toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Vertongen, R.; De Felice, G.; van den Bogaard, H.; Gallucci, F.; Bogaerts, A.; Li, S. url  doi
openurl 
  Title Sorption-Enhanced Dry Reforming of Methane in a DBD Plasma Reactor for Single-Stage Carbon Capture and Utilization Type A1 Journal Article
  Year (down) 2024 Publication ACS Sustainable Chemistry & Engineering Abbreviated Journal ACS Sustainable Chem. Eng.  
  Volume 12 Issue 29 Pages 10841-10853  
  Keywords A1 Journal Article; plasma, dry reforming of methane, dielectric barrier discharge, sorbent, carbon capture and utilization, zeolite; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma−sorbent systems are a novel technology for single-stage carbon capture and utilization (CCU), where the plasma enables the desorption of CO2 from a sorbent and the simultaneous conversion to CO. In this study, we test the flexibility of a plasma−sorbent system in a single unit, specifically for sorption-enhanced dry reforming of methane (DRM). The experimental results indicate the selective adsorption of CO2 by the sorbent zeolite 5A in the first step, and CH4 addition during the plasma-based desorption of CO2 enables DRM to various value-added products in the second step, such as H2, CO, hydrocarbons, and the byproduct H2O. Furthermore, our work also demonstrates that zeolite has the potential to increase the conversion of CO2 and CH4, attributed to its capability to capture H2O. Aside from the notable carbon deposition, material analysis shows that the zeolite remains relatively stable under plasma exposure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links  
  Impact Factor 8.4 Times cited Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, 110221N V404823N ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2024 IF: 5.951  
  Call Number PLASMANT @ plasmant @ Serial 9264  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: