|
Record |
Links |
|
Author |
Vertongen, R.; De Felice, G.; van den Bogaard, H.; Gallucci, F.; Bogaerts, A.; Li, S. |
|
|
Title |
Sorption-Enhanced Dry Reforming of Methane in a DBD Plasma Reactor for Single-Stage Carbon Capture and Utilization |
Type |
A1 Journal Article |
|
Year |
2024 |
Publication |
ACS Sustainable Chemistry & Engineering |
Abbreviated Journal |
ACS Sustainable Chem. Eng. |
|
|
Volume |
12 |
Issue |
29 |
Pages |
10841-10853 |
|
|
Keywords |
A1 Journal Article; plasma, dry reforming of methane, dielectric barrier discharge, sorbent, carbon capture and utilization, zeolite; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ; |
|
|
Abstract |
Plasma−sorbent systems are a novel technology for single-stage carbon capture and utilization (CCU), where the plasma enables the desorption of CO2 from a sorbent and the simultaneous conversion to CO. In this study, we test the flexibility of a plasma−sorbent system in a single unit, specifically for sorption-enhanced dry reforming of methane (DRM). The experimental results indicate the selective adsorption of CO2 by the sorbent zeolite 5A in the first step, and CH4 addition during the plasma-based desorption of CO2 enables DRM to various value-added products in the second step, such as H2, CO, hydrocarbons, and the byproduct H2O. Furthermore, our work also demonstrates that zeolite has the potential to increase the conversion of CO2 and CH4, attributed to its capability to capture H2O. Aside from the notable carbon deposition, material analysis shows that the zeolite remains relatively stable under plasma exposure. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
|
Publication Date |
2024-07-22 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2168-0485 |
ISBN |
|
Additional Links |
|
|
|
Impact Factor |
8.4 |
Times cited |
|
Open Access |
|
|
|
Notes |
Fonds Wetenschappelijk Onderzoek, 110221N V404823N ; H2020 European Research Council, 810182 ; |
Approved |
Most recent IF: 8.4; 2024 IF: 5.951 |
|
|
Call Number |
PLASMANT @ plasmant @ |
Serial |
9264 |
|
Permanent link to this record |