|   | 
Details
   web
Records
Author Aerts, R.; Tu, X.; Van Gaens, W.; Whitehead, J.C.; Bogaerts, A.
Title Gas purification by nonthermal plasma : a case study of ethylene Type A1 Journal article
Year 2013 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol
Volume 47 Issue 12 Pages 6478-6485
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The destruction of ethylene in a dielectric barrier discharge plasma is investigated by the combination of kinetic modeling and experiments, as a case study for plasma-based gas purification. The influence of the specific energy deposition on the removal efficiency and the selectivity toward CO and CO2 is studied for different concentrations of ethylene. The model allows the identication of the destruction pathway in dry and humid air. The latter is found to be mainly initiated by metastable N2 molecules, but the further destruction steps are dominated by O atoms and OH radicals. Upon increasing air humidity, the removal efficiency drops by ±15% (from 85% to 70%), but the selectivity toward CO and CO2 stays more or less constant at 60% and 22%, respectively. Beside CO and CO2, we also identified acetylene, formaldehyde, and water as byproducts of the destruction process, with concentrations of 1606 ppm, 15033 ppm, and 185 ppm in humid air (with 20% RH), respectively. Finally, we investigated the byproducts generated by the humid air discharge itself, which are the greenhouse gases O3, N2O, and the toxic gas NO2.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000320749000051 Publication Date 2013-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936X;1520-5851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.198 Times cited 56 Open Access
Notes Approved Most recent IF: 6.198; 2013 IF: 5.481
Call Number UA @ lucian @ c:irua:108743 Serial 1319
Permanent link to this record
 

 
Author Horemans, B.; Van Holsbeke, C.; Vos, W.; Darchuk, L.; Novakovic, V.; Fontan, A.C.; de Backer, J.; van Grieken, R.; de Backer, W.; De Wael, K.
Title Particle deposition in airways of chronic respiratory patients exposed to an urban aerosol Type A1 Journal article
Year 2012 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol
Volume 46 Issue 21 Pages 12162-12169
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)
Abstract Urban atmospheres in modern cities carry characteristic mixtures of particulate pollution which are potentially aggravating for chronic respiratory patients (CRP). Although air quality surveys can be detailed, the obtained information is not always useful to evaluate human health effects. This paper presents a novel approach to estimate particle deposition rates in airways of CRP, based on real air pollution data. By combining computational fluid dynamics with physical-chemical characteristics of particulate pollution, deposition rates are estimated for particles of different toxicological relevance, that is, minerals, iron oxides, sea salts, ammonium salts, and carbonaceous particles. Also, it enables some qualitative evaluation of the spatial, temporal, and patient specific effects on the particle dose upon exposure to the urban atmosphere. Results show how heavy traffic conditions increases the deposition of anthropogenic particles in the trachea and lungs of respiratory patients (here, +0.28 and +1.5 μg·h1, respectively). In addition, local and synoptic meteorological conditions were found to have a strong effect on the overall dose. However, the pathology and age of the patient was found to be more crucial, with highest deposition rates for toxic particles in adults with a mild anomaly, followed by mild asthmatic children and adults with severe respiratory dysfunctions (7, 5, and 3 μg·h1, respectively).
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000310665000082 Publication Date 2012-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936X;1520-5851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.198 Times cited 5 Open Access
Notes ; We are grateful for the financial support of n.v. Vooruitzicht. Furthermore, co-workers at the environmental analysis research group are acknowledged for their help in the fieldwork. ; Approved Most recent IF: 6.198; 2012 IF: 5.257
Call Number UA @ lucian @ c:irua:101411 Serial 2557
Permanent link to this record
 

 
Author Villani, K.; Vermandel, W.; Smets, K.; Liang, D.; Van Tendeloo, G.; Martens, J.A.
Title Platinum particle size and support effects in NOx mediated carbon oxidation over platinum catalysts Type A1 Journal article
Year 2006 Publication Environmental science & technology Abbreviated Journal Environ Sci Technol
Volume 40 Issue 8 Pages 2727-2733
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Platinum metal was dispersed on microporous, mesoporous, and nonporous support materials including the zeolites Na-Y, Ba-Y, Ferrierite, ZSM-22, ETS-10, and AlPO-11, alumina, and titania. The oxidation of carbon black loosely mixed with catalyst powder was monitored gravimetrically in a gas stream containing nitric oxide, oxygen, and water. The carbon oxidation activity of the catalysts was found to be uniquely related to the Pt dispersion and little influenced by support type. The optimum dispersion is around 3-4% corresponding to relatively large Pt particle sizes of 2040 nm. The carbon oxidation activity reflects the NO oxidation activity of the platinum catalyst, which reaches an optimum in the 20-40 nm Pt particle size range. The lowest carbon oxidation temperatures were achieved with platinum loaded ZSM-22 and AlPO-11 zeolite crystallites bearing platinum of optimum dispersion on their external surfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000236992700038 Publication Date 2006-04-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936X;1520-5851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.198 Times cited 29 Open Access
Notes Comet; Goa Approved Most recent IF: 6.198; 2006 IF: 4.040
Call Number UA @ lucian @ c:irua:103628 Serial 2651
Permanent link to this record
 

 
Author Denecke, M.A.; Janssens, K.; Proost, K.; Rothe, J.; Noseck, U.
Title Confocal micrometer-scale X-ray fluorescence and X-ray absorption fine structure studies of uranium speciation in a tertiary sediment from a waste disposal natural analogue site Type A1 Journal article
Year 2005 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol
Volume 39 Issue Pages 2049-2058
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000228172600031 Publication Date 2005-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.198 Times cited 47 Open Access
Notes Approved Most recent IF: 6.198; 2005 IF: 4.054
Call Number UA @ admin @ c:irua:52232 Serial 5554
Permanent link to this record
 

 
Author Terzano, R.; Spagnuolo, M.; Medici, L.; Vekemans, B.; Vincze, L.; Janssens, K.; Ruggiero, P.
Title Copper stabilization by zeolite synthesis in polluted soils treated with coal fly ash Type A1 Journal article
Year 2005 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol
Volume 39 Issue 16 Pages 6280-6287
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract This study deals with the process of zeolite formation in an agricultural soil artificially polluted by high amounts of Cu (15 mg of Cu/g of soil dry weight) and treated with fused coal fly ash at 30 and 60 degrees C and how this process affects the mobility and availability of the metal. As a consequence of the treatment, the amount of dissolved Cu, and thus its mobility, was strongly reduced, and the percentage of the metal stabilized in the solid phase increased over time, reaching values of 30% at 30 degrees C and 40% at 60 degrees C. The physicochemical phenomena responsible for Cu stabilization in the solid phase have been evaluated by EDTA sequential extractions and synchrotron radiation based X-ray microanalytical techniques. These techniques were used for the visualization of the spatial distribution and the speciation of Cu in and/or on the neo-formed zeolite particles. In particular, micro XRF (X-ray fluorescence) tomography showed direct evidence that Cu can be entrapped as clusters inside the porous zeolitic structures while,mu-XANES (X-ray absorption near edge structure) spectroscopy determinations revealed Cu to be present mainly as Cu(II) hydroxide and Cu(II) oxide. The reported results could be useful as a basic knowledge for planning new technologies for the on site physicochemical stabilization of heavy metals in heavily polluted soils.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000231203100053 Publication Date 2005-08-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.198 Times cited 39 Open Access
Notes Approved Most recent IF: 6.198; 2005 IF: 4.054
Call Number UA @ admin @ c:irua:103658 Serial 5560
Permanent link to this record
 

 
Author Van Eynde, E.; Lenaerts, B.; Tytgat, T.; Blust, R.; Lenaerts, S.
Title Valorization of flue gas by combining photocatalytic gas pretreatment with microalgae production Type A1 Journal article
Year 2016 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol
Volume 50 Issue 5 Pages 2538-2545
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Utilization of flue gas for algae cultivation seems to be a promising route because flue gas from fossil-fuel combustion processes contains the high amounts of carbon (CO2) and nitrogen (NO) that are required for algae growth. NO is a poor nitrogen source for algae cultivation because of its low reactivity and solubility in water and its toxicity for algae at high concentrations. Here, we present a novel strategy to valorize NO from flue gas as feedstock for algae production by combining a photocatalytic gas pretreatment unit with a microalgal photobioreactor. The photocatalytic air pretreatment transforms NO gas into NO2 gas and thereby enhances the absorption of NO in the cultivation broth. The absorbed NOx will form NO2- and NO3- that can be used as a nitrogen source by algae. The effect of photocatalytic air pretreatment on the growth and biomass productivity of the algae Thalassiosira weissflogii in a semicontinuous system aerated with a model flue gas (1% CO2 and 50 ppm of NO) is investigated during a long-term experiment. The integrated system makes it possible to produce algae with NO from flue gas as the sole nitrogen source and reduces the NOx content in the exhaust gas by 84%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371371700048 Publication Date 2016-02-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.198 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 6.198
Call Number UA @ admin @ c:irua:132348 Serial 6003
Permanent link to this record
 

 
Author De Paepe, J.; Clauwaert, P.; Gritti, M.C.; Ganigue, R.; Sas, B.; Vlaeminck, S.E.; Rabaey, K.
Title Electrochemical in situ pH control enables chemical-free full urine nitrification with concomitant nitrate extraction Type A1 Journal article
Year 2021 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol
Volume 55 Issue 12 Pages 8287-8298
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Urine is a valuable resource for nutrient recovery. Stabilization is, however, recommended to prevent urea hydrolysis and the associated risk for ammonia volatilization, uncontrolled precipitation, and malodor. This can be achieved by alkalinization and subsequent biological conversion of urea and ammonia into nitrate (nitrification) and organics into CO2. Yet, without pH control, the extent of nitrification is limited as a result of insufficient alkalinity. This study explored the feasibility of an integrated electrochemical cell to obtain on-demand hydroxide production through water reduction at the cathode, compensating for the acidification caused by nitritation, thereby enabling full nitrification. To deal with the inherent variability of the urine influent composition and bioprocess, the electrochemical cell was steered via a controller, modulating the current based on the pH in the bioreactor. This provided a reliable and innovative alternative to base addition, enabling full nitrification while avoiding the use of chemicals, the logistics associated with base storage and dosing, and the associated increase in salinity. Moreover, the electrochemical cell could be used as an in situ extraction and concentration technology, yielding an acidic concentrated nitrate-rich stream. The make-up of the end product could be tailored by tweaking the process configuration, offering versatility for applications on Earth and in space.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000663939900052 Publication Date 2021-06-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.198 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.198
Call Number UA @ admin @ c:irua:179779 Serial 7862
Permanent link to this record
 

 
Author Alloul, A.; Cerruti, M.; Adamczyk, D.; Weissbrodt, D.G.; Vlaeminck, S.E.
Title Operational strategies to selectively produce purple bacteria for microbial protein in raceway reactors Type A1 Journal article
Year 2021 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol
Volume 55 Issue 12 Pages 8278-8286
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Purple non-sulfur bacteria (PNSB) show potential for microbial protein production on wastewater as animal feed. They offer good selectivity (i.e., low microbial diversity and high abundance of one species) when grown anaerobically in the light. However, the cost of closed anaerobic photobioreactors is prohibitive for protein production. Although open raceway reactors are cheaper, their feasibility to selectively grow PNSB is thus far unexplored. This study developed operational strategies to boost PNSB abundance in the biomass of a raceway reactor fed with volatile fatty acids. For a flask reactor run at a 2 day sludge retention time (SRT), matching the chemical oxygen demand (COD) loading rate to the removal rate in the light period prevented substrate availability during the dark period and increased the PNSB abundance from 50-67 to 88-94%. A raceway reactor run at a 2 day SRT showed an increased PNSB abundance from 14 to 56% when oxygen supply was reduced (no stirring at night). The best performance was achieved at the highest surface-to-volume ratio (10 m(2) m(-3) increased light availability) showing productivities up to 0.2 g protein L-1 day(-1) and a PNSB abundance of 78%. This study pioneered in PNSB-based microbial protein production in raceway reactors, yielding high selectivity while avoiding the combined availability of oxygen, COD, and darkness.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000663939900051 Publication Date 2021-06-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.198 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.198
Call Number UA @ admin @ c:irua:179768 Serial 8334
Permanent link to this record
 

 
Author Ciocarlan, R.-G.; Seftel, E.M.; Gavrila, R.; Suchea, M.; Batuk, M.; Mertens, M.; Hadermann, J.; Cool, P.
Title Spinel nanoparticles on stick-like Freudenbergite nanocomposites as effective smart-removal photocatalysts for the degradation of organic pollutants under visible light Type A1 Journal article
Year 2020 Publication Journal Of Alloys And Compounds Abbreviated Journal J Alloy Compd
Volume 820 Issue Pages 153403
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract A series of mixed nanocomposite materials was synthetized, containing a Ferrite phase type Zn1-xNixFe2O4 and a Freudenbergite phase type Na2Fe2Ti6O16, where x = 0; 0.2; 0.4; 0.6; 0.8; 1. The choice for this combination is based on the good adsorption properties of Freudenbergite for dye molecules, and the small bandgap energy of Ferrite spinel, allowing activation of the catalysts under visible light irradiation. A two steps synthesis protocol was used to obtain the smart-removal nanocomposites. Firstly, the spinel structure was obtained via the co-precipitation route followed by the addition of the Ti-source and formation of the Freudenbergite system. The role of cations on the formation mechanism and an interesting interchange of cations between spinel and Freudenbergite structures was clarified by a TEM study. Part of the Ti4+ penetrated the spinel structure and, at the same time, part of the Fe3+ formed the Freudenbergite system. The photocatalytic activity was studied under visible light, reaching for the best catalysts a 67% and 40% mineralization degree for methylene blue and rhodamine 6G respectively, after 6 h of irradiation. In the same conditions, the well-known commercial P25 (Degussa) managed to mineralize only 12% and 3% of methylene blue and rhodamine 6G, respectively. Due to the remarkable magnetic properties of Ferrites, a convenient recovery and reuse of the catalysts is possible after the photocatalytic tests. Based on the excellent catalytic performance of the nanocomposites under visible light and their ease of separation out of the solution after the catalytic reaction, the newly developed composite catalysts are considered very effective for wastewater treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000507854700130 Publication Date 2019-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.2 Times cited Open Access OpenAccess
Notes The authors acknowledge the FWO-Flanders (project nr. G038215N) for financial support. Approved Most recent IF: 6.2; 2020 IF: 3.133
Call Number EMAT @ emat @c:irua:166447 Serial 6342
Permanent link to this record
 

 
Author Chen, C.; Sang, X.; Cui, W.; Xing, L.; Nie, X.; Zhu, W.; Wei, P.; Hu, Z.-Y.; Zhang, Q.; Van Tendeloo, G.; Zhao, W.
Title Atomic-resolution fine structure and chemical reaction mechanism of Gd/YbAl₃ thermoelectric-magnetocaloric heterointerface Type A1 Journal article
Year 2020 Publication Journal Of Alloys And Compounds Abbreviated Journal J Alloy Compd
Volume 831 Issue Pages 154722-154728
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Thermoelectric materials and magnetocaloric materials are promising candidates for solid-state refrigeration applications. The combination of thermoelectric and magnetocaloric effects could potentially lead to more efficient refrigeration techniques. We designed and successfully synthesized Gd/YbAl3 composites using a YbAl3 matrix with good low-temperature thermoelectric performance and Gd microspheres with a high magnetocaloric performance, using a sintering condition of 750 degrees C and 50 MPa. Using aberration-corrected scanning transmission electron microscopy (STEM), it was discovered that the heterointerface between Gd and YbAl 3 is composed of five sequential interfacial layers: GdAl3, GdAl2, GdAl, Gd3Al2, and Gd3Al. The diffusion of Al atoms plays a crucial role in the formation of these interfacial layers, while Yb or Gd do not participate in the interlayer diffusion. This work provides the essential structural information for further optimizing and designing high-performance composites for thermoelectric-magnetocaloric hybrid refrigeration applications. (C) 2020 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000531727900005 Publication Date 2020-03-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.2 Times cited 1 Open Access Not_Open_Access
Notes ; This work was supported by National Natural Science Foundation of China (Nos. 11834012, 51620105014, 91963207, 91963122, 51902237) and National Key R&D Program of China (No. 2018YFB0703603, 2019YFA0704903, SQ2018YFE010905). EPMA experiments were performed at the Center for Materials Research and Testing of Wuhan University of Technology. The S/TEM work was performed at the Nanostructure Research Center (NRC), which is supported by the Fundamental Research Funds for the Central Universities (WUT: 2019III012GX). ; Approved Most recent IF: 6.2; 2020 IF: 3.133
Call Number UA @ admin @ c:irua:169447 Serial 6455
Permanent link to this record
 

 
Author Guo, A.; Bai, H.; Liang, Q.; Feng, L.; Su, X.; Van Tendeloo, G.; Wu, J.
Title Resistive switching in Ag₂Te semiconductor modulated by Ag+-ion diffusion and phase transition Type A1 Journal article
Year 2022 Publication Advanced Electronic Materials Abbreviated Journal Adv Electron Mater
Volume Issue Pages 2200850-2200858
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Memristors are considered to be the fourth circuit element and have great potential in areas like logic operations, information storage, and neuromorphic computing. The functional material in a memristor, which has a nonlinear resistance, is the key component to be developed. Herein, resistive switching is demonstrated and the structural evolutions in Ag2Te are examined under an external electric field. It is shown that the electroresistance effect is originating from an electronically triggered phase transition together with directional Ag+-ion diffusion. Using in situ transmission electron microscopy, the phase transition from the monoclinic alpha-Ag2Te into the face-centered cubic beta-Ag2Te, accompanied by a change in resistance, is directly observed. Diffusion of Ag+-ions modulates the localized density of Ag+-ion vacancies, leading to a change in electrical conductivity and influences the threshold voltage to trigger the phase transition. During the electric field-driven phase transition, the spontaneous and localized multiple polarizations from the low-symmetry alpha-Ag2Te (referring to an antiferroelectric structure) are vanishing in the cubic beta-Ag2Te (referring to a paraelectric structure). The abrupt resistance change of thin Ag2Te caused by the phase transition and modulated by the applied electric field demonstrates its great potential as functional material in volatile memory and memristors with a low-energy consumption.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000855728500001 Publication Date 2022-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-160x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.2 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.2
Call Number UA @ admin @ c:irua:190582 Serial 7203
Permanent link to this record
 

 
Author Cui, Z.; Hao, Y.; Jafarzadeh, A.; Li, S.; Bogaerts, A.; Li, L.
Title The adsorption and decomposition of SF6 over defective and hydroxylated MgO surfaces: A DFT study Type A1 Journal article
Year 2023 Publication Surfaces and interfaces Abbreviated Journal
Volume 36 Issue Pages 102602
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma degradation is one of the most effective methods for the abatement of greenhouse gas sulfur hexafluoride

(SF6). To evaluate the potential of MgO as a catalyst in plasma degradation, we investigate the catalytic properties

of MgO on SF6 adsorption and activation by density functional theory (DFT) where the O-defective and

hydroxylated surfaces are considered as two typical plasma-generated surfaces. Our results show that perfect

MgO (001) and (111) surfaces cannot interact with SF6 and only physical adsorption happens. In case of Odefective

MgO surfaces, the O vacancy is the most stable adsorption site. SF6 undergoes a decomposition to SF5

and F over the O-defective MgO (001) surface and undergoes an elongation of the bottom S-F bond over the Odefective

(111) surface. Besides, SF6 shows a physically adsorption at the stepsite of the MgO (001) surface,

accompanied by small changes in its bond angle and length. Furthermore, SF6 is found to be physically and

chemically adsorbed over 0.5 and 1.0 ML (monolayer) H-covered O-terminated MgO (111) surfaces, respectively.

The SF6 molecule undergoes a self-decomposition on the 1.0 ML hydroxylated surface via a surface bonding

process. This study shows that defective and hydroxylated MgO surfaces have the surface capacities for SF6

activation, which shows that MgO has potential as packing material in SF6 waste treatment in packed-bed

plasmas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000916285000001 Publication Date 2022-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.2 Times cited Open Access OpenAccess
Notes National Natural Science Foundation of China, 52207155 ; Fonds Wetenschappelijk Onderzoek; Vlaams Supercomputer Centrum; Vlaamse regering; Approved Most recent IF: 6.2; 2023 IF: NA
Call Number PLASMANT @ plasmant @c:irua:194364 Serial 7244
Permanent link to this record
 

 
Author Vladimirova, N.V.; Frolov, A.S.; Sanchez-Barriga, J.; Clark, O.J.; Matsui, F.; Usachov, D.Y.; Muntwiler, M.; Callaert, C.; Hadermann, J.; Neudachina, V.S.; Tamm, M.E.; Yashina, L.V.
Title Occupancy of lattice positions probed by X-ray photoelectron diffraction : a case study of tetradymite topological insulators Type A1 Journal article
Year 2023 Publication Surfaces and interfaces Abbreviated Journal
Volume 36 Issue Pages 102516-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Occupancy of different structural positions in a crystal lattice often seems to play a key role in material prop-erties. Several experimental techniques have been developed to uncover this issue, all of them being mostly bulk sensitive. However, many materials including topological insulators (TIs), which are among the most intriguing modern materials, are intended to be used in devices as thin films, for which the sublattice occupancy may differ from the bulk. One of the possible approaches to occupancy analysis is X-ray Photoelectron Diffraction (XPD), a structural method in surface science with chemical sensitivity. We applied this method in a case study of Sb2(Te1-xSex)3 mixed crystals, which belong to prototypical TIs. We used high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) as a reference method to verify our analysis. We revealed that the XPD data for vacuum cleaved bulk crystals are in excellent agreement with the reference ones. Also, we demonstrate that the anion occupancy near a naturally formed surface can be rather different from that of the bulk. The present results are relevant for a wide range of compositions where the system remains a topological phase, as we ultimately show by probing the transiently occupied topological surface state above the Fermi level by ultrafast photoemission.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000901694900001 Publication Date 2022-11-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record
Impact Factor (up) 6.2 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.2; 2023 IF: NA
Call Number UA @ admin @ c:irua:193502 Serial 7327
Permanent link to this record
 

 
Author Surmenev, R.A.; Grubova, I.Y.; Neyts, E.; Teresov, A.D.; Koval, N.N.; Epple, M.; Tyurin, A.I.; Pichugin, V.F.; Chaikina, M.V.; Surmeneva, M.A.
Title Ab initio calculations and a scratch test study of RF-magnetron sputter deposited hydroxyapatite and silicon-containing hydroxyapatite coatings Type A1 Journal article
Year 2020 Publication Surfaces and interfaces Abbreviated Journal
Volume 21 Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A crucial property for implants is their biocompatibility. To ensure biocompatibility, thin coatings of hydroxyapatite (HA) are deposited on the actual implant. In this study, we investigate the effects of the addition of silicate anions to the structure of hydroxyapatite coatings on their adhesion strength via a scratch test and ab initio calculations. We find that both the grain size and adhesion strength decrease with the increase in the silicon content in the HA coating (SiHA). The increase in the silicon content to 1.2 % in the HA coating leads to a decrease in the average crystallite size from 28 to 21 nm, and in the case of 4.6 %, it leads to the formation of an amorphous or nanocrystalline film. The decreases in the grain and crystallite sizes lead to peeling and destruction of the coating from the titanium substrate at lower loads. Further, our ab initio simulations demonstrate an increased number of molecular bonds at the amorphous SiHA-TiO2 interface. However, the experimental results revealed that the structure and grain size have more pronounced effects on the adhesion strength of the coatings. In conclusion, based on the results of the ab initio simulations and the experimental results, we suggest that the presence of Si in the form of silicate ions in the HA coating has a significant impact on the structure, grain size, and number of molecular bonds at the interface and on the adhesion strength of the SiHA coating to the titanium substrate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000697616300009 Publication Date 2020-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.2 Times cited Open Access
Notes Approved Most recent IF: 6.2; 2020 IF: NA
Call Number UA @ admin @ c:irua:181685 Serial 7400
Permanent link to this record
 

 
Author Baez, J.F.; Compton, M.; Chahrati, S.; Cánovas, R.; Blondeau, P.; Andrade, F.J.
Title Controlling the mixed potential of polyelectrolyte-coated platinum electrodes for the potentiometric detection of hydrogen peroxide Type A1 Journal article
Year 2020 Publication Analytica Chimica Acta Abbreviated Journal Anal Chim Acta
Volume 1097 Issue Pages 204-213
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The use of a Pt electrode coated with a layer of Nafion has been described in previous works as an attractive way to perform the potentiometric detection of hydrogen peroxide. Despite of the attractive features of this approach, the nature of the non-Nernstian response of this system was not properly addressed. In this work, using a mixed potential model, the open circuit potential of the Pt electrode is shown to be under kinetic control of the oxygen reduction reaction (ORR). It is proposed that hydrogen peroxide acts as an oxygenated species that blocks free sites on the Pt surface, interfering with the ORR. Therefore, the effect of the polyelectrolyte coating can be understood in terms of the modulation of the factors that affects the kinetics of the ORR, such as an increase of the H+ concentration, minimization of the effect of the spectator species, etc. Because of the complexity and the lack of models that accurately describe systems with practical applications, this work is not intended to provide a mechanistic but rather a phenomenological view on problem. A general framework to understand the factors that affect the potentiometric response is provided. Experimental evidence showing that the use of polyelectrolyte coatings are a powerful way to control the mixed potential open new ways for the development of robust and simple potentiometric sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2670; 1873-4324 ISBN Additional Links UA library record
Impact Factor (up) 6.2 Times cited Open Access
Notes Approved Most recent IF: 6.2; 2020 IF: 4.95
Call Number UA @ admin @ c:irua:184381 Serial 7731
Permanent link to this record
 

 
Author Khalilov, U.; Yusupov, M.; Eshonqulov, Gb.; Neyts, Ec.; Berdiyorov, Gr.
Title Atomic level mechanisms of graphene healing by methane-based plasma radicals Type A1 Journal article
Year 2023 Publication FlatChem Abbreviated Journal FlatChem
Volume 39 Issue Pages 100506
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000990342500001 Publication Date 2023-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2452-2627 ISBN Additional Links UA library record; WoS full record
Impact Factor (up) 6.2 Times cited Open Access OpenAccess
Notes U.K., M.Y. and G.B.E. acknowledge the support of the Agency for Innovative Development of the Republic of Uzbekistan (Grant numbers F-FA-2021-512 and FZ-2020092435). The computational resources and services used in this work were partially provided by the HPC core facility CalcUA of the Universiteit Antwerpen and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. Approved Most recent IF: 6.2; 2023 IF: NA
Call Number PLASMANT @ plasmant @c:irua:197442 Serial 8813
Permanent link to this record
 

 
Author Tytgat, T.; Hauchecorne, B.; Abakumov, A.M.; Smits, M.; Verbruggen, S.W.; Lenaerts, S.
Title Photocatalytic process optimisation for ethylene oxidation Type A1 Journal article
Year 2012 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 209 Issue Pages 494-500
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract When studying photocatalysis it is important to consider, beside the chemical approach, the engineering part related to process optimisation. To achieve this a fixed bed photocatalytic set-up consisting of different catalyst placings, in order to vary catalyst distribution, is studied. The use of a fixed quantity of catalyst placed packed or randomly distributed in the reactor, results in an almost double degradation for the distributed catalyst. Applying this knowledge leads to an improved performance with limited use of catalyst. A reactor only half filled with catalyst leads to higher degradation performance compared to a completely filled reactor. Taking into account this simple process optimisation by better distributing the catalyst a more sustainable photocatalytic air purification process is achieved. (C) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000311190500058 Publication Date 2012-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.216 Times cited 12 Open Access
Notes ; We are grateful for the delivered photocatalyst by Evonik as well as for the PhD grant (T. Tytgat) given by the Institute of Innovation by Science and Technology in Flanders (IWT). ; Approved Most recent IF: 6.216; 2012 IF: 3.473
Call Number UA @ lucian @ c:irua:105185 Serial 2609
Permanent link to this record
 

 
Author Smeulders, G.; van Oers, C.; Van Havenbergh, K.; Houthoofd, K.; Mertens, M.; Martens, J.A.; Bals, S.; Maes, B.U.W.; Meynen, V.; Cool, P.
Title Smart heating profiles for the synthesis of benzene bridged periodic mesoporous organosilicas Type A1 Journal article
Year 2011 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 175 Issue Pages 585-591
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Organic synthesis (ORSY)
Abstract In this study the effects of the heating rate and heating time on the formation of crystal-like benzene bridged periodic mesoporous organosilicas (PMOs) are investigated. The time needed to heat up an autoclave during the hydrothermal treatment has shown to be crucial in the synthesis of PMOs, while the total duration of heating gave rise to only minor differences. By choosing a smart heating profile, superior PMO materials can be obtained in a short time. Different heating profiles in a range from one minute to one hour are adopted by microwave equipment and compared with conventional heating methods. The heating rate has a large influence on the porosity characteristics and the uniformity of the obtained particles. Moreover, two new alternative synthetic strategies to adopt the smart heating profile are presented, in order to give some possible solutions for the expensive microwave equipment.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000297875900069 Publication Date 2011-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.216 Times cited 7 Open Access
Notes Fwo; Goa-Bof Approved Most recent IF: 6.216; 2011 IF: 3.461
Call Number UA @ lucian @ c:irua:93630 Serial 3044
Permanent link to this record
 

 
Author Blommaerts, N.; Asapu, R.; Claes, N.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.
Title Gas phase photocatalytic spiral reactor for fast and efficient pollutant degradation Type A1 Journal article
Year 2017 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 316 Issue 316 Pages 850-856
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Photocatalytic reactors for the degradation of gaseous organic pollutants often suffer from major limitations such as small reaction area, sub-optimal irradiation conditions and thus limited reaction rate. In this work, an alternative solution is presented that involves a glass tube coated on the inside with (silvermodified) TiO2 and spiraled around a UVA lamp. First, the spiral reactor is coated from the inside with TiO2 using an experimentally verified procedure that is optimized toward UV light transmission. This procedure is kept as simple as possible and involves a single casting step of a 1 wt% suspension of TiO2 in ethanol through the spiral. This results in a coated tube that absorbs nearly all incident UV light under the experimental conditions used. The optimized coated spiral reactor is then benchmarked to a conventional annular photoreactor of the same outer dimensions and total catalyst loading over a broad range of experimental conditions. Although residence time distribution experiments indicate slightly longer dwelling of molecules in the spiral reactor, no significant difference in by-passing of gas between the spiral reactor and the annular reactor can be claimed. Acetaldehyde degradation efficiency of 100% is obtained with the spiral reactor for a residence time as low as 60 s, whereas the annular reactor could not achieve full degradation even at 1000 s residence time. In a final case study, addition of long-term stable silver nanoparticles, protected by an ultra-thin polymer shell applied via the layer-by-layer (LbL) method, to the spiral reactor coating is shown to double the degradation efficiency and provides an interesting strategy to cope with higher pollutant concentrations without changing the overall dimensions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000398985200089 Publication Date 2017-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.216 Times cited 30 Open Access OpenAccess
Notes N.B. wishes to thank the University of Antwerp – Belgium for financial support. N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078- COLOURATOM). S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); ecas_sara Approved Most recent IF: 6.216
Call Number EMAT @ emat @ c:irua:140925UA @ admin @ c:irua:140925 Serial 4481
Permanent link to this record
 

 
Author Wang, W.; Mei, D.; Tu, X.; Bogaerts, A.
Title Gliding arc plasma for CO 2 conversion: Better insights by a combined experimental and modelling approach Type A1 Journal article
Year 2017 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 330 Issue Pages 11-25
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A gliding arc plasma is a potential way to convert CO2 into CO and O2, due to its non-equilibrium character, but little is known about the underlying mechanisms. In this paper, a self-consistent two-dimensional (2D) gliding arc model is developed, with a detailed non-equilibrium CO2 plasma chemistry, and validated with experiments. Our calculated values of the electron number density in the plasma, the CO2 conversion and energy efficiency show reasonable agreement with the experiments, indicating that the model can provide a realistic picture of the plasma chemistry. Comparison of the results with classical thermal conversion, as well as other plasma-based technologies for CO2 conversion reported in literature, demonstrates the non-equilibrium character of the gliding arc, and indicates that the gliding arc is a promising plasma reactor for CO2 conversion. However, some process modifications should be exploited to further improve its performance. As the model provides a realistic picture of the plasma behaviour, we use it first to investigate the plasma characteristics in a whole gliding arc cycle, which is necessary to understand the underlying mechanisms. Subsequently, we perform a chemical kinetics analysis, to investigate the different pathways for CO2 loss and formation. Based on the revealed discharge properties and the underlying CO2 plasma chemistry, the model allows us to propose solutions on how to further improve the

CO2 conversion and energy efficiency by a gliding arc plasma.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000414083300002 Publication Date 2017-07-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.216 Times cited 38 Open Access OpenAccess
Notes This research was supported by the European Marie Skłodowska- Curie Individual Fellowship “GlidArc” within Horizon 2020 (Grant No. 657304) and by the FWO project (grant G.0383.16N). The support of this experimental work by the EPSRC CO2Chem Seedcorn Grant and the FWO travel grant for study abroad (Grant K2.128.17N) is gratefully acknowledged. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:145033 Serial 4636
Permanent link to this record
 

 
Author Michielsen, I.; Uytdenhouwen, Y.; Pype, J.; Michielsen, B.; Mertens, J.; Reniers, F.; Meynen, V.; Bogaerts, A.
Title CO 2 dissociation in a packed bed DBD reactor: First steps towards a better understanding of plasma catalysis Type A1 Journal article
Year 2017 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 326 Issue 326 Pages 477-488
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is gaining increasing interest for CO2 conversion, but the interaction between the plasma and catalyst is still poorly understood. This is caused by limited systematic materials research, since most works combine a plasma with commercial supported catalysts and packings. In the present paper, we study the influence of specific material and reactor properties, as well as reactor/bead configuration, on the conversion and energy efficiency of CO2 dissociation in a packed bed dielectric barrier discharge (DBD) reactor. Of the various packing materials investigated, BaTiO3 yields the highest conversion and energy efficiency, i.e., 25% and 4.5%.

Our results show that, when evaluating the influence of catalysts, the impact of the packing (support) material itself cannot be neglected, since it can largely affect the conversion and energy efficiency. This shows the large potential for further improvement of packed bed plasma reactors for CO2 conversion and other chemical conversion reactions by adjusting both packing (support) properties and catalytically active sites. Moreover, we clearly prove that comparison of results obtained in different reactor setups should be done with care, since there is a large effect of the reactor setup and reactor/bead configuration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000406137200047 Publication Date 2017-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.216 Times cited 49 Open Access OpenAccess
Notes This research was carried out with financial support of the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders) for both I. Michielsen (IWT-141093) and J. Pype (IWT-131229) and of the Walloon region through the excellence programme FLYCOAT (nr. 1318147) for the profilometry measurements. The authors also acknowledge financial support from an IOF-SBO project from the University of Antwerp and from the Fund for Scientific Research (FWO; grant number: G.0254.14 N). This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions – Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb. ac.be/), and supported by the Belgian Science Policy Office (BELSPO). The authors would also like to thank Koen Van Laer for the discussions on this manuscript. Approved Most recent IF: 6.216
Call Number PLASMANT @ plasmant @ c:irua:144802 Serial 4626
Permanent link to this record
 

 
Author Gholampour, N.; Chaemchuen, S.; Hu, Z.-Y.; Mousavi, B.; Van Tendeloo, G.; Verpoort, F.
Title Simultaneous creation of metal nanoparticles in metal organic frameworks via spray drying technique Type A1 Journal article
Year 2017 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 322 Issue Pages 702-709
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In-situ fabrication of palladium(0) nanoparticles inside zeolitic imidazolate frameworks (ZIF-8) has been established via one-step facile spray-dry technique. Crystal structures and morphologies of the Pd@ZIF-8 samples are investigated by powder XRD, TEM, SAED, STEM, and EDX techniques. High angle annular dark field scanning transmission electron microscopy (HAAD-STEM) and 3D tomographic analysis confirm the presence of palladium nanoparticles inside the ZIF-8 structure. The porosity, surface area and N-2 physisorption properties are evaluated for Pd@ZIF-8 with various palladium contents. Furthermore, Pd@ZIF-8 samples are effectively applied as heterogeneous catalysts in alkenes hydrogenation. This straightforward method is able to speed up the synthesis of encapsulation of metal nanoparticles in metal organic frameworks. (C) 2017 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000401594200069 Publication Date 2017-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 0300-9467 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.216 Times cited 14 Open Access OpenAccess
Notes ; The authors would like to express their deep accolade to “State Key Laboratory of Advanced Technology for Materials Synthesis and Processing” for financial support. S.C. appreciates of the National Natural Science Foundation of China (303-41150231), the Fundamental Research Funds for the Central Universities (WUT: 2016IVA092) and the Research Fund for the Doctoral Program of Higher Education of China (471-40120222). N.G. thanks the Chinese Scholarship Council (CSC) for her Ph.D. study grant 2013GXZ985. Z.-Y. H and G. V.T. acknowledge the support from the EC Framework 7 program ESTEEM2 (Reference 312483). ; Approved Most recent IF: 6.216
Call Number UA @ lucian @ c:irua:144152 Serial 4686
Permanent link to this record
 

 
Author Wang, W.; Kim, H.-H.; Van Laer, K.; Bogaerts, A.
Title Streamer propagation in a packed bed plasma reactor for plasma catalysis applications Type A1 Journal article
Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 334 Issue Pages 2467-2479
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A packed bed dielectric barrier discharge (DBD) is widely used for plasma catalysis applications, but the exact plasma characteristics in between the packing beads are far from understood. Therefore, we study here these plasma characteristics by means of fluid modelling and experimental observations using ICCD imaging, for packing materials with different dielectric constants. Our study reveals that a packed bed DBD reactor in dry air at atmospheric pressure may show three types of discharges, i.e. positive restrikes, filamentary microdischarges, which can also be localized between two packing beads, and surface discharges (so-called surface ionization

waves). Restrikes between the dielectric surfaces result in the formation of filamentary microdischarges, while surface charging creates electric field components parallel to the dielectric surfaces, leading to the formation of surface discharges. A transition in discharge mode occurs from surface discharges to local filamentary discharges between the packing beads when the dielectric constant of the packing rises from 5 to 1000. This may have implications for the efficiency of plasma catalytic gas treatment, because the catalyst activation may be limited by constraining the discharge to the contact points of the beads. The production of reactive species occurs most in the positive restrikes, the surface discharges and the local microdischarges in between the beads, and is less significant in the longer filamentary microdischarges. The faster streamer propagation and discharge development with higher dielectric constant of the packing beads leads to a faster production of reactive species. This study is of great interest for plasma catalysis, where packing beads with different dielectric constants are often used as supports for the catalytic materials. It allows us to better understand how different packing materials can influence the performance of packed bed plasma reactors for environmental applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000418533400246 Publication Date 2017-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.216 Times cited 36 Open Access Not_Open_Access: Available from 10.01.2020
Notes We acknowledge financial support from the Fund for Scientific Research Flanders (FWO) (grant nos G.0217.14 N, G.0254.14 N and G.0383.16 N), the TOP-BOF project of the University of Antwerp, the European Marie Skłodowska-Curie Individual Fellowship “GlidArc” within Horizon2020 (Grant No. 657304) and the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders). This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions – Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb.ac.be/), and supported by the Belgian Science Policy Office (BELSPO). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:147864 Serial 4800
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Van Alphen, S.; Michielsen, I.; Meynen, V.; Cool, P.; Bogaerts, A.
Title A packed-bed DBD micro plasma reactor for CO 2 dissociation: Does size matter? Type A1 Journal article
Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 348 Issue Pages 557-568
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract DBD plasma reactors are of great interest for environmental and energy applications, such as CO2 conversion, but they suffer from limited conversion and especially energy efficiency. The introduction of packing materials has been a popular subject of investigation in order to increase the reactor performance. Reducing the discharge gap of the reactor below one millimetre can enhance the plasma performance as well. In this work, we combine both effects and use a packed-bed DBD micro plasma reactor to investigate the influence of gap size reduction, in combination with a packing material, on the conversion and efficiency of CO2 dissociation. Packing materials used in this work were SiO2, ZrO2, and Al2O3 spheres as well as glass wool. The results are compared to a regular size reactor as a benchmark. Reducing the discharge gap can greatly increase the CO2 conversion, although at a lower energy efficiency. Adding a packing material further increases the conversion when keeping a constant residence time, but is greatly dependent on the material composition, gap and sphere size used. Maximum conversions of 50–55% are obtained for very long residence times (30 s and higher) in an empty reactor or with certain packing material combinations, suggesting a balance in CO2 dissociation and recombination reactions. The maximum energy efficiency achieved is 4.3%, but this is for the regular sized reactor at a short residence time (7.5 s). Electrical characterization is performed to reveal some trends in the electrical behaviour of the plasma upon reduction of the discharge gap and addition of a packing material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000434467000055 Publication Date 2018-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.216 Times cited 22 Open Access Not_Open_Access: Available from 03.05.2020
Notes We acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund for Scientific Research (FWO; Grant Number: G.0254.14N) and an IOF-SBO (SynCO2Chem) project from the University of Antwerp. Approved Most recent IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:151238 Serial 4956
Permanent link to this record
 

 
Author Zhang, H.; Wang, W.; Li, X.; Han, L.; Yan, M.; Zhong, Y.; Tu, X.
Title Plasma activation of methane for hydrogen production in a N2 rotating gliding arc warm plasma : a chemical kinetics study Type A1 Journal article
Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 345 Issue 345 Pages 67-78
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work, a chemical kinetics study on methane activation for hydrogen production in a warm plasma, i.e., N-2 rotating gliding arc (RGA), was performed for the first time to get new insights into the underlying reaction mechanisms and pathways. A zero-dimensional chemical kinetics model was developed, which showed a good agreement with the experimental results in terms of the conversion of CH4 and product selectivities, allowing us to get a better understanding of the relative significance of various important species and their related reactions to the formation and loss of CH4, H-2, and C2H2 etc. An overall reaction scheme was obtained to provide a realistic picture of the plasma chemistry. The results reveal that the electrons and excited nitrogen species (mainly N-2(A)) play a dominant role in the initial dissociation of CH4. However, the H atom induced reaction CH4+ H -> CH3+ H-2, which has an enhanced reaction rate due to the high gas temperature (over 1200 K), is the major contributor to both the conversion of CH4 and H-2 production, with its relative contributions of > 90% and > 85%, respectively, when only considering the forward reactions. The coexistence and interaction of thermochemical and plasma chemical processes in the rotating gliding arc warm plasma significantly enhance the process performance. The formation of C-2 hydrocarbons follows a nearly one-way path of C2H6 -> C2H4 -> C2H2, explaining why the selectivities of C-2 products decreased in the order of C2H2 > C2H4 > C2H6.
Address
Corporate Author Thesis
Publisher Elsevier Sequoia Place of Publication Lausanne Editor
Language Wos 000430696500008 Publication Date 2018-03-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.216 Times cited 25 Open Access OpenAccess
Notes Approved Most recent IF: 6.216
Call Number UA @ lucian @ c:irua:151450 Serial 5036
Permanent link to this record
 

 
Author Li, K.; Liu, J.-L.; Li, X.-S.; Lian, H.-Y.; Zhu, X.; Bogaerts, A.; Zhu, A.-M.
Title Novel power-to-syngas concept for plasma catalytic reforming coupled with water electrolysis Type A1 Journal article
Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 353 Issue Pages 297-304
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We propose a novel Power to Synthesis Gas (P2SG) approach, composed of two high-efficiency and renewable electricity-driven units, i.e., plasma catalytic reforming (PCR) and water electrolysis (WE), to produce high quality syngas from CH4, CO2 and H2O. As WE technology is already commercial, we mainly focus on the PCR unit, consisting of gliding arc plasma and Ni-based catalyst, for oxidative dry reforming of methane. An energy efficiency of 78.9% and energy cost of 1.0 kWh/Nm3 at a CH4 conversion of 99% and a CO2 conversion of 79% are obtained. Considering an energy efficiency of 80% for WE, the P2SG system yields an overall energy efficiency of 79.3% and energy cost of 1.8 kWh/Nm3. High-quality syngas is produced without the need for posttreatment units, featuring the ideal stoichiometric number of 2, with concentration of 94.6 vol%, and a desired CO2 fraction of 1.9 vol% for methanol synthesis. The PCR unit has the advantage of fast response to adapting to fluctuation of renewable electricity, avoiding local hot spots in the catalyst bed and coking, in contrast to conventional catalytic processes. Moreover, pure O2 from the WE unit is directly utilized by the PCR unit for oxidative dry reforming of methane, and thus, no air separation unit, like in conventional processes, is required. This work demonstrates the viability of the P2SG approach for large-scale energy storage of renewable electricity via electricity-to-fuel conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000441527900029 Publication Date 2018-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.216 Times cited 7 Open Access OpenAccess
Notes This project is supported by the National Natural Science Foundation of China (11705019, 11475041), the Fundamental Research Funds for the Central Universities (DUT16QY49, DUT16LK16) and the Fund for Scientific Research Flanders (FWO; grant G.0383.16N). Approved Most recent IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:153059 Serial 5049
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Bal, Km.; Michielsen, I.; Neyts, Ec.; Meynen, V.; Cool, P.; Bogaerts, A.
Title How process parameters and packing materials tune chemical equilibrium and kinetics in plasma-based CO2 conversion Type A1 Journal article
Year 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 372 Issue Pages 1253-1264
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma (catalysis) reactors are increasingly being used for gas-based chemical conversions, providing an alternative method of energy delivery to the molecules. In this work we explore whether classical concepts such as

equilibrium constants, (overall) rate coefficients, and catalysis exist under plasma conditions. We specifically

investigate the existence of a so-called partial chemical equilibrium (PCE), and how process parameters and

packing properties influence this equilibrium, as well as the overall apparent rate coefficient, for CO2 splitting in

a DBD plasma reactor. The results show that a PCE can be reached, and that the position of the equilibrium, in

combination with the rate coefficient, greatly depends on the reactor parameters and operating conditions (i.e.,

power, pressure, and gap size). A higher power, higher pressure, or smaller gap size enhance both the equilibrium constant and the rate coefficient, although they cannot be independently tuned. Inserting a packing

material (non-porous SiO2 and ZrO2 spheres) in the reactor reveals interesting gap/material effects, where the

type of material dictates the position of the equilibrium and the rate (inhibition) independently. As a result, no

apparent synergistic effect or plasma-catalytic behaviour was observed for the non-porous packing materials

studied in this reaction. Within the investigated parameters, equilibrium conversions were obtained between 23

and 71%, while the rate coefficient varied between 0.027 s−1 and 0.17 s−1. This method of analysis can provide

a more fundamental insight in the overall reaction kinetics of (catalytic) plasma-based gas conversion, in order

to be able to distinguish plasma effects from true catalytic enhancement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000471670400116 Publication Date 2019-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.216 Times cited 3 Open Access Not_Open_Access: Available from 05.05.2021
Notes European Fund for Regional Development; FWOFWO, G.0254.14N ; University of Antwerp; FWO-FlandersFWO-Flanders, 11V8915N ; The authors acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund for Scientific Research (FWO; Grant Number: G.0254.14N), a TOP-BOF project and an IOF-SBO (SynCO2Chem) project from the University of Antwerp. K. M. B. was funded as a PhD fellow (aspirant) of the FWOFlanders (Fund for Scientific Research-Flanders), Grant 11V8915N. Approved Most recent IF: 6.216
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159979 Serial 5171
Permanent link to this record
 

 
Author Trenchev, G.; Nikiforov, A.; Wang, W.; Kolev, S.; Bogaerts, A.
Title Atmospheric pressure glow discharge for CO2 conversion : model-based exploration of the optimum reactor configuration Type A1 Journal article
Year 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 362 Issue 362 Pages 830-841
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We investigate the performance of an atmospheric pressure glow discharge (APGD) reactor for CO2 conversion in three different configurations, through experiments and simulations. The first (basic) configuration utilizes the well-known pin-to-plate design, which offers a limited conversion. The second configuration improves the reactor performance by employing a vortex-flow generator. The third, “confined” configuration is a complete redesign of the reactor, which encloses the discharge in a limited volume, significantly surpassing the conversion rate of the other two designs. The plasma properties are investigated using an advanced plasma model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000457863500084 Publication Date 2019-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.216 Times cited 4 Open Access Not_Open_Access: Available from 15.10.2019
Notes Approved Most recent IF: 6.216
Call Number UA @ admin @ c:irua:157459 Serial 5269
Permanent link to this record
 

 
Author Pauwels, D.; Hereijgers, J.; Verhulst, K.; De Wael, K.; Breugelmans, T.
Title Investigation of the electrosynthetic pathway of the aldol condensation of acetone Type A1 Journal article
Year 2016 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 289 Issue Pages 554-561
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)
Abstract The potential-controlled electrochemical aldol condensation of acetone to diacetone alcohol in a standard batch electrolysis set-up was studied in this work. It is confirmed that the reaction proceeds at the cathode and that, contrary to what is mentioned in earlier literature, water in the electrolyte has a disadvantageous effect on the reaction. Similar to the chemical reaction, the electrochemical reaction reaches a maximum yield when the equilibrium is reached. Separating the anode and cathode prevents cross-over and degradation of products, leading to a higher yield. Starting with pure acetone and support electrolyte, it was possible to obtain a diacetone alcohol concentration of 15 m% after two hours electrolysis in a divided set-up with a platinum electrode at -2.5 V. The concentration gradient throughout the electrolysis follows an exponential curve up to its equilibrium concentration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371559900061 Publication Date 2016-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.216 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 6.216
Call Number UA @ admin @ c:irua:130396 Serial 5675
Permanent link to this record
 

 
Author Verbruggen, S.W.; Lenaerts, S.; Denys, S.
Title Analytic versus CFD approach for kinetic modeling of gas phase photocatalysis Type A1 Journal article
Year 2015 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 262 Issue Pages 1-8
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In this work two methods for determining the LangmuirHinshelwood kinetic parameters for a slit-shaped flat bed photocatalytic reactor are compared: an analytic mass transfer based model adapted from literature and a computational fluid dynamics (CFD) approach that was used in conjunction with a simplex optimization routine. Despite the differences between both approaches, similar values for the kinetic parameters and similar trends in terms of their UV intensity dependence were found. Using an effectiveness-NTU (number of transfer units) approach, the analytic mass transfer based method could quantify the relative contributions of the rate limiting steps through a reaction effectiveness parameter. The numeric CFD approach on the other hand could yield the two kinetic parameters that determine the photocatalytic reaction rate simultaneously. Furthermore, it proved to be more accurate as it accounts for the spatial variation of flow rate, reaction rate and concentrations at the surface of the photocatalyst. We elaborate this dual kinetic analysis with regard to the photocatalytic degradation of acetaldehyde in air over a silicon wafer coated with a layer of TiO2 P25 (Evonik) and study the usefulness and limitations of both strategies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000347577700001 Publication Date 2014-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.216 Times cited 30 Open Access
Notes ; S.W.V. acknowledges the Research Foundation of Flanders (FWO) for financial support. ; Approved Most recent IF: 6.216; 2015 IF: 4.321
Call Number UA @ admin @ c:irua:119724 Serial 5927
Permanent link to this record