aspects. Here we show that, by exploiting high-quality graphene liquid cells, we can overcome these limitations and investigate the structure of the ligand shell around the Au nanoparticles, as well as the ligand-Au interface in a liquid environment. Using this graphene liquid cell, we visualize the anisotropy, composition and dynamics of ligand distribution at the Au nanorod surface. Our results indicate a micellar model for the surfactant organisation. This work opens up a reliable and direct visualization of ligand distribution around colloidal nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001257 Publication Date 2024-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-4330 ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles; WoS full record  
  Impact Factor 21.8 Times cited Open Access  
  Notes S.B., and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by grant no. 731019 (EUSMI) and ERC Consolidator grant no. 815128 (REALNANO). D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (Grant 894254 SuprAtom). L.L.-M. acknowledges financial support from the European Research Council (ERC Advanced Grant 787510, 4DbioSERS) and the Spanish State Research Agency (Project PID2020-117779RB-I00 and MDM-2017-0720). The authors acknowledge Dr. J. Mosquera and Dr. Jimenez de Aberasturi for provision of samples and useful discussions. Approved Most recent IF: 21.8; 2024 IF: 25.87  
  Call Number EMAT @ emat @c:irua:207062 Serial 9256  
Permanent link to this record
 

 
Author Maerivoet, S.; Wanten, B.; De Meyer, R.; Van Hove, M.; Van Alphen, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Effect of O2on Plasma-Based Dry Reforming of Methane: Revealing the Optimal Gas Composition via Experiments and Modeling of an Atmospheric Pressure Glow Discharge Type A1 Journal Article
  Year 2024 Publication ACS Sustainable Chemistry & Engineering Abbreviated Journal ACS Sustainable Chem. Eng.  
  Volume 12 Issue 30 Pages 11419-11434  
  Keywords A1 Journal Article; plasma-based conversion, thermal plasma, syngas production, CO2 conversion, CH4 conversio; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma technology is gaining increasing interest for the conversion of greenhouse gases, such as CO2 and CH4, into value-added chemicals using (renewable) electricity. In this paper, we study the effect of O2 addition to the combined conversion of CO2 and CH4 in an atmospheric pressure glow discharge plasma. This process is called “oxidative CO2 reforming of methane”, and we search for the optimal gas mixing ratio in terms of conversion, energy cost, product output and plasma stability. A mixing ratio of 42.5:42.5:15 CO2/CH4/O2 yields the best performance, with a CO2 and CH4 conversion of 50 and 74%, respectively, and an energy cost as low as 2 eV molecule−1 (corresponding to 7.9 kJ L−1 and 190 kJ mol−1), i.e., clearly below the target defined to be competitive with other technologies. The syngas components (CO and H2) are the most important products, with a syngas ratio, H2/CO, being 0.8. Plasma destabilization at high CH4 fractions due to solid carbon formation is the limiting factor for further improving this syngas ratio. The solid carbon material is found to be contaminated with steel particles originating from the electrode material, rendering it unappealing as a side product. Therefore, O2 addition helps to remove the carbon formation. Besides the experiments, we developed a 2D axisymmetric fluid dynamics model, which can successfully predict the experimental trends in conversion, product composition and temperatures, while providing unique insights in the formation of CxHy species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001280 Publication Date 2024-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN (down) Additional Links UA library record; WoS full record  
  Impact Factor 8.4 Times cited Open Access  
  Notes Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, 40007511 G0I1822N ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2024 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:207488 Serial 9257  
Permanent link to this record
 

 
Author Chowdhury, M.S.; Esteban, D.A.; Amin, R.; Román-Freijeiro, C.; Rösch, E.L.; Etzkorn, M.; Schilling, M.; Ludwig, F.; Bals, S.; Salgueiriño, V.; Lak, A. url  doi
openurl 
  Title Organic Molecular Glues to Design Three-Dimensional Cubic Nano-assemblies of Magnetic Nanoparticles Type A1 Journal Article
  Year 2024 Publication Chemistry of Materials Abbreviated Journal Chem. Mater.  
  Volume 36 Issue 14 Pages 6865-6876  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001275 Publication Date 2024-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN (down) Additional Links UA library record; WoS full record  
  Impact Factor 8.6 Times cited Open Access  
  Notes Ministerio de Ciencia e Innovaci?n, PID2020-119242-I00 ; Deutsche Forschungsgemeinschaft, LA 4923/3-1 RTG 1952 ; Horizon 2020 Framework Programme, 823717 ; Approved Most recent IF: 8.6; 2024 IF: 9.466  
  Call Number EMAT @ emat @c:irua:207594 Serial 9258  
Permanent link to this record
 

 
Author Lv, H.; Meng, S.; Cui, Z.; Li, S.; Li, D.; Gao, X.; Guo, H.; Bogaerts, A.; Yi, Y. pdf  url
doi  openurl
  Title Plasma-catalytic direct oxidation of methane to methanol over Cu-MOR: Revealing the zeolite-confined Cu2+ active sites Type A1 Journal Article
  Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal  
  Volume 496 Issue Pages 154337  
  Keywords A1 Journal Article; Direct oxidation Methanol production Plasma catalysis Copper-mordenite catalysts; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Efficient methane conversion to methanol remains a significant challenge in chemical industry. This study investigates the direct oxidation of methane to methanol under mild conditions, employing a synergy of nonthermal plasma and Cu-MOR (Copper-Mordenite) catalysts. Catalytic tests demonstrate that the Cu-MOR IE-3 catalyst (i.e., prepared by three cycles of ion exchange) exhibits superior catalytic performance (with 51 % methanol selectivity and 7.9 % methane conversion). Conversely, the Cu-MOR catalysts prepared via wetness impregnation tend to over-oxidize CH4 to CO and CO2. Through systematic catalyst characterizations (XRD, TPR, UV–Vis, HRTEM, XPS), we elucidate that ion exchange mainly leads to the formation of zeolite-confined Cu2+ species, while wetness impregnation predominantly results in CuO particles. Based on the catalytic performance, catalyst characterizations and in-situ FTIR spectra, we conclude that zeolite-confined Cu2+ species serve as the active sites for plasma-catalytic direct oxidation of methane to methanol.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN (down) Additional Links  
  Impact Factor 15.1 Times cited Open Access  
  Notes PetroChina Innovation Foundation, 2018D-5007-0501 ; Fundamental Research Funds for the Central Universities, DUT21JC40 ; Fundamental Research Funds for the Central Universities; China Scholarship Council; National Natural Science Foundation of China, 22272015 ; Approved Most recent IF: 15.1; 2024 IF: 6.216  
  Call Number PLASMANT @ plasmant @ Serial 9260  
Permanent link to this record
 

 
Author Vertongen, R.; De Felice, G.; van den Bogaard, H.; Gallucci, F.; Bogaerts, A.; Li, S. url  doi
openurl 
  Title Sorption-Enhanced Dry Reforming of Methane in a DBD Plasma Reactor for Single-Stage Carbon Capture and Utilization Type A1 Journal Article
  Year 2024 Publication ACS Sustainable Chemistry & Engineering Abbreviated Journal ACS Sustainable Chem. Eng.  
  Volume 12 Issue 29 Pages 10841-10853  
  Keywords A1 Journal Article; plasma, dry reforming of methane, dielectric barrier discharge, sorbent, carbon capture and utilization, zeolite; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma−sorbent systems are a novel technology for single-stage carbon capture and utilization (CCU), where the plasma enables the desorption of CO2 from a sorbent and the simultaneous conversion to CO. In this study, we test the flexibility of a plasma−sorbent system in a single unit, specifically for sorption-enhanced dry reforming of methane (DRM). The experimental results indicate the selective adsorption of CO2 by the sorbent zeolite 5A in the first step, and CH4 addition during the plasma-based desorption of CO2 enables DRM to various value-added products in the second step, such as H2, CO, hydrocarbons, and the byproduct H2O. Furthermore, our work also demonstrates that zeolite has the potential to increase the conversion of CO2 and CH4, attributed to its capability to capture H2O. Aside from the notable carbon deposition, material analysis shows that the zeolite remains relatively stable under plasma exposure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN (down) Additional Links  
  Impact Factor 8.4 Times cited Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, 110221N V404823N ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2024 IF: 5.951  
  Call Number PLASMANT @ plasmant @ Serial 9264  
Permanent link to this record
 

 
Author Albrechts, M.; Tsonev, I.; Bogaerts, A. pdf  url
doi  openurl
  Title Can post-plasma CH4injection improve plasma-based dry reforming of methane? A modeling study Type A1 Journal Article
  Year 2024 Publication Green Chemistry Abbreviated Journal Green Chem.  
  Volume 26 Issue 18 Pages 9712-9728  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Thermal plasma-driven dry reforming of methane (DRM) has gained increased attention in recent years due to its high conversion and energy conversion efficiency (ECE). Recent experimental work investigated the performance of a pure CO<sub>2</sub>plasma with post-plasma CH<sub>4</sub>injection. The rationale behind this strategy is that by utilizing a pure CO<sub>2</sub>plasma, all plasma energy can be used to dissociate CO<sub>2</sub>, while CH<sub>4</sub>reforming proceeds post-plasma in the reforming reactor with residual heat, potentially improving the energy efficiency compared to injecting both CO<sub>2</sub>and CH<sub>4</sub>into the plasma. To assess whether post-plasma CH<sub>4</sub>injection indeed improves the DRM performance, we developed a chemical kinetics model describing the post-plasma conversion process. We first validated our model by reproducing the experimental results of the pure CO<sub>2</sub>plasma with post-plasma CH<sub>4</sub>injection. Subsequently, we compared both strategies: injecting only CO<sub>2</sub>inside the plasma while injecting CH<sub>4</sub>post-plasma,<italic>vs.</italic>classical plasma-based DRM. Our modeling results indicate that below specific energy inputs (SEI) of 220 kJ mol<sup>−1</sup>, the total conversion slightly improves (<italic>ca.</italic>5%) with the first strategy. However, the ECE is slightly lower due to the low H<sub>2</sub>selectivity caused by substantial H<sub>2</sub>O formation. The highest conversion and ECE are obtained at SEI values of 240–280 kJ mol<sup>−1</sup>, where both strategies yield nearly identical results, indicating the limited potential of improving the performance of DRM by pure CO<sub>2</sub>plasma with post-plasma CH<sub>4</sub>injection. Nevertheless, the approach is still very valuable to allow higher CH<sub>4</sub>/CO<sub>2</sub>ratios without problems of coke formation within the plasma, and thus, to improve plasma stability and reach higher syngas ratios, which is more useful for further Fischer–Tropsch or methanol synthesis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262 ISBN (down) Additional Links  
  Impact Factor 9.8 Times cited Open Access  
  Notes HORIZON EUROPE Framework Programme, 101069491 ; Approved Most recent IF: 9.8; 2024 IF: 9.125  
  Call Number PLASMANT @ plasmant @ Serial 9265  
Permanent link to this record
 

 
Author Sun, J.; Chen, Q.; Qin, W.; Wu, H.; Liu, B.; Li, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-catalytic dry reforming of CH4: Effects of plasma-generated species on the surface chemistry Type A1 Journal Article
  Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal  
  Volume 498 Issue Pages 155847  
  Keywords A1 Journal Article; Dry reforming of methane Plasma catalysis Plasma-enhanced surface chemistry Path flux and sensitivity analysis Coking kinetics; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract By means of steady-state experiments and a global model, we studied the effects of plasma-generated reactive species on the surface chemistry and coking in plasma-catalytic CH4/CO2 reforming at reduced pressure (8–40 kPa). We used a hybrid ZDPlasKin-CHEMKIN model to predict the species densities over time. The detailed plasma-catalytic mechanism consists of the plasma discharge scheme, a gas-phase chemistry set and a surface mechanism. Our experimental results show that the coupling of Ni/SiO2 catalyst with plasma is more effective in CH4/CO2 activation and conversion than unpacked DBD plasma, with syngas being the main products. The

highest total conversion of 16 % was achieved at 8000 V and 473 K, with corresponding CO and H2 yields of 15 % and 12 %, respectively. The reactants conversion and product selectivity are well captured by the kinetic model. Our simulation results suggest that vibrational species and radicals can accelerate the dissociative adsorption and Eley-Rideal (E-R) reactions. Path flux analysis shows that E-R reactions dominate the surface reaction pathways, which differs from thermal catalysis, indicating that the coupling of non-equilibrium plasma and catalysis can effectively shift the formation and consumption pathways of important adsorbates. For instance, our model suggests that HCOO(s) is primarily generated through the E-R reaction CO2(v) + H(s) → HCOO(s), while the hydrogenation reaction HCOO(s) + H → HCOOH(s) is the main source of HCOOH(s). Carbon deposition on the

catalyst surface is primarily formed through the stepwise dehydrogenation of CH4, while the E-R reactions enhanced by plasma-generated H and O atoms dominate the consumption of carbon deposition. This work provides new insights into the effects of reactive species on the surface chemistry in plasma-catalytic CH4/CO2 reforming.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN (down) Additional Links  
  Impact Factor 15.1 Times cited Open Access  
  Notes National Natural Science Foundation of China; Approved Most recent IF: 15.1; 2024 IF: 6.216  
  Call Number PLASMANT @ plasmant @ Serial 9266  
Permanent link to this record
 

 
Author Fedirchyk, I.; Tsonev, I.; Quiroz Marnef, R.; Bogaerts, A. url  doi
openurl 
  Title Plasma-assisted NH3 cracking in warm plasma reactors for green H2 production Type A1 Journal Article
  Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal  
  Volume 499 Issue Pages 155946  
  Keywords A1 Journal Article; Plasma-assisted NH3 cracking Plasma reactors Warm plasma H2 production from NH3; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract renewable energy. Plasma technology is promising for this purpose, as it can crack NH3 without the need for a catalyst and is highly compatible with renewable electricity, reducing the environmental footprint of the cracking process. This work investigates the NH3 cracking performance of four different warm plasma reactors with different configurations and operating in a wide range of conditions. We show that the NH3 conversion in warm plasma reactors is primarily determined by the specific energy input, with the main difference observed in the energy cost (EC) of cracking. The lowest EC obtained is 146 kJ/mol but at a conversion of only 8 %. A more reasonable conversion of around 50 % yields an EC of around 200 kJ/mol in two of the reactors investigated. Plasma reactors operating at higher feed flow rates are more efficient and yield a higher H2 production rate. Our data indicate that NH3 cracking in these warm plasma reactors occurs mainly via thermal chemistry, with nonthermal plasma chemistry playing a less prominent role. NH3 decomposes not only inside the plasma core but also in a hot volume around it, which reduces the EC. Our study shows that warm plasmas are significantly more efficient for NH3 cracking than cold plasmas, even when the latter are combined with catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN (down) Additional Links  
  Impact Factor 15.1 Times cited Open Access  
  Notes Belgian Federal Government; European Commission Marie Sklodowska-Curie Actions; Approved Most recent IF: 15.1; 2024 IF: 6.216  
  Call Number PLASMANT @ plasmant @ Serial 9267  
Permanent link to this record
 

 
Author Zani, V.; Renero-Lecuna, C.; Jimenez de Aberasturi, D.; di Silvio, D.; Kavak, S.; Bals, S.; Signorini, R.; Liz-Marzán, L.M. url  doi
openurl 
  Title Core–Shell Colloidal Nanocomposites for Local Temperature Monitoring during Photothermal Heating Type A1 Journal Article
  Year 2024 Publication The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Determining temperature changes at the heating site to accurately control thermal treatments has been a major goal in the field of nanothermometry. In this study, we address the need to effectively monitor local temperature during the application of photothermal therapies, which is essential to prevent uncontrolled heating induced by nanoparticle sensitizers used in such treatments. For this purpose, we developed a synthetic protocol to produce a nanocomposite probe that allows local photothermal heating and simultaneous in situ optical nanothermometry, within the biological transparency windows. The nanocomposite material comprises gold nanorods for light-to-heat conversion and neodymium (Nd3+)-based nanoparticles for local temperature monitoring. An inert spacer made of mesoporous silica provides a core-shell structure and ensures uniform separation between both functionalities to prevent photoluminescence quenching. By using an 808 nm laser as the source for both heating and photoluminescence excitation, we demonstrate a direct correlation between local temperature and near infrared Nd3+ emission intensities, thereby providing precise local temperature monitoring. Different levels of local heating were studied by varying the incident laser power, resulting in a maximum temperature increase of 47 °C detected with the nanothermometers. Albeit presented here as a proof of concept, this concept can be translated to the design of materials for photothermal therapy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN (down) Additional Links  
  Impact Factor 3.7 Times cited Open Access  
  Notes L.L.L.-M. acknowledges financial support by the Spanish Agencia Estatal de Investigación and FEDER (PID2023-151281OB-I00), S.K. acknowledges the Flemish Fund for Scientific Research (FWO Vlaanderen) through a PhD research grant (Project numbers: 1181122N & 1181124N) and the European Research Council (CoG 815128, REALNANO). Approved Most recent IF: 3.7; 2024 IF: 4.536  
  Call Number EMAT @ emat @ Serial 9328  
Permanent link to this record
 

 
Author Hadermann, J.; Pérez, O.; Créon, N.; Michel, C.; Hervieu, M. doi  openurl
  Title The (3 + 2)D structure of oxygen deficient LaSrCuO3.52 Type A1 Journal article
  Year 2007 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 17 Issue 22 Pages 2344-2350  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000247349400020 Publication Date 2007-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 7 Open Access  
  Notes Supergmr:Hprn-Ct-2000-0021 Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:64749 c:irua:64749 Serial 13  
Permanent link to this record
 

 
Author He, Z.B.; Deng, G.; Tian, H.; Xu, Q.; Van Tendeloo, G. doi  openurl
  Title 90° Rotation of orbital stripes in bilayer manganite PrCa2Mn2O7 studied by in situ transmission electron microscopy Type A1 Journal article
  Year 2013 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 200 Issue Pages 287-293  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present an in situ transmission electron microscopy study on the half-doped bilayer manganite PrCa2Mn2O7 to reveal the rotation process of the orbital stripes. Between the reported initial and final ordering phases, we identified an intermediate state with two sets of satellite spots to bridge the 90° rotation of the orbital stripes. Furthermore, we determined that the rotation of the orbital stripes does not always occur. Some restricted conditions for the orbital rotation to occur were found and reasons are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000317158000043 Publication Date 2013-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 5 Open Access  
  Notes Countatoms Approved Most recent IF: 2.299; 2013 IF: 2.200  
  Call Number UA @ lucian @ c:irua:106183 Serial 20  
Permanent link to this record
 

 
Author Cassiers, K.; van der Voort, P.; Linssen, T.; Vansant, E.F.; Lebedev, O.; van Landuyt, J. doi  openurl
  Title A counterion-catalyzed (S0H+)(X-I+) pathway toward heat- and steam-stable mesostructured silica assembled from amines in acidic conditions Type A1 Journal article
  Year 2003 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B  
  Volume 107 Issue 16 Pages 3690-3696  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract An alternative pathway to assemble mesoporous molecular sieve silicas is developed using nonionic alkylamines and N,N-dimethylalkylamines (SO) as structure-directing agents in acidic conditions. The synthesized mesostructures possess wormhole-like frameworks with pore sizes and pore volumes in the range of 20-90 Angstrom and 0.5-1.3 cm(3)/g, respectively. The formation of the mesophase is controlled by a counterion-mediated mechanism of the type (S(0)H(+))(X(-)I(+)), where S(0)H(+) are protonated water molecules that are hydrogen bonded to the lone electron pairs on the amine surfactant headgroups (S(0)H(+)), X(-) is the counteranion originating from the acid, and I(+) are the positively charged (protonated) silicate species. We found that the stronger the ion X(-) is bonded to S(0)H(+), the more it catalyzes the silica condensation into (S(0)H(+))(X(-)I(+)). Br(-) is shown to be a strong binding anion and therefore a fast silica polymerization promoter compared to Cl(-) resulting in the formation of a higher quality mesophase for the Br(-) syntheses. We also showed that the polymerization rate of the silica, dictated by the counterion, controls the morphology of the mesostructures from nonuniform agglomerated blocks in the case of Br(-) syntheses to spherical particles for the Cl(-) syntheses. Next to many benefits such as low temperature, short synthesis time, and the use of inexpensive, nontoxic, and easily extractable amine templates, the developed materials have a remarkable higher thermal and hydrothermal stability compared to hexagonal mesoporous silica, which is also prepared with nonionic amines but formed through the S(0)I(0) mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000182350200005 Publication Date 2003-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-6106;1520-5207; ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 9 Open Access  
  Notes Approved Most recent IF: 3.177; 2003 IF: 3.679  
  Call Number UA @ lucian @ c:irua:103300 Serial 24  
Permanent link to this record
 

 
Author Nivesanond, K.; Peeters, A.; Lamoen, D.; van Alsenoy, C. doi  openurl
  Title Ab initio calculation of the interaction energy in the P2 binding pocket of HIV-1 protease Type A1 Journal article
  Year 2005 Publication International Journal Of Quantum Chemistry Abbreviated Journal Int J Quantum Chem  
  Volume 105 Issue 3 Pages 292-299  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000232232300009 Publication Date 2005-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-7608;1097-461X; ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.92 Times cited 8 Open Access  
  Notes Approved Most recent IF: 2.92; 2005 IF: 1.192  
  Call Number UA @ lucian @ c:irua:54919 Serial 30  
Permanent link to this record
 

 
Author Martin, J.M.L.; Taylor, P.R.; François, J.P.; Gijbels, R. doi  openurl
  Title Ab initio study of the spectroscopy, kinetics, and thermochemistry of the BN2 molecule Type A1 Journal article
  Year 1994 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett  
  Volume 222 Issue Pages 517-523  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1994NN02600016 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2614; ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.897 Times cited 14 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:10255 Serial 36  
Permanent link to this record
 

 
Author Martin, J.M.L.; Taylor, P.R.; François, J.P.; Gijbels, R. pdf  doi
openurl 
  Title Ab initio study of the spectroscopy, kinetics, and thermochemistry of the C2N and CN2 molecules Type A1 Journal article
  Year 1994 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett  
  Volume 226 Issue 5/6 Pages 475-483  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Several structures and electronic states of the C2N and CN2 molecules have been studied using complete active space SCF (CASSCF), multireference configuration interaction (MRCI), and coupled cluster (CCSD(T)) methods. Both molecules are very stable. Our best computed total atomization energies SIGMAD(e) are 288.6 +/- 2 kcal/mol for CN2, and 294.1 +/- 2 kcal/mol for C2N. The CNC and CCN structures for C2N are nearly isoenergetic. CNN(3PI) lies about 30 kcal/mol above NCN(3PI(g)), but has a high barrier towards interconversion and is therefore observed experimentally. Computed harmonic frequencies for CNN are sensitive to the correlation treatment: they are reproduced well using multireference methods as well as the CCSD(T) method. High spin contamination has a detrimental effect on computed harmonic frequencies at the CCSD(T) level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1994PE00500008 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2614; ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.897 Times cited 46 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:10256 Serial 37  
Permanent link to this record
 

 
Author Martin, J.M.L.; François, J.P.; Gijbels, R. openurl 
  Title Ab initio study of the structure, infrared spectra and heat of formation of C4 Type A1 Journal article
  Year 1991 Publication The journal of chemical physics Abbreviated Journal J Chem Phys  
  Volume 94 Issue Pages 3753-3761  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1991FA77800052 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606 ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.952 Times cited 62 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:715 Serial 38  
Permanent link to this record
 

 
Author Taylor, P.R.; Martin, J.M.L.; François, J.P.; Gijbels, R. openurl 
  Title An ab initio study of the C3+ cation using multireference methods Type A1 Journal article
  Year 1991 Publication The journal of chemical physics Abbreviated Journal J Chem Phys  
  Volume 95 Issue Pages 6530-6534  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606 ISBN (down) Additional Links UA library record  
  Impact Factor 2.952 Times cited Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:720 Serial 39  
Permanent link to this record
 

 
Author Cai, Z.L.; Martin, J.M.L.; François, J.P.; Gijbels, R. pdf  doi
openurl 
  Title Ab initio study of the X2\Sigma+ and A 2\Pi states of the SiN radical Type A1 Journal article
  Year 1996 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett  
  Volume 252 Issue 5/6 Pages 398-404  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The equilibrium bond length, harmonic frequency, first and second order anharmonicity constants, rotational and centrifugal distortion constants, as well as the rotation-vibrational and centrifugal coupling constants for the ground X(2) Sigma(+) and first excited A(2) Pi states of the SiN radical have been calculated at the complete active space SCF (CASSCF), multireference CI (MRCI) and coupled cluster (CCSD(T)) levels using Dunning's correlation-consistent basis sets. The excitation energy of the A(2) Pi State has also been computed at these theoretical levels. Dipole moments of SiN in the X(2) Sigma(+) and A(2) Pi states are given. Our study shows that core correlation must be considered in order to obtain satisfactory accuracy for the spectroscopic constants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1996UJ45000017 Publication Date 2003-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2614; ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.897 Times cited 28 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:12328 Serial 40  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: