toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Pankratov, D.; Hidalgo Martinez, S.; Karman, C.; Gerzhik, A.; Gomila, G.; Trashin, S.; Boschker, H.T.S.; Geelhoed, J.S.; Mayer, D.; De Wael, K.; Meysman, F.J.R. url  doi
openurl 
  Title The organo-metal-like nature of long-range conduction in cable bacteria Type A1 Journal article
  Year (down) 2024 Publication Bioelectrochemistry: an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry Abbreviated Journal  
  Volume 157 Issue Pages 108675-10  
  Keywords A1 Journal article  
  Abstract Cable bacteria are filamentous, multicellular microorganisms that display an exceptional form of biological electron transport across centimeter-scale distances. Currents are guided through a network of nickel-containing protein fibers within the cell envelope. Still, the mechanism of long-range conduction remains unresolved. Here, we characterize the conductance of the fiber network under dry and wet, physiologically relevant, conditions. Our data reveal that the fiber conductivity is high (median value: 27 S cm−1; range: 2 to 564 S cm−1), does not show any redox signature, has a low thermal activation energy (Ea = 69 ± 23 meV), and is not affected by humidity or the presence of ions. These features set the nickel-based conduction mechanism in cable bacteria apart from other known forms of biological electron transport. As such, conduction resembles that of an organic semi-metal with a high charge carrier density. Our observation that biochemistry can synthesize an organo-metal-like structure opens the way for novel bio-based electronic technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1567-5394 ISBN Additional Links UA library record  
  Impact Factor 5 Times cited Open Access  
  Notes Approved Most recent IF: 5; 2024 IF: 3.346  
  Call Number UA @ admin @ c:irua:205117 Serial 9215  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: