toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Manzaneda-Gonzalez, V.; Jenkinson, K.; Pena-Rodriguez, O.; Borrell-Grueiro, O.; Trivino-Sanchez, S.; Banares, L.; Junquera, E.; Espinosa, A.; Gonzalez-Rubio, G.; Bals, S.; Guerrero-Martinez, A. url  doi
openurl 
  Title From multi- to single-hollow trimetallic nanocrystals by ultrafast heating Type A1 Journal article
  Year 2023 Publication Chemistry of materials Abbreviated Journal  
  Volume 35 Issue 22 Pages 9603-9612  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Metal nanocrystals (NCs) display unique physicochemical features that are highly dependent on nanoparticle dimensions, anisotropy, structure, and composition. The development of synthesis methodologies that allow us to tune such parameters finely emerges as crucial for the application of metal NCs in catalysis, optical materials, or biomedicine. Here, we describe a synthetic methodology to fabricate hollow multimetallic heterostructures using a combination of seed-mediated growth routes and femtosecond-pulsed laser irradiation. The envisaged methodology relies on the coreduction of Ag and Pd ions on gold nanorods (Au NRs) to form Au@PdAg core-shell nanostructures containing small cavities at the Au-PdAg interface. The excitation of Au@PdAg NRs with low fluence femtosecond pulses was employed to induce the coalescence and growth of large cavities, forming multihollow anisotropic Au@PdAg nanostructures. Moreover, single-hollow alloy AuPdAg could be achieved in high yield by increasing the irradiation energy. Advanced electron microscopy techniques, energy-dispersive X-ray spectroscopy (EDX) tomography, X-ray absorption near-edge structure (XANES) spectroscopy, and finite differences in the time domain (FDTD) simulations allowed us to characterize the morphology, structure, and elemental distribution of the irradiated NCs in detail. The ability of the reported synthesis route to fabricate multimetallic NCs with unprecedented hollow nanostructures offers attractive prospects for the fabrication of tailored high-entropy alloy nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001110623500001 Publication Date 2023-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202144 Serial 9040  
Permanent link to this record
 

 
Author Biondo, O.; van Deursen, C.F.A.M.; Hughes, A.; van de Steeg, A.; Bongers, W.; van de Sanden, M.C.M.; van Rooij, G.; Bogaerts, A. pdf  url
doi  openurl
  Title Avoiding solid carbon deposition in plasma-based dry reforming of methane Type A1 Journal Article
  Year 2023 Publication Green Chemistry Abbreviated Journal Green Chem.  
  Volume 25 Issue 24 Pages 10485-10497  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Solid carbon deposition is a persistent challenge in dry reforming of methane (DRM), affecting both classical and plasma-based processes. In this work, we use a microwave plasma in reverse vortex flow configuration to overcome this issue in CO<sub>2</sub>/CH<sub>4</sub>plasmas. Indeed, this configuration efficiently mitigates carbon deposition, enabling operation even with pure CH<sub>4</sub>feed gas, in contrast to other configurations. At the same time, high reactor performance is achieved, with CO<sub>2</sub>and CH<sub>4</sub>conversions reaching 33% and 44% respectively, at an energy cost of 14 kJ L<sup>−1</sup>for a CO<sub>2</sub> : CH<sub>4</sub>ratio of 1 : 1. Laser scattering and optical emission imaging demonstrate that the shorter residence time in reverse vortex flow lowers the gas temperature in the discharge, facilitating a shift from full to partial CH<sub>4</sub>pyrolysis. This underscores the pivotal role of flow configuration in directing process selectivity, a crucial factor in complex chemistries like CO<sub>2</sub>/CH<sub>4</sub>mixtures and very important for industrial applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001110100100001 Publication Date 2023-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor 9.8 Times cited Open Access  
  Notes Universiteit Antwerpen; Nederlandse Organisatie voor Wetenschappelijk Onderzoek; HORIZON EUROPE Marie Sklodowska-Curie Actions, 813393 ; Approved Most recent IF: 9.8; 2023 IF: 9.125  
  Call Number PLASMANT @ plasmant @c:irua:202138 Serial 8978  
Permanent link to this record
 

 
Author Hassani, N.; Yagmurcukardes, M.; Peeters, F.M.; Neek-Amal, M. pdf  doi
openurl 
  Title Chlorinated phosphorene for energy application Type A1 Journal article
  Year 2024 Publication Computational materials science Abbreviated Journal  
  Volume 231 Issue Pages 112625-112628  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The influence of decoration with impurities and the composition dependent band gap in 2D materials has been the subject of debate for a long time. Here, by using Density Functional Theory (DFT) calculations, we systematically disclose physical properties of chlorinated phosphorene having the stoichiometry of PmCln. By analyzing the adsorption energy, charge density, migration energy barrier, structural, vibrational, and electronic properties of chlorinated phosphorene, we found that (I) the Cl-P bonds are strong with binding energy Eb =-1.61 eV, decreases with increasing n. (II) Cl atoms on phosphorene have anionic feature, (III) the migration path of Cl on phosphorene is anisotropic with an energy barrier of 0.38 eV, (IV) the phonon band dispersion reveal that chlorinated phosphorenes are stable when r <= 0.25 where r = m/n, (V) chlorinated phosphorenes is found to be a photonic crystal in the frequency range of 280 cm-1 to 325 cm-1, (VI) electronic band structure of chlorinated phosphorenes exhibits quasi-flat bands emerging around the Fermi level with widths in the range of 22 meV to 580 meV, and (VII) Cl adsorption causes a semiconducting to metallic/semi-metallic transition which makes it suitable for application as an electroactive material. To elucidate this application, we investigated the change in binding energy (Eb), specific capacity, and open-circuit voltage as a function of the density of adsorbed Cl. The theoretical storage capacity of the chlorinated phosphorene is found to be 168.19 mA h g-1with a large average voltage (similar to 2.08 V) which is ideal number as a cathode in chloride-ion batteries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001110003400001 Publication Date 2023-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202125 Serial 9008  
Permanent link to this record
 

 
Author Teunissen, J.L.; Braeckevelt, T.; Skvortsova, I.; Guo, J.; Pradhan, B.; Debroye, E.; Roeffaers, M.B.J.; Hofkens, J.; Van Aert, S.; Bals, S.; Rogge, S.M.J.; Van Speybroeck, V. pdf  url
doi  openurl
  Title Additivity of Atomic Strain Fields as a Tool to Strain-Engineering Phase-Stabilized CsPbI3Perovskites Type A1 Journal Article
  Year 2023 Publication The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C  
  Volume 127 Issue 48 Pages 23400-23411  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract CsPbI3 is a promising perovskite material for photovoltaic applications in its photoactive perovskite or black phase. However, the material degrades to a photovoltaically inactive or yellow phase at room temperature. Various mitigation strategies are currently being developed to increase the lifetime of the black phase, many of which rely on inducing strains in the material that hinder the black-to-yellow phase transition. Physical insight into how these strategies exactly induce strain as well as knowledge of the spatial extent over which these strains impact the material is crucial to optimize these approaches but is still lacking. Herein, we combine machine learning potential-based molecular dynamics simulations with our in silico strain engineering approach to accurately quantify strained large-scale atomic structures on a nanosecond time scale. To this end, we first model the strain fields introduced by atomic substitutions as they form the most elementary strain sources. We demonstrate that the magnitude of the induced strain fields decays exponentially with the distance from the strain source, following a decay rate that is largely independent of the specific substitution. Second, we show that the total strain field induced by multiple strain sources can be predicted to an excellent approximation by summing the strain fields of each individual source. Finally, through a case study, we illustrate how this additive character allows us to explain how complex strain fields, induced by spatially extended strain sources, can be predicted by adequately combining the strain fields caused by local strain sources. Hence, the strain additivity proposed here can be adopted to further our insight into the complex strain behavior in perovskites and to design strain from the atomic level onward to enhance their sought-after phase stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001116862000001 Publication Date 2023-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes This work was supported by iBOF-21-085 PERsist (Special Research Fund of Ghent University, KU Leuven Research Fund, and the Research Fund of the University of Antwerp). S.M.J.R., T.B., and B.P. acknowledge financial support from the Research Foundation-Flanders (FWO) through two postdoctoral fellow- ships [grant nos. 12T3522N (S.M.J.R.) and 1275521N (B.P.)] and an SB-FWO fellowship [grant no. 1SC1319 (T.B.)]. E.D., M.B.J.R., and J.H. acknowledge financial support from the Research Foundation-Flanders (FWO, grant nos. G.0B39.15, G.0B49.15, G098319N, S002019N, S004322N, and ZW15_09- GOH6316). J.H. acknowledges support from the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04) and the MPI as an MPI fellow. S.V.A. and S.B. acknowledge financial support from the Research Foundation-Flanders (FWO, grant no. G0A7723N). S.M.J.R. and V.V.S. acknowledge funding from the Research Board of Ghent University (BOF). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation- Flanders (FWO) and the Flemish Government�department EWI.; KU Leuven, iBOF-21-085 PERsist ; Universiteit Antwerpen, iBOF-21-085 PERsist ; Universiteit Gent, iBOF-21-085 PERsist ; Vlaamse regering, CASAS2, Meth/15/04 ; Fonds Wetenschappelijk Onderzoek, G.0B39.15 G098319N G.0B49.15 1SC1319 12T3522N ZW15 09-GOH6316 G0A7723N 1275521N S004322N S002019N ; Approved Most recent IF: 3.7; 2023 IF: 4.536  
  Call Number EMAT @ emat @c:irua:202124 Serial 8985  
Permanent link to this record
 

 
Author Bathula, G.; Rana, S.; Bandalla, S.; Dosarapu, V.; Mavurapu, S.; Rajeevan, V.V.A.; Sharma, B.; Jonnalagadda, S.B.; Baithy, M.; Vasam, C.S. url  doi
openurl 
  Title The role of WOx and dopants (ZrO₂ and SiO₂) on CeO₂-based nanostructure catalysts in the selective oxidation of benzyl alcohol to benzaldehyde under ambient conditions Type A1 Journal article
  Year 2023 Publication RSC advances Abbreviated Journal  
  Volume 13 Issue 51 Pages 36242-36253  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Herein, the efficacy of WOx-promoted CeO2-SiO2 and CeO2-ZrO2 mixed oxide catalysts in the solvent-free selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as an oxidant is reported. We evaluated the effects of the oxidant and catalyst concentration, reaction duration, and temperature on the reaction with an aim to optimize the reaction conditions. The as-prepared CeO2, CeO2-ZrO2, CeO2-SiO2, WOx/CeO2, WOx/CeO2-ZrO2, and WOx/CeO2-SiO2 catalysts were characterized by X-ray diffraction (XRD), N-2 adsorption-desorption, Raman spectroscopy, temperature-programmed desorption of ammonia (TPD-NH3), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). These characterisation results indicated that the WOx/CeO2-SiO2 catalyst possessed improved physicochemical (i.e., structural, textural, and acidic) properties owing to the strong interactivity between WOx and CeO2-SiO2. A higher number of Ce3+ ions (I-u '''/I-Total) were created with the WOx/CeO2-SiO2 catalyst than those with the other catalysts in this work, indicating the generation of a high number of oxygen vacancies. The WOx/CeO2-SiO2 catalyst exhibited a high conversion of benzyl alcohol (>99%) and a high selectivity (100%) toward benzaldehyde compared to the other promoted catalysts (i.e., WOx/CeO2 and WOx/CeO2-ZrO2), which is attributed to the smaller particle size of the WOx and CeO2 and their high specific surface area, more significant number of acidic sites, and superior number of oxygen vacancies. The WOx/CeO2-SiO2 catalyst could be quickly recovered and utilized at least five times without suffering any appreciable activity loss.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001123102800001 Publication Date 2023-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202115 Serial 9107  
Permanent link to this record
 

 
Author Ulu Okudur, F.; Batuk, M.; Hadermann, J.; Safari, M.; De Sloovere, D.; Kumar Mylavarapu, S.; Joos, B.; D'Haen, J.; Van Bael, M.K.; Hardy, A. url  doi
openurl 
  Title Solution-gel-based surface modification of LiNi0.5Mn1.5O4-δ with amorphous Li-Ti-O coating Type A1 Journal article
  Year 2023 Publication RSC advances Abbreviated Journal  
  Volume 13 Issue 47 Pages 33146-33158  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract LNMO (LiNi0.5Mn1.5O4-delta) is a high-energy density positive electrode material for lithium ion batteries. Unfortunately, it suffers from capacity loss and impedance rise during cycling due to electrolyte oxidation and electrode/electrolyte interface instabilities at high operating voltages. Here, a solution-gel synthesis route was used to coat 0.5-2.5 mu m LNMO particles with amorphous Li-Ti-O (LTO) for improved Li conduction, surface structural stability and cyclability. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) analysis coupled with energy dispersive X-ray (EDX) showed Ti-rich amorphous coatings/islands or Ti-rich spinel layers on many of the LTO-modified LNMO facets, with a thickness varying from about 1 to 10 nm. The surface modification in the form of amorphous islands was mostly possible on high-energy crystal facets. Physicochemical observations were used to propose a molecular mechanism for the surface modification, combining insights from metalorganic chemistry with the crystallographic properties of LNMO. The improvements in functional properties were investigated in half cells. The cell impedance increased faster for the bare LNMO compared to amorphous LTO modified LNMO, resulting in R-ct values as high as 1247 Omega (after 1000 cycles) for bare LNMO, against 216 Omega for the modified material. At 10C, the modified material boosted a 15% increase in average discharge capacity. The improvements in electrochemical performance were attributed to the increase in electrochemically active surface area, as well as to improved HF-scavenging, resulting in the formation of protective byproducts, generating a more stable interface during prolonged cycling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001102666700001 Publication Date 2023-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202091 Serial 9096  
Permanent link to this record
 

 
Author Rabani, I.; Tahir, M.S.; Nisar, S.; Parrilla, M.; Truong, H.B.; Kim, M.; Seo, Y.-S. pdf  doi
openurl 
  Title Fabrication of larger surface area of ZIF8@ZIF67 reverse core-shell nanostructures for energy storage applications Type A1 Journal article
  Year 2024 Publication Electrochimica acta Abbreviated Journal  
  Volume 475 Issue Pages 143532-11  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The construction of uniform nanostructure with larger surface area electrodes is a huge challenge for the highvalue added energy storage application. Herein, we demonstrates ZIF67@ZIF8 (core-shell) and ZIF8@ZIF67 (reverse core-shell) nanostructures using a low-cost wet chemical route and used them as supercapacitors. Pristine ZIF-67 and ZIF-8 was used as reference electrodes. Benefiting from the synergistic effect between the ZIF8 and ZIF67, the ZIF8@ZIF67 exhibited the outstanding electrochemical consequences owing to its larger surface area with uniform hexagonal morphology. As optimized ZIF8@ZIF67 nanostructure displayed the highcapacity of 1521 F/g at 1 A/g of current density in a three-electrode assembly in 1 M KOH electrolyte compared with other as-fabricated electrodes. In addition, the ZIF8@ZIF67 nanostructure employed into the symmetric supercapacitors (SSCs) with 1 M KOH electrolyte in two-electrode setup and it exhibited still superior output including capacity (249.8 F/g at 1 A/g), remarkable repeatability (87 % over 10,000 GCD cycles) along with high energy and power density (61.2 Wh/kg & 1260 W/kg). The present study uncovers the relationship between the larger surface area and electrocatalyst performance, supporting an effective approach to prepare favorable materials for enhanced capacity, extended lifespan, and energy density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001134022100001 Publication Date 2023-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202082 Serial 9036  
Permanent link to this record
 

 
Author Akande, S.O.; Samanta, B.; Sevik, C.; Cakir, D. doi  openurl
  Title First-principles investigation of mechanical and thermal properties of M Al B (M = Mo, W), Cr₂ AlB₂, and Ti₂ In B₂ Type A1 Journal article
  Year 2023 Publication Physical review applied Abbreviated Journal  
  Volume 20 Issue 4 Pages 044064-17  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The atomically laminated layered ternary transition-metal borides (the MAB phases) have demonstrated outstanding properties and have been applied in various fields. Understanding their thermal and mechanical properties is critical to determining their applicability in various fields such as high-temperature applications. To achieve this, we conducted first-principles calculations based on density-functional theory and the quasiharmonic approximation to determine the thermal expansion coefficients, Gruneisen parameters, bulk moduli, hardness, thermal conductivity, electron-phonon coupling parameters, and the structural and vibrational properties of MoAlB, WAlB, Cr2AlB2, and Ti2InB2. We found varying degrees of anisotropy in the thermal expansion and mechanical properties in spite of similarities in their crystal structures. MoAlB has a mild degree of anisotropy in its thermal expansion coefficient (TEC), while Cr2AlB2 and WAlB display the highest level of TEC anisotropy. We assessed various empirical models to calculate hardness and thermal conductivity, and correlated the calculated values with the material properties such as elastic moduli, Gruneisen parameter, Debye temperature, and type of bonding. Owing to their higher Gruneisen parameters, implying a greater degree of anharmonicity in lattice vibrations and lower phonon group velocities, MoAlB and WAlB have significantly lower lattice thermal conductivity values than those of Cr2AlB2 and Ti2InB2. The hardness and lattice thermal conductivity of MAB phases can be predicted with high accuracy if one utilizes an appropriate model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001106456600003 Publication Date 2023-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202078 Serial 9037  
Permanent link to this record
 

 
Author Truta, F.M.; Cruz, A.G.; Dragan, A.-M.; Tertis, M.; Cowen, T.; Stefan, M.-G.; Topala, T.; Slosse, A.; Piletska, E.; Van Durme, F.; Kiss, B.; De Wael, K.; Piletsky, S.A.; Cristea, C. pdf  doi
openurl 
  Title Design of smart nanoparticles for the electrochemical detection of 3,4-methylenedioxymethamphetamine to allow in field screening by law enforcement officers Type A1 Journal article
  Year 2023 Publication Drug testing and analysis Abbreviated Journal  
  Volume Issue Pages 1-14  
  Keywords A1 Journal article; Pharmacology. Therapy; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract A portable and highly sensitive sensor was designed for the specific detection of 3,4-methyl-enedioxy-methamphetamine (MDMA), in a range of field-testing situations. The sensor can detect MDMA in street samples, even when other controlled substances drugs, or adulterants are present. In this work, we report for the first time a sensor using electroactive molecularly imprinted polymer nanoparticles computationally designed to recognize MDMA and then produced using solid phase synthesis. A composite comprising chitosan, reduced graphene oxide, and molecularly imprinted polymer nanoparticles synthesized for MDMA for the first time was immobilized on screen-printed carbon electrodes. The sensors displayed a satisfactory sensitivity (106.8 nA x mu M-1), limit of detection (1.6 nM; 0.31 ng/mL), and recoveries (92-99%). The accuracy of the results was confirmed through validation using Ultra-High Performance Liquid Chromatography coupled with tandem Mass Spectrometry (UPLC-MS/MS). This technology could be used in forensic analysis and make it possible to selectively detect MDMA in street samples. A highly sensitive and portable sensor has been developed to detect MDMA in street samples. It uses electroactive molecularly imprinted polymer nanoparticles computationally designed to recognize MDMA, which were immobilized on screen-printed carbon electrodes with chitosan and graphene. The sensor showed good sensitivity and satisfactory recoveries (92-99%), confirmed with UPLC-MS/MS validation. This technology has the potential to be used in forensic analysis.image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001107703400001 Publication Date 2023-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-7603; 1942-7611 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202058 Serial 9020  
Permanent link to this record
 

 
Author Deconinck, E.; Polet, M.A.; Canfyn, M.; Duchateau, C.; De Braekeleer, K.; Van Echelpoel, R.; De Wael, K.; Gremeaux, L.; Degreef, M.; Balcaen, M. pdf  doi
openurl 
  Title Evaluation of an electrochemical sensor and comparison with spectroscopic approaches as used today in practice for harm reduction in a festival setting: a case study : analysis of 3,4-methylenedioxymethamphetamine samples Type A1 Journal article
  Year 2023 Publication Drug testing and analysis Abbreviated Journal  
  Volume Issue Pages 1-13  
  Keywords A1 Journal article; Pharmacology. Therapy; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract More and more countries and organisations emphasise the value of harm reduction measures in the context of illicit drug use and abuse. One of these measures is drug checking, a preventive action that can represent a quick win by tailored consultation on the risks of substance use upon analytical screening of a submitted sample. Unlike drop-in centres that operate within a fixed setting, enabling drug checking in a harm reduction context at events requires portable, easy to use analytical approaches, operated by personnel with limited knowledge of analytical chemistry. In this case study, four different approaches were compared for the characterisation of 3,4-methylenedioxymethamphetamine samples and this in the way the approaches would be applied today in an event context. The four approaches are mid-infrared (MIR), near-infrared, and Raman spectroscopy, which are today used in drug checking context in Belgium, as well as an electrochemical sensor approach initially developed in the context of law enforcement at ports. The MIR and the electrochemical approach came out best, with the latter allowing for a direct straightforward analysis of the percentage 3,4-methylenedioxymethamphetamine (as base equivalent) in the samples. However, MIR has the advantage that, in a broader drug checking context, it allows to screen for several molecules and so is able to identify unexpected active components or at least the group to which such components belong. The latter is also an important advantage in the context of the growing emergence of new psychotropic substances. MIR, NIR, Raman spectroscopy, and an electrochemical sensor (Narcoreader (R)) for MDMA analysis were compared in a realistic harm reduction context. NIR and Raman failed in simple library approaches. MIR and Narcoreader (R) were preferred. MIR came out as first choice. MIR and Narcoreader (R) have complementary (dis)advantages and could be used in a two-step approach: MIR for screening and Narcoreader (R) for dosage/risk evaluation of MDMA samples.image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001122493700001 Publication Date 2023-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-7603; 1942-7611 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202047 Serial 9032  
Permanent link to this record
 

 
Author Yu, CP.; Vega Ibañez, F.; Béché, A.; Verbeeck, J. url  doi
openurl 
  Title Quantum wavefront shaping with a 48-element programmable phase plate for electrons Type A1 Journal Article
  Year 2023 Publication SciPost Physics Abbreviated Journal SciPost Phys.  
  Volume 15 Issue Pages 223  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT)  
  Abstract We present a 48-element programmable phase plate for coherent electron waves produced by a combination of photolithography and focused ion beam. This brings the highly successful concept of wavefront shaping from light optics into the realm of electron optics and provides an important new degree of freedom to prepare electron quantum states. The phase plate chip is mounted on an aperture rod placed in the C2 plane of a transmission electron microscope operating in the 100-300 kV range. The phase plate's behavior is characterized by a Gerchberg-Saxton algorithm, showing a phase sensitivity of 0.075 rad/mV at 300 kV, with a phase resolution of approximately 3x10e−3π. In addition, we provide a brief overview of possible use cases and support it with both simulated and experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher SciPost Place of Publication Editor  
  Language English Wos 001116838500002 Publication Date 2023-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited 1 Open Access  
  Notes This project is the result of a long-term effort involving many differ- ent sources of funding: JV acknowledges funding from an ERC proof of concept project DLV- 789598 ADAPTEM, as well as a University IOF proof of concept project towards launching the AdaptEM spin-off and the eBEAM project, supported by the European Union’s Horizon 2020 research and innovation program FETPROACT-EIC-07-2020: emerging paradigms and com- munities. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3 and via The IMPRESS project from the HORIZON EUROPE framework program for research and innovation under grant agreement n. 101094299. FV, JV, and AB acknowledge funding from G042820N ‘Explor- ing adaptive optics in transmission electron microscopy.’ CPY acknowledges funding from a TOP-BOF project from the University of Antwerp. Approved Most recent IF: 5.5; 2023 IF: NA  
  Call Number EMAT @ emat @c:irua:202037 Serial 8984  
Permanent link to this record
 

 
Author Zamani, M.; Yapicioglu, H.; Kara, A.; Sevik, C. pdf  doi
openurl 
  Title Statistical analysis of porcelain tiles' technical properties : full factorial design investigation on oxide ratios and temperature Type A1 Journal article
  Year 2023 Publication Physica scripta Abbreviated Journal  
  Volume 98 Issue 12 Pages 125953-18  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract This study focuses on optimizing the composition and firing temperature of porcelain tiles using statistical analysis techniques. A full factorial design, including model adequacy checking, analysis of variance, Pareto charts, interaction plots, regression model, and response optimizer is employed. The key factors were the Seger ratios of SiO2/Al2O3, Na2O/K2O, MgO/CaO, and firing temperature. The response variables investigated were bulk density, water absorption, linear shrinkage, coefficient of thermal expansion (at 500 degrees C), and strength. The statistical analysis revealed highly significant results, which were further validated, confirming their reliability for practical use in the production of porcelain tiles. The study demonstrated the effectiveness of utilizing Seger formulas and properties of typical raw materials to accurately predict the final properties of ceramic tiles. By employing SiO2/Al2O3 = 5.2, Na2O/K2O = 1.50, MgO/CaO = 3.0, and firing temperature of 1180 degrees C, optimized properties, such as maximum strength, maximum bulk density, and minimum water absorption, was achieved with a composite desirability of 0.9821.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001105879800001 Publication Date 2023-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949; 1402-4896 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202033 Serial 9097  
Permanent link to this record
 

 
Author Živanić, M.; Espona‐Noguera, A.; Verswyvel, H.; Smits, E.; Bogaerts, A.; Lin, A.; Canal, C. url  doi
openurl 
  Title Injectable Plasma‐Treated Alginate Hydrogel for Oxidative Stress Delivery to Induce Immunogenic Cell Death in Osteosarcoma Type A1 Journal Article
  Year 2023 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Materials  
  Volume Issue Pages  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Cold atmospheric plasma (CAP) is a source of cell‐damaging oxidant molecules that may be used as low‐cost cancer treatment with minimal side effects. Liquids treated with cold plasma and enriched with oxidants are a modality for non‐invasive treatment of internal tumors with cold plasma via injection. However, liquids are easily diluted with body fluids which impedes high and localized delivery of oxidants to the target. As an alternative, plasma‐treated hydrogels (PTH) emerge as vehicles for the precise delivery of oxidants. This study reports an optimal protocol for the preparation of injectable alginate PTH that ensures the preservation of plasma‐generated oxidants. The generation, storage, and release of oxidants from the PTH are assessed. The efficacy of the alginate PTH in cancer treatment is demonstrated in the context of cancer cell cytotoxicity and immunogenicity–release of danger signals and phagocytosis by immature dendritic cells, up to now unexplored for PTH. These are shown in osteosarcoma, a hard‐to‐treat cancer. The study aims to consolidate PTH as a novel cold plasma treatment modality for non‐invasive or postoperative tumor treatment. The results offer a rationale for further exploration of alginate‐based PTHs as a versatile platform in biomedical engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001129424500001 Publication Date 2023-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor 19 Times cited Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, 1S67621N ; European Cooperation in Science and Technology, COST Action CA20114 ; Agència de Gestió d'Ajuts Universitaris i de Recerca, SGR2022‐1368 ; Agencia Estatal de Investigación, PID2019‐ 103892RB‐I00/AEI/10.13039/501100011033 ; Instituto de Salud Carlos III, IHRC22/00003 ; Approved Most recent IF: 19; 2023 IF: 12.124  
  Call Number PLASMANT @ plasmant @c:irua:202030 Serial 8979  
Permanent link to this record
 

 
Author Gao, C.; Hofer, C.; Pennycook, T.J. url  doi
openurl 
  Title On central focusing for contrast optimization in direct electron ptychography of thick samples Type A1 Journal article
  Year 2024 Publication Ultramicroscopy Abbreviated Journal  
  Volume 256 Issue Pages 113879-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ptychography provides high dose efficiency images that can reveal light elements next to heavy atoms. However, despite ptychography having an otherwise single signed contrast transfer function, contrast reversals can occur when the projected potential becomes strong for both direct and iterative inversion ptychography methods. It has recently been shown that these reversals can often be counteracted in direct ptychography methods by adapting the focus. Here we provide an explanation of why the best contrast is often found with the probe focused to the middle of the sample. The phase contribution due to defocus at each sample slice above and below the central plane in this configuration effectively cancels out, which can prevent contrast reversals when dynamical scattering effects are not overly strong. In addition we show that the convergence angle can be an important consideration for removal of contrast reversals in relatively thin samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001112166400001 Publication Date 2023-11-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202029 Serial 9066  
Permanent link to this record
 

 
Author Heirman, P.; Verloy, R.; Baroen, J.; Privat-Maldonado, A.; Smits, E.; Bogaerts, A. pdf  url
doi  openurl
  Title Liquid treatment with a plasma jet surrounded by a gas shield: effect of the treated substrate and gas shield geometry on the plasma effluent conditions Type A1 Journal Article
  Year 2024 Publication Journal of Physics D: Applied Physics Abbreviated Journal J. Phys. D: Appl. Phys.  
  Volume 57 Issue 11 Pages 115204  
  Keywords A1 Journal Article; atmospheric pressure plasma jet, 2D fluid modeling, gas shield, in vitro treatment, plasma-liquid; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract The treatment of a well plate by an atmospheric pressure plasma jet is common for<italic>in vitro</italic>plasma medicine research. Here, reactive species are largely produced through the mixing of the jet effluent with the surrounding atmosphere. This mixing can be influenced not only by the ambient conditions, but also by the geometry of the treated well. To limit this influence and control the atmosphere, a shielding gas is sometimes applied. However, the interplay between the gas shield and the well geometry has not been investigated. In this work, we developed a 2D-axisymmetric computational fluid dynamics model of the kINPen plasma jet, to study the mixing of the jet effluent with the surrounding atmosphere, with and without gas shield. Our computational and experimental results show that the choice of well type can have a significant influence on the effluent conditions, as well as on the effectiveness of the gas shield. Furthermore, the geometry of the shielding gas device can substantially influence the mixing as well. Our results provide a deeper understanding of how the choice of setup geometry can influence the plasma treatment, even when all other operating parameters are unchanged.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001127372200001 Publication Date 2024-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access Not_Open_Access  
  Notes Fund for Scientific Research Flanders, 1100421N ; Approved Most recent IF: 3.4; 2024 IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:201999 Serial 8977  
Permanent link to this record
 

 
Author Ysebaert, T.; Samson, R.; Denys, S. pdf  doi
openurl 
  Title Revisiting dry deposition modelling of particulate matter on vegetation at the microscale Type A1 Journal article
  Year 2023 Publication Air quality, atmosphere & health Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Dry deposition is an important process determining pollutant concentrations, especially when studying the influence of urban green infrastructure on particulate matter (PM) levels in cities. Computational fluid dynamics (CFD) models of PM capture by vegetation are useful tools to increase their applicability. The meso-scale models of Zhang et al. (Atmos Environ 35:549-560, 2001) and Petroff and Zhang (Geosci Model Dev 3(2):753-769, 2010) have often been adopted in CFD models, however a comparison of these models with measurements including all PM particle sizes detrimental to health has been rarely reported and certainly not for green wall species. This study presents dry deposition experiments on real grown Hedera helix in a wind tunnel setup with wind speeds from 1 to 4 m s(-1) and PM consisting of a mixture of soot (0.02 – 0.2 mu mu m) and dust particles (0.3 – 10 mu mu m). Significant factors determining the collection efficiency (%) were particle diameter and wind speed, but relative air humidity and the type of PM (soot or dust) did not have a significant influence. Zhang's model outperformed Petroff's model for particles < 0.3 mu mu m, however the inclusion of turbulent impaction in Petroff's model resulted in better agreement with the measurements for particles > 2 – 3 mu mu m. The optimised model had an overall root-mean-square-error of similar to 4% for collection efficiency (CE) and 0.4 cm s-1 for deposition velocity (nu d), which was shown to be highly competitive against previously described models. It can thus be used to model PM deposition on other plant species, provided the correct parameterisation of the drag by this species. A detailed description of the spatial distribution of the vegetation could solve the underestimation for particle sizes of 0.3 – 2 mu mu m.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001125841300001 Publication Date 2023-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1873-9318; 1873-9326 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201986 Serial 9086  
Permanent link to this record
 

 
Author Zhang, L.; Quinn, B.K.; Hui, C.; Lian, M.; Gielis, J.; Gao, J.; Shi, P. url  doi
openurl 
  Title New indices to balance α-diversity against tree size inequality Type A1 Journal article
  Year 2024 Publication Journal of forestry research Abbreviated Journal  
  Volume 35 Issue 1 Pages 31-39  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The number and composition of species in a community can be quantified with alpha-diversity indices, including species richness (R), Simpson's index (D), and the Shannon-Wiener index (HGREEK TONOS). In forest communities, there are large variations in tree size among species and individuals of the same species, which result in differences in ecological processes and ecosystem functions. However, tree size inequality (TSI) has been largely neglected in studies using the available diversity indices. The TSI in the diameter at breast height (DBH) data for each of 999 20 m x 20 m forest census quadrats was quantified using the Gini index (GI), a measure of the inequality of size distribution. The generalized performance equation was used to describe the rotated and right-shifted Lorenz curve of the cumulative proportion of DBH and the cumulative proportion of number of trees per quadrat. We also examined the relationships of alpha-diversity indices with the GI using correlation tests. The generalized performance equation effectively described the rotated and right-shifted Lorenz curve of DBH distributions, with most root-mean-square errors (990 out of 999 quadrats) being < 0.0030. There were significant positive correlations between each of three alpha-diversity indices (i.e., R, D, and H') and the GI. Nevertheless, the total abundance of trees in each quadrat did not significantly influence the GI. This means that the TSI increased with increasing species diversity. Thus, two new indices are proposed that can balance alpha-diversity against the extent of TSI in the community: (1 – GI) x D, and (1 – GI) x H'. These new indices were significantly correlated with the original D and HGREEK TONOS, and did not increase the extent of variation within each group of indices. This study presents a useful tool for quantifying both species diversity and the variation in tree sizes in forest communities, especially in the face of cumulative species loss under global climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001131698000001 Publication Date 2023-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1007-662x; 1993-0607 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201972 Serial 9061  
Permanent link to this record
 

 
Author Steijlen, A.S.M.; Parrilla, M.; Van Echelpoel, R.; De Wael, K. pdf  doi
openurl 
  Title Dual microfluidic sensor system for enriched electrochemical profiling and identification of illicit drugs on-site Type A1 Journal article
  Year 2024 Publication Analytical chemistry Abbreviated Journal  
  Volume 96 Issue 1 Pages 590-598  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Electrochemical sensors have emerged as a new analytical tool for illicit drug detection to facilitate ultrafast and accurate identification of suspicious compounds on-site. Drugs of abuse can be identified using their unique voltammetric fingerprint at a given pH. Today, the right buffer solution is manually selected based on drug appearance, and in some cases, a consecutive analysis in two different pH solutions is required. In this work, we present a disposable microfluidic multichannel sensor system that automatically records fingerprints in two pH solutions (e.g., pH 5 and pH 12). This system has two advantages. It will overcome the manual selection of a buffer solution at the right pH, decrease analysis time, and minimize the risk of human errors. Second, the combination of two fingerprints, the superfingerprint, contains more detailed information about the samples, which enhances the selectivity of the analytical technique. First, real-time pH measurements proved that the sample can be brought to the desired pH within a minute. Subsequently, an electrochemical study on the microfluidic platform with 1 mM illicit drug standards of MDMA, cocaine, heroin, and methamphetamine showed that the characteristic voltammetric fingerprints and peak potentials are reproducible, also in the presence of common cutting agents. Finally, the microfluidic concept was validated with real confiscated samples, showing promising results for the user-friendly identification of drugs of abuse. In short, this paper presents a successful proof-of-concept study of a multichannel microfluidic sensor system to enrich the fingerprints of illicit drugs at pH 5 and pH 12, thus providing a low-cost, portable, and rapid identification system of illicit drugs with minimal user intervention.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001139443500001 Publication Date 2023-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201877 Serial 9024  
Permanent link to this record
 

 
Author Daems, E.; Bassini, S.; Mariën, L.; Op de Beeck, H.; Stratulat, A.; Zwaenepoel, K.; Vandamme, T.; op de Beeck, K.; Koljenovic, S.; Peeters, M.; Van Camp, G.; De Wael, K. pdf  doi
openurl 
  Title Singlet oxygen-based photoelectrochemical detection of single-point mutations in the KRAS oncogene Type University Hospital Antwerp
  Year 2023 Publication Biosensors and bioelectronics Abbreviated Journal  
  Volume 249 Issue Pages 115957-7  
  Keywords University Hospital Antwerp; A1 Journal article; Center for Oncological Research (CORE); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Medical Genetics (MEDGEN)  
  Abstract Single nucleotide point mutations in the KRAS oncogene occur frequently in human cancers, rendering them intriguing targets for diagnosis, early detection and personalized treatment. Current detection methods are based on polymerase chain reaction, sometimes combined with next-generation sequencing, which can be expensive, complex and have limited availability. Here, we propose a novel singlet oxygen (1O2)-based photoelectrochemical detection methodology for single-point mutations, using KRAS mutations as a case study. This detection method combines the use of a sandwich assay, magnetic beads and robust chemical photosensitizers, that need only air and light to produce 1O2, to ensure high specificity and sensitivity. We demonstrate that hybridization of the sandwich hybrid at high temperatures enables discrimination between mutated and wild-type sequences with a detection rate of up to 93.9%. Additionally, the presence of background DNA sequences derived from human cell-line DNA, not containing the mutation of interest, did not result in a signal, highlighting the specificity of the methodology. A limit of detection as low as 112 pM (1.25 ng/mL) was achieved without employing any amplification techniques. The developed 1O2-based photoelectrochemical methodology exhibits unique features, including rapidity, ease of use, and affordability, highlighting its immense potential in the field of nucleic acid-based diagnostics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-5663 ISBN Additional Links (down) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201875 Serial 9092  
Permanent link to this record
 

 
Author Delfino, C.L.; Hao, Y.; Martin, C.; Minoia, A.; Gopi, E.; Mali, K.S.; Van der Auweraer, M.; Geerts, Y.H.; Van Aert, S.; Lazzaroni, R.; De Feyter, S. pdf  url
doi  openurl
  Title Conformation-Dependent Monolayer and Bilayer Structures of an Alkylated TTF Derivative Revealed using STM and Molecular Modeling Type A1 Journal Article
  Year 2023 Publication The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C  
  Volume 127 Issue 47 Pages 23023-23033  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract In this study, the multi-layer self-assembled molecular network formation of an alkylated tetrathiafulvalene compound is studied at the liquid-solid interface between 1-phenyloctane and graphite. A combined theoretical/experimental approach associating force-field and quantum-chemical calculations with scanning tunnelling microscopy is used to determine the two-dimensional self-assembly beyond the monolayer, but also to further the understanding of the molecular adsorption conformation and its impact on the molecular packing within the assemblies at the monolayer and bilayer level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001111637100001 Publication Date 2023-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Financial support from the Research Foundation-Flanders (FWO G081518N, G0A3220N) and KU Leuven–Internal Funds (C14/19/079) is acknowledged. This work was in part supported by FWO and F. R. S.-FNRS under the Excellence of Science EOS program (project 30489208 and 40007495). C.M. acknowledges the financial support: Grants PID2021-128761OA-C22 and CNS2022-136052 funded by MCIN/AEI/10.13039/501100011033 by the “European Union” and SBPLY/21/180501/000127 funded by JCCM and by the EU through “Fondo Europeo de Desarollo Regional” (FEDER). Research in Mons is also supported by the Belgian National Fund for Scientific Research (FRS-FNRS) within the Consortium des Équipements de Calcul Intensif – CÉCI, under Grant 2.5020.11, and by the Walloon Region (ZENOBE Tier-1 supercomputer, under grant 1117545). Approved Most recent IF: 3.7; 2023 IF: 4.536  
  Call Number EMAT @ emat @c:irua:201671 Serial 8974  
Permanent link to this record
 

 
Author Slaets, J.; Loenders, B.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-based dry reforming of CH4: Plasma effects vs. thermal conversion Type A1 Journal Article
  Year 2024 Publication Fuel Abbreviated Journal Fuel  
  Volume 360 Issue Pages 130650  
  Keywords A1 Journal Article; Plasma kinetics Computer modelling Dry reforming of methane; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract In this work we evaluate the chemical kinetics of dry reforming of methane in warm plasmas (1000–4000 K) using modelling with a newly developed chemistry set, for a broad range of parameters (temperature, power density and CO2/CH4 ratio). We compare the model against thermodynamic equilibrium concentrations, serving as validation of the thermal chemical kinetics. Our model reveals that plasma-specific reactions (i.e., electron impact collisions) accelerate the kinetics compared to thermal conversion, rather than altering the overall kinetics pathways and intermediate products, for gas temperatures below 2000 K. For higher temperatures, the kinetics are dominated by heavy species collisions and are strictly thermal, with negligible influence of the electrons and ions on the overall kinetics. When studying the effects of different gas mixtures on the kinetics, we identify important intermediate species, side reactions and side products. The use of excess CO2 leads to H2O formation, at the expense of H2 formation, and the CO2 conversion itself is limited, only approaching full conversion near 4000 K. In contrast, full conversion of both reactants is only kinetically limited for mixtures with excess CH4, which also gives rise to the formation of C2H2, alongside syngas. Within the given parameter space, our model predicts the 30/70 ratio of CO2/CH4 to be the most optimal for syngas formation with a H2/CO ratio of 2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001138077700001 Publication Date 2023-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-2361 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor 7.4 Times cited Open Access Not_Open_Access  
  Notes This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 810182 – SCOPE ERC Synergy project), the Catalisti-ICON project BluePlasma (Project No. HBC.2022.0445), the FWO-SBO project PlasMaCatDESIGN (FWO Grant ID S001619N), the Independent Research Fund Denmark (Project No. 0217-00231B) and through long-term structural funding (Methusalem). The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. We also thank Bart Wanten, Roel Michiels, Pepijn Heirman, Claudia Verheyen, dr. Senne Van Alphen, dr. Elise Vervloessem, dr. Kevin van ’t Veer, dr. Joshua Boothroyd, dr. Omar Biondo and dr. Eduardo Morais for their expertise and feedback regarding the kinetics scheme. Approved Most recent IF: 7.4; 2024 IF: 4.601  
  Call Number PLASMANT @ plasmant @c:irua:201669 Serial 8973  
Permanent link to this record
 

 
Author Alvarez-Martin, A.; Quanico, J.; Scovacricchi, T.; Avranovich Clerici, E.; Baggerman, G.; Janssens, K. pdf  doi
openurl 
  Title Chemical mapping of the degradation of geranium lake in paint cross sections by MALDI-MSI Type A1 Journal article
  Year 2023 Publication Analytical chemistry Abbreviated Journal  
  Volume 95 Issue 49 Pages 18215-18223  
  Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS); Ecosphere  
  Abstract Matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has become a powerful method to extract spatially resolved chemical information in complex materials. This study provides the first use of MALDI-MSI to define spatial–temporal changes in oil paints. Due to the highly heterogeneous nature of oil paints, the sample preparation had to be optimized to prevent molecules from delocalizing. Here, we present a new protocol for the layer-specific analysis of oil paint cross sections achieving a lateral resolution of 10 μm and without losing ionization efficiency due to topographic effects. The efficacy of this method was investigated in oil paint samples containing a mixture of two historic organic pigments, geranium lake and lead white, a mixture often employed in the work of painter Vincent Van Gogh. This methodology not only allows for spatial visualization of the molecules responsible for the pink hue of the paint but also helps to elucidate the chemical changes behind the discoloration of paintings with this composition. The results demonstrate that this approach provides valuable molecular compositional information about the degradation pathways of pigments in specific paint layers and their interaction with the binding medium and other paint components and with light over time. Since a spatial correlation between molecular species and the visual pattern of the discoloration pattern can be made, we expect that mass spectrometry imaging will become highly relevant in future degradation studies of many more historical pigments and paints.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001142876000001 Publication Date 2023-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201644 Serial 9007  
Permanent link to this record
 

 
Author Liu, C.(T.); Alvarez-Martin, A.; Keune, K. doi  openurl
  Title Exploring benzyl alcohol derivatives and related compounds in the cleaning of oil paintings Type A1 Journal article
  Year 2023 Publication Studies in conservation Abbreviated Journal  
  Volume Issue Pages 1-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract This study examines five benzyl alcohol derivatives and three chemically similar compounds and compares them against benzyl alcohol in gelled emulsions for the removal of overpaint during cleaning of oil paintings. Comparative cleaning tests using xanthan gels, Pemulen® TR-2 gels, and neat solvent were made on overpaint on fragments of a seventeenth-century test painting. This approach demonstrated that molecular changes to a benzyl alcohol core resulted in enhanced control during the cleaning process. In some cases a benzyl alcohol derivative enabled selective removal of non-original material, when benzyl alcohol appeared to affect the original paint. Select derivatives were also tested in an area of overpaint on a sixteenth-century oil on panel painting by Jan van Scorel in the Rijksmuseum Collection through modifying the chemical activity of benzyl alcohol. Finally, two GC-MS-based methods were used to monitor benzyl alcohol retention and possible oxidation in paint layers post-treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001027641300001 Publication Date 2023-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-3630; 2047-0584 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201643 Serial 9034  
Permanent link to this record
 

 
Author Koirala, B.; Rasti, B.; Bnoulkacem, Z.; De Lima Ribeiro, A.; Madriz, Y.; Herrmann, E.; Gestels, A.; De Kerf, T.; Janssens, K.; Steenackers, G.; Gloaguen, R.; Scheunders, P. pdf  doi
openurl 
  Title An extensive multisensor hyperspectral benchmark datasets of intimate mixtures of mineral powders Type P1 Proceeding
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 5890-5893 T2 - IGARSS 2023 - 2023 IEEE Internation  
  Keywords P1 Proceeding; Vision lab; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Since many materials behave as heterogeneous intimate mixtures with which each photon interacts differently, the relationship between spectral reflectance and material composition is very complex. Quantitative validation of spectral unmixing algorithms requires high-quality ground truth fractional abundance data, which are very difficult to obtain.In this work, we generated a comprehensive hyperspectral dataset of intimate mineral powder mixtures by homogeneously mixing five different clay powders (Kaolin, Roof clay, Red clay, mixed clay, and Calcium hydroxide). In total 325 samples were prepared. Among the 325 samples, 60 mixtures were binary, 150 were ternary, 100 were quaternary, and 15 were quinary. For each mixture (and pure clay powder), reflectance spectra are acquired by 13 different sensors, with a broad wavelength range between the visible and the long-wavelength infrared regions (i.e., between 350 nm and 15385 nm) and with a large variation in sensor types, platforms, and acquisition conditions. We will make this dataset public, to be used by the community for the validation of nonlinear unmixing methodologies (https://github.com/VisionlabUA/Multisensor_datasets)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 979-83-503-2010-7 ISBN Additional Links (down) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201596 Serial 9035  
Permanent link to this record
 

 
Author Gao, J.; Huang, W.; Gielis, J.; Shi, P. url  doi
isbn  openurl
  Title Plant morphology and function, geometric morphometrics, and modelling : decoding the mathematical secrets of plants Type ME3 Book as editor
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 224 p.  
  Keywords ME3 Book as editor; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Delve into the diverse aspects of plant morphology, their responses to global climate change, and the spatiotemporal dynamics of forest productivity. Join us on a journey through the intricate web of plant characteristics and their impact on the environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-0365-9422-4; 978-3-0365-9423-1 Additional Links (down) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201545 Serial 9073  
Permanent link to this record
 

 
Author Xu, W. openurl 
  Title Plasma-catalytic DRM : study of LDH derived catalyst for DRM in a GAP plasma system Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 350 p.  
  Keywords Doctoral thesis; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma is considered one of the promising technologies to solve greenhouse gas problems, as it can activate CO2 and CH4 at relatively low temperatures. Among the various types of plasmas, the gliding arc plasmatron (GAP) is promising, as it has a high level of non-equilibrium and high electron density. Nevertheless, the conversion of CO2 and CH4 in the GAP reactor is limited. Therefore, combining the GAP reactor with catalysts and making use of the heat produced by the plasma to provide thermal energy to the catalyst, forming a post-plasma catalytic (PPC) system, is hypothesized to improve its performance. Therefore, in this PhD research, we investigate important aspects of the PPC concept towards the use of the heat produced by GAP plasma to heat the plasma bed, without additional energy input. Aiming at this, based on a literature study (chapter 1), Ni-loaded layered double hydroxide (LDH) derived catalyst with good thermal catalytic DRM performance were chosen as the catalyst material. Before applying the LDH as a support material, the rehydration property of calcined LDH in moist and liquid environment was studied as part of chapter 2. The data indicated that after high temperatures calcination (600-900 C), the obtained layered double oxides (LDOs) can rehydrate into LDH, although, the rehydrated LDH were different from the original LDH. In chapter 3, different operating conditions, such as gas flow rate, gas compositions (e.g. CH4/CO2 ratio and nitrogen dilution), and addition of H2O were studied to investigate optimal conditions for PPC DRM, identifying possible differences in temperature profiles and exhaust gas compositions that might influence the catalytic performance. Subsequently, the impact of different PPC configurations, making use of the heat and exhaust gas composition produced by the GAP plasma, is shown in Chapter 4. Experiments studying the impact of adjusting the catalyst bed distance to the post-plasma, the catalyst amount, the influence of external heating (below 250 C) and the addition of H2O are discussed. As only limited improvement in the performance was achieved, a new type of catalyst bed was designed and utilized, as described in chapter 5. This improved configuration can realize better heat and mass transfer by directly connecting to the GAP device. The performance was improved and became comparable to the traditional thermal catalytic DRM results obtained at 800 C, although obtained by a fully electrically driven plasma.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (down) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201534 Serial 9074  
Permanent link to this record
 

 
Author Le Compte, M.; Cardenas De La Hoz, E.; Peeters, S.; Rodrigues Fortes, F.; Hermans, C.; Domen, A.; Smits, E.; Lardon, F.; Vandamme, T.; Lin, A.; Vanlanduit, S.; Roeyen, G.; van Laere, S.; Prenen, H.; Peeters, M.; Deben, C. url  doi
openurl 
  Title Single-organoid analysis reveals clinically relevant treatment-resistant and invasive subclones in pancreatic cancer Type A1 Journal article
  Year 2023 Publication npj Precision Oncology Abbreviated Journal  
  Volume 7 Issue 1 Pages 128-14  
  Keywords A1 Journal article; Center for Oncological Research (CORE); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC)  
  Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases, characterized by a treatment-resistant and invasive nature. In line with these inherent aggressive characteristics, only a subset of patients shows a clinical response to the standard of care therapies, thereby highlighting the need for a more personalized treatment approach. In this study, we comprehensively unraveled the intra-patient response heterogeneity and intrinsic aggressive nature of PDAC on bulk and single-organoid resolution. We leveraged a fully characterized PDAC organoid panel ( N  = 8) and matched our artificial intelligence-driven, live-cell organoid image analysis with retrospective clinical patient response. In line with the clinical outcomes, we identified patient-specific sensitivities to the standard of care therapies (gemcitabine-paclitaxel and FOLFIRINOX) using a growth rate-based and normalized drug response metric. Moreover, the single-organoid analysis was able to detect resistant as well as invasive PDAC organoid clones, which was orchestrates on a patient, therapy, drug, concentration and time-specific level. Furthermore, our in vitro organoid analysis indicated a correlation with the matched patient progression-free survival (PFS) compared to the current, conventional drug response readouts. This work not only provides valuable insights on the response complexity in PDAC, but it also highlights the potential applications (extendable to other tumor types) and clinical translatability of our approach in drug discovery and the emerging era of personalized medicine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001118015800001 Publication Date 2023-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-768x ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201455 Serial 9091  
Permanent link to this record
 

 
Author Bekaert, J. pdf  doi
openurl 
  Title Phonon-mediated superconductivity in ternary silicides X₄ CoSi (X = Nb, Ta) Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 13 Pages 134504-134507  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The superconducting properties of two recently synthesized ternary silicides with unit formula X<sub>4</sub>CoSi (X = Nb, Ta) are investigated through ab initio calculations combined with Eliashberg theory. Interestingly, their crystal structure comprises interlocking honeycomb networks of Nb/Ta atoms. Nb<sub>4</sub>CoSi is found to harbor better conditions for phonon-mediated superconductivity, as it possesses a higher density of states at the Fermi level, fostering stronger electron-phonon coupling. The superconducting critical temperatures (T<sub>c</sub>) follow the same trend, with Nb<sub>4</sub>CoSi having a twice higher value than Ta<sub>4</sub>CoSi. Furthermore, the calculated T<sub>c</sub> values (5.9 K vs 3.1 K) agree excellently with the experimentally obtained ones, establishing superconductivity in this new materials class as mediated by the electron-phonon coupling. Furthermore, my calculations show that the superconducting properties of these compounds do not simply correlate with the parameters of their honeycomb networks, contrary to proposals raised in the literature. Rather, their complete fermiology and phonon spectrum should be taken into account in order to explain their respective superconducting properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001140080300003 Publication Date 2023-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201445 Serial 9071  
Permanent link to this record
 

 
Author Voordeckers, D.; Lauriks, T.; Baetens, D.; Ysebaert, T.; Denys, S.; Billen, P.; Tytgat, T.; Van Acker, M. pdf  doi
openurl 
  Title Numerical study on the impact of traffic lane adjustments and low boundary walls on pedestrian exposure to NO2 in street canyons Type A1 Journal article
  Year 2023 Publication Landscape and urban planning Abbreviated Journal  
  Volume 243 Issue Pages 104974-13  
  Keywords A1 Journal article; Economics; Law; Engineering sciences. Technology; Art; Sustainable Energy, Air and Water Technology (DuEL); Research Group for Urban Development; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS); Research Group for Urban Development; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Mitigating the adverse effects of air pollution, especially on human health, is one of the greater contemporary challenges for cities. Street canyons have herein been identified as bottleneck areas in urbanized environments. Focusing on the necessity of fast-response interventions, strategies to control source-receptor pathways (e.g. implementing low boundary walls (LBWs)) are gaining interest. A potential strategy which is greatly overlooked is the adjustment (reduction or displacement) of traffic lanes in order to increase the distance between source (traffic) and recipient (pedestrians). Within our study, computation fluid dynamics (CFD) is used to simulate the impact of alternations to traffic lanes (whether or not combined with LBWs) on the pedestrian exposure to NO2 for a specific case-study (Belgie center dot lei, Antwerp) under two prevailing wind directions. The average differences in NO2 concentrations for the entire pedestrian area ranged between +1.0 % to-3.6 %. On specific locations, reduction up to-8.0 % were reached. In case of perpendicular winds, a lateral displacement of all traffic lanes towards the windward facade including LBWs was found most beneficial to reduce pedestrian exposure. LBWs also showed to be efficient in reducing potential adverse effects of lane displacement under less frequent wind directions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001134403700001 Publication Date 2023-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-2046 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201400 Serial 9065  
Permanent link to this record
 

 
Author Peeters, H. openurl 
  Title Solar active photocatalytic self-cleaning coatings based on plasmon-embedded titania Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages XX, 125 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (down) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201390 Serial 9093  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: