toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yang, M.; Orekhov, A.; Hu, Z.-Y.; Feng, M.; Jin, S.; Sha, G.; Li, K.; Samaee, V.; Song, M.; Du, Y.; Van Tendeloo, G.; Schryvers, D. pdf  url
doi  openurl
  Title Shearing and rotation of β'' and β' precipitates in an Al-Mg-Si alloy under tensile deformation : in-situ and ex-situ studies Type A1 Journal article
  Year 2021 Publication Acta Materialia Abbreviated Journal Acta Mater  
  Volume 220 Issue Pages 117310  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The interaction between dislocations and nano-precipitates during deformation directly influences hardening response of precipitation-strengthening metals such as Al-Mg-Si alloys. However, how coherent and semi-coherent nano-precipitates accommodate external deformation applied to an Al alloy remains to be elucidated. In-situ tensile experiments in a transmission electron microscope (TEM) were conducted to study the dynamic process of dislocations cutting through coherent needle-like beta '' precipitates with diameters of 3 similar to 8 nm. Comprehensive investigations using in-situ, ex-situ TEM and atom probe tomography uncovered that beta '' precipitates were firstly sheared into small fragments, and then the rotation of the fragments, via sliding along precipitate/matrix interfaces, destroyed their initially coherent interface with the Al matrix. In contrast, semi-coherent beta' precipitates with sizes similar to beta '' were more difficult to be fragmented and accumulation of dislocations at the interface increased interface misfit between beta' and the Al matrix. Consequently, beta' precipitates could basically maintain their needle-like shape after the tensile deformation. This research gains new insights into the interaction between nano-precipitates and dislocations. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000705535300005 Publication Date 2021-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.301  
  Call Number UA @ admin @ c:irua:182528 Serial 6884  
Permanent link to this record
 

 
Author Scolfaro, D.; Finamor, M.; Trinchao, L.O.; Rosa, B.L.T.; Chaves, A.; Santos, P., V.; Iikawa, F.; Couto, O.D.D., Jr. url  doi
openurl 
  Title Acoustically driven stark effect in transition metal dichalcogenide monolayers Type A1 Journal article
  Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 15 Issue 9 Pages 15371-15380  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The Stark effect is one of the most efficient mechanisms to manipulate many-body states in nanostructured systems. In mono- and few-layer transition metal dichalcogenides, it has been successfully induced by optical and electric field means. Here, we tune the optical emission energies and dissociate excitonic states in MoSe2 monolayers employing the 220 MHz in-plane piezoelectric field carried by surface acoustic waves. We transfer the monolayers to high dielectric constant piezoelectric substrates, where the neutral exciton binding energy is reduced, allowing us to efficiently quench (above 90%) and red-shift the excitonic optical emissions. A model for the acoustically induced Stark effect yields neutral exciton and trion in-plane polarizabilities of 530 and 630 x 10(-5) meV/(kV/cm)(2), respectively, which are considerably larger than those reported for monolayers encapsulated in hexagonal boron nitride. Large in-plane polarizabilities are an attractive ingredient to manipulate and modulate multiexciton interactions in two-dimensional semiconductor nanostructures for optoelectronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000703553600129 Publication Date 2021-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:182545 Serial 7415  
Permanent link to this record
 

 
Author Chernozem, R., V; Romanyuk, K.N.; Grubova, I.; Chernozem, P., V.; Surmeneva, M.A.; Mukhortova, Y.R.; Wilhelm, M.; Ludwig, T.; Mathur, S.; Kholkin, A.L.; Neyts, E.; Parakhonskiy, B.; Skirtach, A.G.; Surmenev, R.A. pdf  doi
openurl 
  Title Enhanced piezoresponse and surface electric potential of hybrid biodegradable polyhydroxybutyrate scaffolds functionalized with reduced graphene oxide for tissue engineering Type A1 Journal article
  Year 2021 Publication Nano Energy Abbreviated Journal Nano Energy  
  Volume 89 Issue B Pages 106473  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Piezoelectricity is considered to be one of the key functionalities in biomaterials to boost bone tissue regeneration, however, integrating biocompatibility, biodegradability and 3D structure with pronounced piezoresponse remains a material challenge. Herein, novel hybrid biocompatible 3D scaffolds based on biodegradable poly(3-hydroxybutyrate) (PHB) and reduced graphene oxide (rGO) flakes have been developed. Nanoscale insights revealed a more homogenous distribution and superior surface potential values of PHB fibers (33 +/- 29 mV) with increasing rGO content up to 1.0 wt% (314 +/- 31 mV). The maximum effective piezoresponse was detected at 0.7 wt% rGO content, demonstrating 2.5 and 1.7 times higher out-of-plane and in-plane values, respectively, than that for pure PHB fibers. The rGO addition led to enhanced zigzag chain formation between paired lamellae in PHB fibers. In contrast, a further increase in rGO content reduced the alpha-crystal size and prevented zigzag chain conformation. A corresponding model explaining structural and molecular changes caused by rGO addition in electrospun PHB fibers is proposed. In addition, finite element analysis revealed a negligible vertical piezoresponse compared to lateral piezoresponse in uniaxially oriented PHB fibers based on alpha-phase (P2(1)2(1)2(1) space group). Thus, the present study demonstrates promising results for the development of biodegradable hybrid 3D scaffolds with an enhanced piezoresponse for various tissue engineering applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000703592700002 Publication Date 2021-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-2855 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.343 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 12.343  
  Call Number UA @ admin @ c:irua:182579 Serial 7914  
Permanent link to this record
 

 
Author Mallick, S.; Khalsa, G.; Kaaret, J.Z.; Zhang, W.; Batuk, M.; Gibbs, A.S.; Hadermann, J.; Halasyamani, P.S.; Benedek, N.A.; Hayward, M.A. url  doi
openurl 
  Title The influence of the 6s² configuration of Bi³+ on the structures of A ' BiNb₂O₇ (A ' = Rb, Na, Li) layered perovskite oxides Type A1 Journal article
  Year 2021 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal  
  Volume 50 Issue 42 Pages 15359-15369  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Solid state compounds which exhibit non-centrosymmetric crystal structures are of great interest due to the physical properties they can exhibit. The 'hybrid improper' mechanism – in which two non-polar distortion modes couple to, and stabilize, a further polar distortion mode, yielding an acentric crystal structure – offers opportunities to prepare a range of novel non-centrosymmetric solids, but examples of compounds exhibiting acentric crystal structures stabilized by this mechanism are still relatively rare. Here we describe a series of bismuth-containing layered perovskite oxide phases, RbBiNb2O7, LiBiNb2O7 and NaBiNb2O7, which have structural frameworks compatible with hybrid-improper ferroelectricity, but also contain Bi3+ cations which are often observed to stabilize acentric crystal structures due to their 6s(2) electronic configurations. Neutron powder diffraction analysis reveals that RbBiNb2O7 and LiBiNb2O7 adopt polar crystal structures (space groups I2cm and B2cm respectively), compatible with stabilization by a trilinear coupling of non-polar and polar modes. The Bi3+ cations present are observed to enhance the magnitude of the polar distortions of these phases, but are not the primary driver for the acentric structure, as evidenced by the observation that replacing the Bi3+ cations with Nd3+ cations does not change the structural symmetry of the compounds. In contrast the non-centrosymmetric, but non-polar structure of NaBiNb2O7 (space group P2(1)2(1)2(1)) differs significantly from the centrosymmetric structure of NaNdNb2O7, which is attributed to a second-order Jahn-Teller distortion associated with the presence of the Bi3+ cations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000706651100001 Publication Date 2021-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9234 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182584 Serial 6893  
Permanent link to this record
 

 
Author Baral, P.; Orekhov, A.; Dohmen, R.; Coulombier, M.; Raskin, J.P.; Cordier, P.; Idrissi, H.; Pardoen, T. url  doi
openurl 
  Title Rheology of amorphous olivine thin films characterized by nanoindentation Type A1 Journal article
  Year 2021 Publication Acta Materialia Abbreviated Journal Acta Mater  
  Volume 219 Issue Pages 117257  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The rheological properties of amorphous olivine thin films deposited by pulsed laser deposition have been studied based on ambient temperature nanoindentation under constant strain-rate as well as re-laxation conditions. The amorphous olivine films exhibit a viscoelastic-viscoplastic behavior with a significant rate dependency. The strain-rate sensitivity m is equal to similar to 0 . 05 which is very high for silicates, indicating a complex out-of-equilibrium structure. The minimum apparent activation volume determined from nanoindentation experiments corresponds to Mg and Fe atomic metallic sites in the (Mg,Fe)(2)SiO4 crystalline lattice. The ambient temperature creep behavior of the amorphous olivine films differs very much from the one of single crystal olivine. This behavior directly connects to the recent demonstration of the activation of grain boundary sliding in polycrystalline olivine following grain boundary amorphization under high-stress. (C) 2021 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000706867800004 Publication Date 2021-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.301  
  Call Number UA @ admin @ c:irua:182592 Serial 6882  
Permanent link to this record
 

 
Author van Thiel, T. c.; Brzezicki, W.; Autieri, C.; Hortensius, J. r.; Afanasiev, D.; Gauquelin, N.; Jannis, D.; Janssen, N.; Groenendijk, D. j.; Fatermans, J.; Van Aert, S.; Verbeeck, J.; Cuoco, M.; Caviglia, A. d. url  doi
openurl 
  Title Coupling Charge and Topological Reconstructions at Polar Oxide Interfaces Type A1 Journal article
  Year 2021 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett  
  Volume 127 Issue 12 Pages 127202  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In oxide heterostructures, different materials are integrated into a single artificial crystal, resulting in a breaking of inversion symmetry across the heterointerfaces. A notable example is the interface between polar and nonpolar materials, where valence discontinuities lead to otherwise inaccessible charge and spin states. This approach paved the way for the discovery of numerous unconventional properties absent in the bulk constituents. However, control of the geometric structure of the electronic wave functions in correlated oxides remains an open challenge. Here, we create heterostructures consisting of ultrathin SrRuO3, an itinerant ferromagnet hosting momentum-space sources of Berry curvature, and

LaAlO3, a polar wide-band-gap insulator. Transmission electron microscopy reveals an atomically sharp LaO/RuO2/SrO interface configuration, leading to excess charge being pinned near the LaAlO3/SrRuO3 interface. We demonstrate through magneto-optical characterization, theoretical calculations and transport measurements that the real-space charge reconstruction drives a reorganization of the topological charges in the band structure, thereby modifying the momentum-space Berry curvature in SrRuO3. Our results illustrate how the topological and magnetic features of oxides can be manipulated by engineering charge discontinuities at oxide interfaces.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704665000010 Publication Date 2021-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 17 Open Access OpenAccess  
  Notes The authors thank E. Lesne, M. Lee, H. Barakov, M. Matthiesen and U. Filippozzi for discussions. The authors are grateful to E.J.S. van Thiel for producing the illustration in Fig. 4a. This work was supported by the European Research Council under the European Unions Horizon 2020 programme/ERC Grant agreements No. [677458], [770887] and No. [731473] (Quantox of QuantERA ERA-NET Cofund in Quantum Technologies) and by the Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience (NanoFront) and VIDI program. The authors acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. [823717] – ESTEEM3. N. G., J. V., and S. V. A. acknowledge funding from the University of Antwerp through the Concerted Research Actions (GOA) project Solarpaint and the TOP project. C. A. and W. B. are supported by the Foundation for Polish Science through the International Research Agendas program co-financed by the European Union within the Smart Growth Operational Programme. C. A. acknowledges access to the computing facilities of the Interdisciplinary Center of Modeling at the University of Warsaw, Grant No. G73-23 and G75-10. W.B. acknowledges support from the Narodowe Centrum Nauk (NCN, National Science Centre, Poland) Project No. 2019/34/E/ST3/00404'; esteem3TA; esteem3reported Approved Most recent IF: 8.462  
  Call Number EMAT @ emat @c:irua:182595 Serial 6824  
Permanent link to this record
 

 
Author Chen, Q.; Guo, A.-M.; Liu, J.; Peeters, F.M.; Sun, Q.-F. url  doi
openurl 
  Title Topological phase transitions and Majorana zero modes in DNA double helix coupled to s-wave superconductors Type A1 Journal article
  Year 2021 Publication New Journal Of Physics Abbreviated Journal New J Phys  
  Volume 23 Issue 9 Pages 093047  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Topological properties of a double-stranded DNA (dsDNA) proximity-coupled by an s-wave superconductor are investigated, in which the energy spectra and the differential conductance are calculated within the framework of tight-binding approximation. Our results indicate that this dsDNA-superconductor system hosts Majorana zero modes (MZMs) when the Zeeman field is perpendicular to the helix axis, whereas no MZM could be observed when the Zeeman field is parallel to the helix axis, in sharp contrast to previous studies on nanowires including single-stranded DNA. In particular, two topological phase transitions could take place in the dsDNA-superconductor system by changing the Zeeman field, one from a topological trivial phase to a topological nontrivial phase with one pair of MZMs in small Zeeman field regime, and the other from a phase with one pair of MZMs to a phase with two pairs of MZMs by further increasing the Zeeman field. In the presence of a gate field normal to the helix axis, the topological nontrivial phase with two pairs of MZMs can transform into the phase with one pair of MZMs. The topological phase with one pair of MZMs is more stable and robust against Anderson disorder.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000702122000001 Publication Date 2021-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 4 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.786  
  Call Number UA @ admin @ c:irua:182597 Serial 7033  
Permanent link to this record
 

 
Author Van Loenhout, J.; Freire Boullosa, L.; Quatannens, D.; De Waele, J.; Merlin, C.; Lambrechts, H.; Lau, H.W.; Hermans, C.; Lin, A.; Lardon, F.; Peeters, M.; Bogaerts, A.; Smits, E.; Deben, C. url  doi
openurl 
  Title Auranofin and Cold Atmospheric Plasma Synergize to Trigger Distinct Cell Death Mechanisms and Immunogenic Responses in Glioblastoma Type A1 Journal Article;oxidative stress
  Year 2021 Publication Cells Abbreviated Journal Cells  
  Volume 10 Issue 11 Pages 2936  
  Keywords A1 Journal Article;oxidative stress; auranofin; cold atmospheric plasma; glioblastoma; cancer cell death; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Targeting the redox balance of malignant cells via the delivery of high oxidative stress unlocks a potential therapeutic strategy against glioblastoma (GBM). We investigated a novel reactive oxygen species (ROS)-inducing combination treatment strategy, by increasing exogenous ROS via cold atmospheric plasma and inhibiting the endogenous protective antioxidant system via auranofin (AF), a thioredoxin reductase 1 (TrxR) inhibitor. The sequential combination treatment of AF and cold atmospheric plasma-treated PBS (pPBS), or AF and direct plasma application, resulted in a synergistic response in 2D and 3D GBM cell cultures, respectively. Differences in the baseline protein levels related to the antioxidant systems explained the cell-line-dependent sensitivity towards the combination treatment. The highest decrease of TrxR activity and GSH levels was observed after combination treatment of AF and pPBS when compared to AF and pPBS monotherapies. This combination also led to the highest accumulation of intracellular ROS. We confirmed a ROS-mediated response to the combination of AF and pPBS, which was able to induce distinct cell death mechanisms. On the one hand, an increase in caspase-3/7 activity, with an increase in the proportion of annexin V positive cells, indicates the induction of apoptosis in the GBM cells. On the other hand, lipid peroxidation and inhibition of cell death through an iron chelator suggest the involvement of ferroptosis in the GBM cell lines. Both cell death mechanisms induced by the combination of AF and pPBS resulted in a significant increase in danger signals (ecto-calreticulin, ATP and HMGB1) and dendritic cell maturation, indicating a potential increase in immunogenicity, although the phagocytotic capacity of dendritic cells was inhibited by AF. In vivo, sequential combination treatment of AF and cold atmospheric plasma both reduced tumor growth kinetics and prolonged survival in GBM-bearing mice. Thus, our study provides a novel therapeutic strategy for GBM to enhance the efficacy of oxidative stress-inducing therapy through a combination of AF and cold atmospheric plasma.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000807134000001 Publication Date 2021-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4409 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Olivia Hendrickx Research Fund, 21OCL06 ; University of Antwerp, FFB160231 ; The authors would express their gratitude to Hans de Reu for technical assistance with flow cytometry. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:182915 Serial 6826  
Permanent link to this record
 

 
Author Blidar, A.-M. url  openurl
  Title The development of sensitive and selective electrochemical methods for the detection of antibiotics Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 139 p.  
  Keywords Doctoral thesis; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The discovery of antibiotics represented one of the greatest breakthroughs in medicine. Their success combined with an increasing intensive use is apparently bound to be also their undoing. This is due to the development of acquired antibiotic resistance, leading to inefficient antibiotherapy and even to the impossibility of treatment and death. The development and spread of antibiotic resistance are fueled by the widespread presence of trace levels of antibiotics residue, in various media, from environment to aliments. One of the solutions is the rigorous monitoring of the levels of antibiotics, which in term requires an almost constant development of new, more accessible analytical methods, especially screening methods, capable of decentralized analysis. In this direction, the electrochemical detection of antibiotics represents a very viable alternative. In this context, the aim of this thesis was to develop new electrochemical methods for the detection of antibiotics by employing and expanding on several strategies, like biomimetic sensors and electrochemical fingerprinting. Five studies were described in this thesis, that can be roughly divided in three categories, based on the analytical strategy employed. The first group is represented by direct electrochemical methods. The second group focuses on the use of biomimetic elements, molecularly imprinted polymers and aptamers. The hyphenation of electrochemical methods with other analytical methods was explored in the last group. In the last study, included in this group, the singlet oxygen-based photoelectrochemical approach was used for the detection of a phenolic antibiotic, rifampicin. The originality of the thesis consists in the testing and development of new approaches to various strategies used in electrochemical detection, revealing new insights in the field of electrochemical detection of antibiotics. The complex electrochemical fingerprint and the mechanism of the electrochemical oxidation were created and investigated, respectively, for the antibiotic vancomycin. New sensitive nanoplatforms were prepared by employing and combining new protocols. Additionally, important contributions were brought through the study involving the singlet oxygen-based detection of rifampicin. We demonstrated how a photocatalyst can exhibit analyte selectivity by strongly interacting with a complex phenolic compound, rifampicin. Summing up, the studies presented in this thesis will have an important impact in the field of electrochemical detection of antibiotics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (up) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182955 Serial 7804  
Permanent link to this record
 

 
Author Lavor, I.R.; Chaves, A.; Peeters, F.M.; Van Duppen, B. pdf  url
doi  openurl
  Title Tunable coupling of terahertz Dirac plasmons and phonons in transition metal dichalcogenide-based van der Waals heterostructures Type A1 Journal article
  Year 2021 Publication 2d Materials Abbreviated Journal 2D Mater  
  Volume Issue Pages 015018  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Dirac plasmons in graphene hybridize with phonons of transition metal dichalcogenides (TMDs) when the materials are combined in so-called van der Waals heterostructures (vdWh), thus forming surface plasmon-phonon polaritons (SPPPs). The extend to which these modes are coupled depends on the TMD composition and structure, but also on the plasmons' properties. By performing realistic simulations that account for the contribution of each layer of the vdWh separately, we calculate how the strength of plasmon-phonon coupling depends on the number and composition of TMD layers, on the graphene Fermi energy and the specific phonon mode. From this, we present a semiclassical theory that is capable of capturing all relevant characteristics of the SPPPs. We find that it is possible to realize both strong and ultra-strong coupling regimes by tuning graphene's Fermi energy and changing TMD layer number.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000722020100001 Publication Date 2021-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links (up) UA library record; WoS full record  
  Impact Factor 6.937 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:183053 Serial 7036  
Permanent link to this record
 

 
Author Parrilla, M.; Vanhooydonck, A.; Watts, R.; De Wael, K. pdf  url
doi  openurl
  Title Wearable wristband-based electrochemical sensor for the detection of phenylalanine in biofluids Type A1 Journal article
  Year 2022 Publication Biosensors and bioelectronics Abbreviated Journal  
  Volume 197 Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Product development; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Wearable electrochemical sensors are driven by the user-friendly capability of on-site detection of key biomarkers for health management. Despite the advances in biomolecule monitoring such as glucose, still, several unmet clinical challenges need to be addressed. For example, patients suffering from phenylketonuria (PKU) should be able to monitor their phenylalanine (PHE) level in a rapid, decentralized, and affordable manner to avoid high levels of PHE in the body which can lead to a profound and irreversible mental disability. Herein, we report a wearable wristband electrochemical sensor for the monitoring of PHE tackling the necessity of controlling PHE levels in PHE hydroxylase deficiency patients. The proposed electrochemical sensor is based on a screen-printed electrode (SPE) modified with a membrane consisting of Nafion, to avoid interferences in biofluids. The membrane also consists of sodium 1,2-naphthoquinone-4-sulphonate for the in situ derivatization of PHE into an electroactive product, allowing its electrochemical oxidation at the surface of the SPE in alkaline conditions. Importantly, the electrochemical sensor is integrated into a wristband configuration to enhance user interaction and engage the patient with PHE self-monitoring. Besides, a paper-based sampling strategy is designed to alkalinize the real sample without the need for sample pretreatment, and thus simplify the analytical process. Finally, the wearable device is tested for the determination of PHE in saliva and blood serum. The proposed wristband-based sensor is expected to impact the PKU self-monitoring, facilitating the daily lives of PKU patients toward optimal therapy and disease management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000719366400003 Publication Date 2021-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-5663 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:183086 Serial 8957  
Permanent link to this record
 

 
Author Drăgan, A.-M.; Parrilla, M.; Feier, B.; Oprean, R.; Cristea, C.; De Wael, K. pdf  url
doi  openurl
  Title Analytical techniques for the detection of amphetamine-type substances in different matrices : a comprehensive review Type A1 Journal article
  Year 2021 Publication Trac-Trends In Analytical Chemistry Abbreviated Journal Trac-Trend Anal Chem  
  Volume 145 Issue Pages 116447  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract This current review focuses on contributions to amphetamine-type substances (ATS) analysis. This type of synthetic illicit drugs has been increasingly present worldwide reaching 5% of the market on illicit drugs in 2019. The increment of their production in many clandestine laboratories and easy distribution among society are two of the main concerns towards the battle against synthetic drugs. Therefore, the first part of this review details the classification and mechanism of action of ATS in the human body. Second, the pharmacological and toxicological effects of ATS on human health are described to motivate the need of early detection of ATS. Subsequently, the most used laboratory-based and portable methods are presented and critically discussed along the review. Finally, a careful discussion on the advantages and disadvantages of portable techniques employed on the field are addressed as potential tools for on-site ATS detection by law enforcement officers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000723747000009 Publication Date 2021-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-9936; 1879-3142 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.442 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.442  
  Call Number UA @ admin @ c:irua:183268 Serial 7460  
Permanent link to this record
 

 
Author Dingenen, F.; Blommaerts, N.; Van Hal, M.; Borah, R.; Arenas-Esteban, D.; Lenaerts, S.; Bals, S.; Verbruggen, S.W. url  doi
openurl 
  Title Layer-by-Layer-Stabilized Plasmonic Gold-Silver Nanoparticles on TiO2: Towards Stable Solar Active Photocatalysts Type A1 Journal article
  Year 2021 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 11 Issue 10 Pages 2624  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract To broaden the activity window of TiO2, a broadband plasmonic photocatalyst has been designed and optimized. This plasmonic ‘rainbow’ photocatalyst consists of TiO2 modified with gold–silver composite nanoparticles of various sizes and compositions, thus inducing a broadband interaction with polychromatic solar light. However, these nanoparticles are inherently unstable, especially due to the use of silver. Hence, in this study the application of the layer-by-layer technique is introduced to create a protective polymer shell around the metal cores with a very high degree of control. Various TiO2 species (pure anatase, PC500, and P25) were loaded with different plasmonic metal loadings (0–2 wt %) in order to identify the most solar active composite materials. The prepared plasmonic photocatalysts were tested towards stearic acid degradation under simulated sunlight. From all materials tested, P25 + 2 wt % of plasmonic ‘rainbow’ nanoparticles proved to be the most promising (56% more efficient compared to pristine P25) and was also identified as the most cost-effective. Further, 2 wt % of layer-by-layer-stabilized ‘rainbow’ nanoparticles were loaded on P25. These layer-by-layer-stabilized metals showed superior stability under a heated oxidative atmosphere, as well as in a salt solution. Finally, the activity of the composite was almost completely retained after 1 month of aging, while the nonstabilized equivalent lost 34% of its initial activity. This work shows for the first time the synergetic application of a plasmonic ‘rainbow’ concept and the layer-by-layer stabilization technique, resulting in a promising solar active, and long-term stable photocatalyst.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000712759800001 Publication Date 2021-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.553 Times cited 7 Open Access OpenAccess  
  Notes Research was funded by Research Foundation—Flanders (FWO), FN 700300001— Aspirant F. Dingenen. Approved Most recent IF: 3.553  
  Call Number EMAT @ emat @c:irua:183281 Serial 6812  
Permanent link to this record
 

 
Author Van Tendeloo, M.; Bundervoet, B.; Carlier, N.; Van Beeck, W.; Mollen, H.; Lebeer, S.; Colsen, J.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Piloting carbon-lean nitrogen removal for energy-autonomous sewage treatment Type A1 Journal article
  Year 2021 Publication Environmental Science-Water Research & Technology Abbreviated Journal Environ Sci-Wat Res  
  Volume 7 Issue 12 Pages 2268-2281  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Energy-autonomous sewage treatment can be achieved if nitrogen (N) removal does not rely on organic carbon (∼chemical oxygen demand, COD), so that a maximum of the COD can be redirected to energy recovery. Shortcut N removal technologies such as partial nitritation/anammox and nitritation/denitritation are therefore essential, enabling carbon- and energy-lean nitrogen removal. In this study, a novel three-reactor pilot design was tested and consisted of a denitrification, an intermittent aeration, and an anammox tank. A vibrating sieve was added for differential sludge retention time (SRT) control. The 13 m3 pilot was operated on pre-treated sewage (A-stage effluent) at 12–24 °C. Selective suppression of unwanted nitrite-oxidizing bacteria over aerobic ammonium-oxidizing bacteria was achieved with strict floccular SRT management combined with innovative aeration control, resulting in a minimal nitrate production ratio of 17 ± 10%. Additionally, anoxic ammonium-oxidizing bacteria (AnAOB) activity could be maintained in the reactor for at least 150 days because of long granular SRT management and the anammox tank. Consequently, the COD/N removal ratio of 2.3 ± 0.7 demonstrated shortcut N removal almost three times lower than the currently applied nitrification/denitrification technology. The effluent total N concentrations of 17 ± 3 mg TN per L (at 21 ± 1 °C) and 17 ± 6 mg TN per L (at 15 ± 1 °C) were however too high for application at the sewage treatment plant Nieuwveer (Breda, The Netherlands). Corresponding N removal efficiencies were 52 ± 12% and 37 ± 21%, respectively. Further development should focus on redirecting more nitrite to AnAOB in the B-stage, exploring effluent-polishing options, or cycling nitrate for increased A-stage denitrification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000714159900001 Publication Date 2021-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1400 ISBN Additional Links (up) UA library record; WoS full record  
  Impact Factor 2.817 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.817  
  Call Number UA @ admin @ c:irua:183347 Serial 8383  
Permanent link to this record
 

 
Author Peeters, M. openurl 
  Title The added value of Smart Product-Service Systems to real estate developments Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 117 p.  
  Keywords Doctoral thesis; Economics; Engineering Management (ENM); Internet Data Lab (IDLab)  
  Abstract Socially responsible investments can be defined as an investment process that integrates ethical values and environmental protection, improving social conditions, and good governance into a traditional investment decision. This integration is mainly a consequence of the growing importance that investors give to environmental, social, and governance (ESG) criteria, resulting in more sustainable development. Also, in the real estate sector, increased attention is being paid to the contributions made to integrate economic, environmental, and social factors into decisions. The ESG framework looks closely at how companies are managed, and the impact related to their market value. The factors for investors’ focus are summarized as environmental, social, and governance. The term ESG was coined in a 2004 United Nations (UN) report titled “Who Cares Wins,” aimed at raising awareness regarding the importance of environmental, social, and corporate governance issues in financial markets. The ESG criteria’s specific purpose is to guide investors in recognizing sustainable investments without evaluating how sustainable the asset is or the investment value represented by sustainability. It is essential to underline that ESG does not take specific economic interests into account. The rationale behind this apparent gap is that investors investigate the economic aspects before investing. However, by not explicitly linking ESG and economic criteria, attractive investments are often misjudged and not implemented. For example, investments that only show their value in the longer term or indirectly influence value by achieving a higher retention rate among incumbent tenants, reducing or eliminating friction costs. A product–service system (PSS) refers to a market proposition (business model) that builds on a product’s traditional functionality by incorporating additional services. Although services are already offered, the PSS function is to link the service to a product. The service thereby supports the operation of the product and generates additional benefits. It encompasses the integrated solutions of products and services to satisfy customers' needs and generate maximum value. According to Sutanto et al., a PSS is designed to focus on sustainability characterized in three dimensions. 1. The economic dimension 2. The environmental dimension 3. The social dimension When discussing sustainability in this thesis, we use the criteria listed above related to socially responsible investments. The link between PSS and ESG is that a PSS focuses on creating a sustainable system, and ESG makes sustainability more visible to investors. Therefore, when PSS are recognized and implemented in buildings, they must be evaluated using ESG analysis methods. Product-Service Systems (PSS) try to find a way to offer services on top of a product. The product is essentially secondary to the result that is delivered from the services. For example, the modem (product) that a cable company provides will be of secondary importance to the connectivity (service). Alternatively, it will be less critical how heat is made (product) than the intended set point is achieved in the building. PSSs transform the supply of products into services. In doing so, the responsibility shifts from delivering a product (once only) to continuous service delivery. Therefore, it is in the best interest of the service provider to deliver the outcome of the service as efficiently (read: lowest cost) as possible. A direct consequence of this is that the service provider will want to use the product as efficiently as possible and as long as possible to reduce his costs. Therefore, the supplier will also want to recover and maximize the reuse of his product based on the same rationale. A positive impact on the environment and the used raw materials is thus to be expected. The whole process of servitization (transforming products into services) in real estate will positively impact the Economic, Environmental and Social factors. Therefore, demonstrating this proposition is the main objective of this thesis. Smart PSS is the same idea as Product-Service systems but in which the digitization of the services plays a key role. It will be shown that by digitizing services, a broader range can be offered. It will be demonstrated that products that provide services at the building level can, through their interconnectedness, also provide services to external systems (e.g. electricity grid, urban planning, mobility, ...). At the same time, digitizing the products and services will also underpin trust in the systems and allow for proper remuneration. In this PhD, different standard systems in a building, such as the reservation system, the water heater, or the fire detection system, are equipped with additional services. A PSS is often specifically designed to focus on economic, social, and environmental dimensions. These dimensions correspond to the investor’s examination as part of the ESG analysis before investing. As the PSS is often specifically designed to integrate sustainability, there is a close link between the sustainability performance of the PSS and the ESG criteria evaluated by the investor. Throughout the work, the owner is considered to be the user of the building. It is not the case that only an owner-user can generate cash flow. In essence, if they have sufficient rights to the underlying product, any building user can activate services that generate cash flow. In today's market, it is logical that this is viewed in the owner-user context as they will usually choose the products to be installed in larger technical installations. They may have previously used a PSS or choose to move to one. However, a building’s tenant could choose to lease out their meeting rooms if they are not contractually prohibited from doing so since, in practice, contracts have begun to prohibit certain services. For example, rental contracts that actively prohibit renting out a property through platforms such as Airbnb. Thus, the user’s function could potentially impact how the PSS is designed. This work does not explicitly explore the impact of this aspect. The owner-user is assumed throughout this manuscript. The second chapter describes the state of affairs concerning PSSs in a broad framework evolving towards focusing on the real estate sector. After which, in the second chapter, ESG and the link to real estate and how smart real estate (smart buildings) is missing from this evaluation are discussed in more detail. Chapter 3 shows from a fire alarm system, which was extended with an evacuation support system, the usefulness, and the risk of data. Further work was done to demonstrate the added value in terms of Economic, Environmental and Social factors of standard installations in buildings. In Chapter 4, a simple sanitary hot water boiler is extended with a service that allows controlling this boiler according to the status of the electricity grid (surplus or shortage of energy). The supply and demand of energy on the power grid must be equal at all times. By equipping a classic water heater (product) with additional intelligence (service), it becomes possible to adjust the energy use to the grid's needs. The grid operators are prepared to pay for this. This payment can be linked to different energy markets (long term market, spot market, ...). This study looked at the fee that would have to be paid when the adjustment of the energy use can be made instantaneously so that the fee must be settled according to the prices on the imbalance market. In chapter 5, we look at the impact of the service to rent out free spaces as co-working places on a broad market (external to the building), compared to a regular reservation system. By renting out unused workplaces on a broad market, the utilization of the existing patrimony will be higher. The demand for new square meters with the same function will decrease as the supply-demand curve changes, and so will the price. This makes it less interesting to build new buildings. Less construction of new buildings will result in fewer resources being used, which will positively affect the environment. In addition, fewer new buildings with an office function will leave more space for buildings with another function. Also, the city's infrastructure will be less burdened (roads, sewerage, electricity grid,...). In The Hague, the decreasing need for new square meters of office buildings can lead to more space for affordable housing, for which the city has a great need. Chapter 6 will frame the valuation of service as a real options method that gives an impetus to a general valuation methodology to value the flexibility that Smart PSS inherently has. Finally, this thesis demonstrates that (smart) PSSs impact real estate profitability, while positively influencing environmental and social factors. Further research and the limitations of the studies conducted are documented. This PhD concludes that Product-Service systems should break the silos between different stakeholders, resulting in a lower total cost of ownership of buildings in the longer term. This can only be achieved if the valuation of Product-Service systems is done correctly and is recognized by every stakeholder in the real estate process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (up) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:183415 Serial 6912  
Permanent link to this record
 

 
Author Herzog, M.J.; Gauquelin, N.; Esken, D.; Verbeeck, J.; Janek, J. url  doi
openurl 
  Title Increased Performance Improvement of Lithium-Ion Batteries by Dry Powder Coating of High-Nickel NMC with Nanostructured Fumed Ternary Lithium Metal Oxides Type A1 Journal article
  Year 2021 Publication ACS applied energy materials Abbreviated Journal ACS Appl. Energy Mater.  
  Volume 4 Issue 9 Pages 8832-8848  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Dry powder coating is an effective approach to protect the surfaces of layered cathode active materials (CAMs) in lithium-ion batteries. Previous investigations indicate an incorporation of lithium ions in fumed Al2O3, ZrO2, and TiO2 coatings on LiNi0.7Mn0.15Co0.15O2 during cycling, improving the cycling performance. Here, this coating approach is transferred for the first time to fumed ternary LiAlO2, Li4Zr3O8, and Li4Ti5O12 and directly compared with their lithium-free equivalents. All materials could be processed equally and their nanostructured small aggregates accumulate on the CAM surfaces to quite homogeneous coating layers with a certain porosity. The LiNixMnyCozO2 (NMC) coated with lithium-containing materials shows an enhanced improvement in overall capacity, capacity retention, rate performance, and polarization behavior during cycling, compared to their lithium-free analogues. The highest rate performance was achieved with the fumed ZrO2 coating, while the best long-term cycling stability with the highest absolute capacity was obtained for the fumed LiAlO2-coated NMC. The optimal coating agent for NMC to achieve a balanced system is fumed Li4Ti5O12, providing a good compromise between high rate capability and good capacity retention. The coating agents prevent CAM particle cracking and degradation in the order LiAlO2 ≈ Al2O3 > Li4Ti5O12 > Li4Zr3O8 > ZrO2 > TiO2. A schematic model for the protection and electrochemical performance enhancement of high-nickel NMC with fumed metal oxide coatings is sketched. It becomes apparent that physical and chemical characteristics of the coating significantly influence the performance of NMC. A high degree of coating-layer porosity is favorable for the rate capability, while a high coverage of the surface, especially in vulnerable grain boundaries, enhances the long-term cycling stability and improves the cracking behavior of NMCs. While zirconium-containing coatings possess the best chemical properties for high rate performances, aluminum-containing coatings feature a superior chemical nature to protect high-nickel NMCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000703338600018 Publication Date 2021-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 15 Open Access OpenAccess  
  Notes For his support in scanning electron microscopy analysis, the authors thank Erik Peldszus. N. G. and J. V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and from the Flemish Research Fund (FWO) project G0F1320N. The Qu-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:183949 Serial 6823  
Permanent link to this record
 

 
Author Feng, X.; Jena, H.S.; Krishnaraj, C.; Arenas-Esteban, D.; Leus, K.; Wang, G.; Sun, J.; Rüscher, M.; Timoshenko, J.; Roldan Cuenya, B.; Bals, S.; Voort, P.V.D. pdf  url
doi  openurl
  Title Creation of Exclusive Artificial Cluster Defects by Selective Metal Removal in the (Zn, Zr) Mixed-Metal UiO-66 Type A1 Journal article
  Year 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume Issue Pages jacs.1c05357  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The differentiation between missing linker defects

and missing cluster defects in MOFs is difficult, thereby limiting the

ability to correlate materials properties to a specific type of defects.

Herein, we present a novel and easy synthesis strategy for the

creation of solely “missing cluster defects” by preparing mixed-metal

(Zn, Zr)-UiO-66 followed by a gentle acid wash to remove the Zn

nodes. The resulting material has the reo UiO-66 structure, typical

for well-defined missing cluster defects. The missing clusters are

thoroughly characterized, including low-pressure Ar-sorption, iDPCSTEM

at a low dose (1.5 pA), and XANES/EXAFS analysis. We

show that the missing cluster UiO-66 has a negligible number of missing linkers. We show the performance of the missing cluster

UiO-66 in CO2 sorption and heterogeneous catalysis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000730569500001 Publication Date 2021-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 29 Open Access OpenAccess  
  Notes Agentschap Innoveren en Ondernemen, HBC.2019.0110 HBC.2021.0254 ; Universiteit Gent; Fonds Wetenschappelijk Onderzoek, 665501 ; Dalian University of Technology; China Scholarship Council, 201507565009 ; National Natural Science Foundation of China, 22101039 ; H2020 European Research Council, 815128 REALNANO ; sygmaSB Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @c:irua:183951 Serial 6833  
Permanent link to this record
 

 
Author Mustonen, K.; Hofer, C.; Kotrusz, P.; Markevich, A.; Hulman, M.; Mangler, C.; Susi, T.; Pennycook, T.J.; Hricovini, K.; Richter, C.M.; Meyer, J.C.; Kotakoski, J.; Skákalová, V. url  doi
openurl 
  Title Towards Exotic Layered Materials: 2D Cuprous Iodide Type A1 Journal article
  Year 2021 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume Issue Pages 2106922  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Heterostructures composed of two-dimensional (2D) materials are already opening many new possibilities in such fields of technology as electronics and magnonics, but far more could be achieved if the number and diversity of 2D materials is increased. So far, only a few dozen 2D crystals have been extracted from materials that exhibit a layered phase in ambient conditions, omitting entirely the large number of layered materials that may exist in other temperatures and pressures. Here, we demonstrate how these structures can be stabilized in 2D van der Waals stacks under room temperature via growing them directly in graphene encapsulation by using graphene oxide as the template material. Specifically, we produce an ambient stable 2D structure of copper and iodine, a material that normally only occurs in layered form at elevated temperatures between 645 and 675 K. Our results establish a simple route to the production of more exotic phases of materials that would otherwise be difficult or impossible to stabilize for experiments in ambient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000744012500001 Publication Date 2021-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited Open Access OpenAccess  
  Notes We acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme Grant agreements No.~756277-ATMEN (A.M. and T.S.) and No.802123-HDEM (C.H. and T.J.P.). Computational resources from the Vienna Scientific Cluster (VSC) are gratefully acknowledged. V.S. was supported by the Austrian Science Fund (FWF) (project no. I2344-N36), the Slovak Research and Development Agency (APVV-16-0319), the project CEMEA of the Slovak Academy of Sciences, ITMS project code 313021T081 of the Research & Innovation Operational Programme and from the V4-Japan Joint Research Program (BGapEng). J.K. acknowledges the FWF funding within project P31605-N36 and M.H. the funding from Slovak Research and Development Agency via the APVV-15-0693 and APVV-19-0365 project grants. Danubia NanoTech s.r.o. has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101008099 (CompSafeNano project) and also thanks Mr. Kamil Bernath for his support. Approved Most recent IF: 19.791  
  Call Number EMAT @ emat @c:irua:183956 Serial 6834  
Permanent link to this record
 

 
Author Mahadi, A.H.; Ye, L.; Fairclough, S.M.; Qu, J.; Wu, S.; Chen, W.; Papaioannou, E.; Ray, B.; Pennycook, T.J.; Haigh, S.J.; Young, N.P.; Tedsree, K.; Metcalfe, I.S.; Tsang, S.C.E. doi  openurl
  Title Beyond surface redox and oxygen mobility at pd-polar ceria (100) interface : underlying principle for strong metal-support interactions in green catalysis Type A1 Journal article
  Year 2020 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 270 Issue Pages 118843  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract When ceria is used as a support for many redox catalysis involved in green catalysis, it is well-known that the overlying noble metal can gain access to a significant quantity of oxygen atoms with high mobility and fast reduction and oxidation properties under mild conditions. However, it is as yet unclear what the underlying principle and the nature of the ceria surface involved are. By using two tailored morphologies of ceria nanocrystals, namely cubes and rods, it is demonstrated from Scanning Transmission Electron Microscopy with Electron Energy Loss Spectroscopy (STEM-EELS) mapping and Pulse Isotopic Exchange (PIE) that ceria nano-cubes terminated with a polar surface (100) can give access to more than the top most layer of surface oxygen atoms. Also, they give higher oxygen mobility than ceria nanorods with a non-polar facet of (110). A new insight for the possible additional role of polar ceria surface plays in the oxygen mobility is obtained from Density Functional Theory (DFT) calculations which suggest that the (100) surface sites that has more than half-filled O on same plane can drive oxygen atoms to oxidise adsorbate(s) on Pd due to the strong electrostatic repulsion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526110500007 Publication Date 2020-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.1 Times cited Open Access  
  Notes Approved Most recent IF: 22.1; 2020 IF: 9.446  
  Call Number UA @ admin @ c:irua:183959 Serial 6856  
Permanent link to this record
 

 
Author Ortiz-Aguayo, D.; De Wael, K.; del Valle, M. url  doi
openurl 
  Title Voltammetric sensing using an array of modified SPCE coupled with machine learning strategies for the improved identification of opioids in presence of cutting agents Type A1 Journal article
  Year 2021 Publication Journal Of Electroanalytical Chemistry Abbreviated Journal J Electroanal Chem  
  Volume 902 Issue Pages 115770  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract This work reports the use of modified screen-printed carbon electrodes (SPCEs) for the identification of three drugs of abuse and two habitual cutting agents, caffeine and paracetamol, combining voltammetric sensing and chemometrics. In order to achieve this goal, codeine, heroin and morphine were subjected to Square Wave Voltammetry (SWV) at pH 7, in order to elucidate their electrochemical fingerprints. The optimized SPCEs electrode array, which have a differentiated response for the three oxidizable compounds, was derived from Carbon, Prussian blue, Cobalt (II) phthalocyanine, Copper (II) oxide, Polypyrrole and Palladium nanoparticles ink-modified carbon electrodes. Finally, Principal Component Analysis (PCA) coupled with Silhouette parameter assessment was used to select the most suitable combination of sensors for identification of drugs of abuse in presence of cutting agents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000714415500006 Publication Date 2021-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1572-6657; 1873-2569 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.012 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.012  
  Call Number UA @ admin @ c:irua:184018 Serial 8745  
Permanent link to this record
 

 
Author Juneja, R.; Thebaud, S.; Pandey, T.; Polanco, C.A.; Moseley, D.H.; Manley, M.E.; Cheng, Y.Q.; Winn, B.; Abernathy, D.L.; Hermann, R.P.; Lindsay, L. url  doi
openurl 
  Title Quasiparticle twist dynamics in non-symmorphic materials Type A1 Journal article
  Year 2021 Publication Materials Today Physics Abbreviated Journal  
  Volume 21 Issue Pages 100548  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quasiparticle physics underlies our understanding of the microscopic dynamical behaviors of materials that govern a vast array of properties, including structural stability, excited states and interactions, dynamical structure factors, and electron and phonon conductivities. Thus, understanding band structures and quasiparticle interactions is foundational to the study of condensed matter. Here we advance a 'twist' dynamical description of quasiparticles (including phonons and Bloch electrons) in nonsymmorphic chiral and achiral materials. Such materials often have structural complexity, strong thermal resistance, and efficient thermoelectric performance for waste heat capture and clean refrigeration technologies. The twist dynamics presented here provides a novel perspective of quasiparticle behaviors in such complex materials, in particular highlighting how non-symmorphic symmetries determine band crossings and anti-crossings, topological behaviors, quasiparticle interactions that govern transport, and observables in scattering experiments. We provide specific context via neutron scattering measurements and first-principles calculations of phonons and electrons in chiral tellurium dioxide. Building twist symmetries into the quasiparticle dynamics of non-symmorphic materials offers intuition into quasi particle behaviors, materials properties, and guides improved experimental designs to probe them. More specifically, insights into the phonon and electron quasiparticle physics presented here will enable materials design strategies to control interactions and transport for enhanced thermoelectric and thermal management applications. (C) 2021 Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000708226400009 Publication Date 2021-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-5293 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:184040 Serial 7016  
Permanent link to this record
 

 
Author Van Alphen, S.; Slaets, J.; Ceulemans, S.; Aghaei, M.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Effect of N2 on CO2-CH4 conversion in a gliding arc plasmatron: Can this major component in industrial emissions improve the energy efficiency? Type A1 Journal Article;Plasma-based CO2-CH4 conversion
  Year 2021 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 54 Issue Pages 101767  
  Keywords A1 Journal Article;Plasma-based CO2-CH4 conversion; Effect of N2; Plasma chemistry; Computational modelling; Gliding arc plasmatron; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma-based CO2 and CH4 conversion is gaining increasing interest, and a great portion of research is dedicated to adapting the process to actual industrial conditions. In an industrial context, the process needs to be able to process N2 admixtures, since most industrial gas emissions contain significant amounts of N2, and gas separations are financially costly. In this paper we therefore investigate the effect of N2 on the CO2 and CH4 conversion in a gliding arc plasmatron reactor. The addition of 20 % N2 reduces the energy cost of the conversion process by 21 % compared to a pure CO2/CH4 mixture, from 2.9 down to 2.2 eV/molec (or from 11.5 to 8.7 kJ/L), yielding a CO2 and CH4 (absolute) conversion of 28.6 and 35.9 % and an energy efficiency of 58 %. These results are among the best reported in literature for plasma-based DRM, demonstrating the benefits of N2 present in the mix. Compared to DRM results in different plasma reactor types, a low energy cost was achieved. To understand the underlying mechanisms of N2 addition, we developed a combination of four different computational models, which reveal that the beneficial effect of N2 addition is attributed to (i) a rise in the electron density (increasing the plasma conductivity, and therefore reducing the plasma power needed to sustain the plasma, which reduces the energy cost), as well as (ii) a rise in the gas temperature, which accelerates the CO2 and CH4 conversion reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000715057300005 Publication Date 2021-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.292 Times cited Open Access OpenAccess  
  Notes This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innova­ tion programme (grant agreement No 810182 – SCOPE ERC Synergy project), the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), and through long-term structural fund­ing (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Ant­werpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:184044 Serial 6827  
Permanent link to this record
 

 
Author Pinto, N.; McNaughton, B.; Minicucci, M.; Milošević, M.V.; Perali, A. url  doi
openurl 
  Title Electronic transport mechanisms correlated to structural properties of a reduced graphene oxide sponge Type A1 Journal article
  Year 2021 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 11 Issue 10 Pages 2503  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We report morpho-structural properties and charge conduction mechanisms of a foamy “graphene sponge ”, having a density as low as & AP;0.07 kg/m3 and a carbon to oxygen ratio C:O & SIME; 13:1. The spongy texture analysed by scanning electron microscopy is made of irregularly-shaped millimetres-sized small flakes, containing small crystallites with a typical size of & SIME;16.3 nm. A defect density as high as & SIME;2.6 x 1011 cm-2 has been estimated by the Raman intensity of D and G peaks, dominating the spectrum from room temperature down to & SIME;153 K. Despite the high C:O ratio, the graphene sponge exhibits an insulating electrical behavior, with a raise of the resistance value at & SIME;6 K up to 5 orders of magnitude with respect to the room temperature value. A variable range hopping (VRH) conduction, with a strong 2D character, dominates the charge carriers transport, from 300 K down to 20 K. At T < 20 K, graphene sponge resistance tends to saturate, suggesting a temperature-independent quantum tunnelling. The 2D-VRH conduction originates from structural disorder and is consistent with hopping of charge carriers between sp2 defects in the plane, where sp3 clusters related to oxygen functional groups act as potential barriers.</p>  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000713174500001 Publication Date 2021-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links (up) UA library record; WoS full record  
  Impact Factor 3.553 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.553  
  Call Number UA @ admin @ c:irua:184050 Serial 6988  
Permanent link to this record
 

 
Author Tao, Z.H.; Dong, H.M.; Milošević, M.V.; Peeters, F.M.; Van Duppen, B. doi  openurl
  Title Tailoring dirac plasmons via anisotropic dielectric environment by design Type A1 Journal article
  Year 2021 Publication Physical Review Applied Abbreviated Journal Phys Rev Appl  
  Volume 16 Issue 5 Pages 054030  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Dirac plasmons in a two-dimensional (2D) crystal are strongly affected by the dielectric properties of the environment, due to interaction of their electric field lines with the surrounding medium. Using graphene as a 2D reservoir of free carriers, one can engineer a material configuration that provides an anisotropic environment to the plasmons. In this work, we discuss the physical properties of Dirac plasmons in graphene surrounded by an arbitrary anisotropic dielectric and exemplify how h-BN-based heterostructures can be designed to bear the required anisotropic characteristics. We calculate how dielec-tric anisotropy impacts the spatial propagation of the plasmons and find that an anisotropy-induced plasmon mode emerges, together with a damping pathway, that stem from the out-of-plane off-diagonal elements in the dielectric tensor. Furthermore, we find that one can create hyperbolic plasmons by inher-iting the dielectric hyperbolicity of the designed material environment. Strong control over plasmon propagation patterns can be realized in a similar manner. Finally, we show that in this way one can also control the polarization of the light-matter excitations that constitute the plasmon. Taken together, our results promote the design of the dielectric environment as an effective path to tailor the plasmonic response of graphene on the nanoscopic level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000720372500002 Publication Date 2021-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.808 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.808  
  Call Number UA @ admin @ c:irua:184063 Serial 7028  
Permanent link to this record
 

 
Author Chaney, G.; Cakir, D.; Peeters, F.M.; Ataca, C. doi  openurl
  Title Stability of adsorption of Mg and Na on sulfur-functionalized MXenes Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue 44 Pages 25424-25433  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional materials composed of transition metal carbides and nitrides (MXenes) are poised to revolutionize energy conversion and storage. In this work, we used density functional theory (DFT) to investigate the adsorption of Mg and Na adatoms on five M2CS2 monolayers (where M = Mo, Nb, Ti, V, and Zr) for battery applications. We assessed the stability of the adatom (i.e. Na and Mg)-monolayer systems by calculating adsorption and formation energies, as well as voltages as a function of surface coverage. For instance, we found that Mo2CS2 cannot support a full layer of Na nor even a single Mg atom. Na and Mg exhibit the strongest binding on Zr2CS2, followed by Ti2CS2, Nb2CS2 and V2CS2. Using the nudged elastic band method (NEB), we computed promising diffusion barriers for both dilute and nearly full ion surface coverage cases. In the dilute ion adsorption case, a single Mg and Na atom on Ti2CS2 experience similar to 0.47 eV and similar to 0.10 eV diffusion barriers between the lowest energy sites, respectively. For a nearly full surface coverage, a Na ion moving on Ti2CS2 experiences a similar to 0.33 eV energy barrier, implying a concentration-dependent diffusion barrier. Our molecular dynamics results indicate that the three (one) layers (layer) of the Mg (Na) ion on both surfaces of Ti2CS2 remain stable at T = 300 K. While, according to voltage calculations, Zr2CS2 can store Na up to three atomic layers, our MD simulations predict that the outermost layers detach from the Zr2CS2 monolayer due to the weak interaction between Na ions and the monolayer. This suggests that MD simulations are essential to confirm the stability of an ion-electrode system – an insight that is mostly absent in previous studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000716024400001 Publication Date 2021-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 3 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:184075 Serial 7020  
Permanent link to this record
 

 
Author Milošević, M.V.; Mandrus, D. pdf  doi
openurl 
  Title 2D quantum materials : magnetism and superconductivity Type A1 Journal article
  Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 130 Issue 18 Pages 180401  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000720289900004 Publication Date 2021-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links (up) UA library record; WoS full record  
  Impact Factor 2.068 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:184090 Serial 6963  
Permanent link to this record
 

 
Author Sanchez-Iglesias, A.; Jenkinson, K.; Bals, S.; Liz-Marzan, L.M. pdf  url
doi  openurl
  Title Kinetic regulation of the synthesis of pentatwinned gold nanorods below room temperature Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 43 Pages 23937-23944  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The synthesis of gold nanorods requires the presence of symmetry-breaking and shape-directing additives, among which bromide ions and quaternary ammonium surfactants have been reported as essential. As a result, hexadecyltrimethylammonium bromide (CTAB) has been selected as the most efficient surfactant to direct anisotropic growth. One of the difficulties arising from this selection is the low solubility of CTAB in water at room temperature, and therefore the seeded growth of gold nanorods is usually performed at 25 degrees C or above, which has restricted so far the analysis of kinetic effects derived from lower temperatures. We report a systematic study of the synthesis of gold nanorods from pentatwinned seeds using hexadecyltrimethylammonium chloride (CTAC) as the principal surfactant and a low concentration of bromide as shape-directing agent. Under these conditions, the synthesis can be performed at temperatures as low as 8 degrees C, and the corresponding kinetic effects can be studied, resulting in temperature-controlled aspect ratio tunability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000716453300038 Publication Date 2021-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 6 Open Access OpenAccess  
  Notes realnano; sygmaSB; This work was supported by the National Science Foundation (NSF) under award NSF CHE-1808502 (P.C. and I.J.). This work made use of the EPIC facility of Northwestern University's NUANCE Center, which has received support from the SHyNE Resource (NSF ECCS-2025633), the IIN, and Northwestern's MRSEC program (NSF DMR-1720139). D.A E. and S.B. acknowledge funding from the European Research Council under the European Union's Horizon 2020 research and innovation program (ERC Consolidator Grants No. 815128 REALNANO and Grant Agreement No. 731019 EUSMI). Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:184104 Serial 6868  
Permanent link to this record
 

 
Author Villarreal, R.; Lin, P.-C.; Faraji, F.; Hassani, N.; Bana, H.; Zarkua, Z.; Nair, M.N.; Tsai, H.-C.; Auge, M.; Junge, F.; Hofsaess, H.C.; De Gendt, S.; De Feyter, S.; Brems, S.; Ahlgren, E.H.; Neyts, E.C.; Covaci, L.; Peeters, F.M.; Neek-Amal, M.; Pereira, L.M.C. url  doi
openurl 
  Title Breakdown of universal scaling for nanometer-sized bubbles in graphene Type A1 Journal article
  Year 2021 Publication Nano Letters Abbreviated Journal Nano Lett  
  Volume 21 Issue 19 Pages 8103-8110  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We report the formation of nanobubbles on graphene with a radius of the order of 1 nm, using ultralow energy implantation of noble gas ions (He, Ne, Ar) into graphene grown on a Pt(111) surface. We show that the universal scaling of the aspect ratio, which has previously been established for larger bubbles, breaks down when the bubble radius approaches 1 nm, resulting in much larger aspect ratios. Moreover, we observe that the bubble stability and aspect ratio depend on the substrate onto which the graphene is grown (bubbles are stable for Pt but not for Cu) and trapped element. We interpret these dependencies in terms of the atomic compressibility of the noble gas as well as of the adhesion energies between graphene, the substrate, and trapped atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000709549100026 Publication Date 2021-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 12 Open Access OpenAccess  
  Notes Approved Most recent IF: 12.712  
  Call Number UA @ admin @ c:irua:184137 Serial 6857  
Permanent link to this record
 

 
Author Hoat, D.M.; Duy Khanh Nguyen; Bafekry, A.; Vo Van On; Ul Haq, B.; Hoang, D.-Q.; Cocoletzi, G.H.; Rivas-Silva, J.F. pdf  doi
openurl 
  Title Developing feature-rich electronic and magnetic properties in the beta-As monolayer for spintronic and optoelectronic applications by C and Si doping : a first-principles study Type A1 Journal article
  Year 2021 Publication Surfaces and interfaces Abbreviated Journal  
  Volume 27 Issue Pages 101534  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this work, the carbon (C) and silicon (Si) doping and codoping effects on beta-arsenene (As) monolayer structural, electronic, and magnetic properties have been comprehensively investigated using first-principles calculations. The studied two-dimensional (2D) materials exhibit good stability. Pristine beta-As single layer is an indirect gap semiconductor with a band gap of 1.867(2.441) eV as determined by PBE(HSE06) functional. Due to the difference in atomic size and electronic interactions, C and Si substitution induces a significant local structural distortion. Depending upon dopant concentration and doping sites, feature-rich electronic properties including non-magnetic semiconductor, magnetic semiconductor and half-metallicity may be obtained, which result from p-p interactions. High spin-polarization at the Fermi level vicinity and significant magnetism suggest As:1C, As:2C, As:1Si, As:2Si, and As:CSi systems as prospective spintronic 2D materials. While, the C-C, Si-Si, and C-Si dimer doping decreases electronic band gap, making the layer more suitable for applications in optoelectronic devices. Results presented herein may suggest an efficient approach to create novel multi-functional 2D materials from beta-As monolayer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000711791100002 Publication Date 2021-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-0230 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:184138 Serial 6979  
Permanent link to this record
 

 
Author Lezaack, M.B.; Hannard, F.; Zhao, L.; Orekhov, A.; Adrien, J.; Miettinen, A.; Idrissi, H.; Simar, A. pdf  doi
openurl 
  Title Towards ductilization of high strength 7XXX aluminium alloys via microstructural modifications obtained by friction stir processing and heat treatments Type A1 Journal article
  Year 2021 Publication Materialia Abbreviated Journal  
  Volume 20 Issue Pages 101248  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract High strength 7XXX aluminium series reach exceptional strength, higher than all other industrial aluminium alloys. However, they suffer from a lack of ductility compared to softer series. This work presents a procedure to improve the ductility of 7475 Al alloy in high strength condition, reaching a true fracture strain of 70% at full 500 MPa T6 yield strength. Using friction stir processing (FSP) and post-FSP heat treatments, 100% of industrial rolled material T6 yield stress is maintained but a 180% increase in fracture strain is measured for the processed material. This ductility improvement is studied by in-situ synchrotron X-ray tomography and is explained by the reduction of intermetallic particles size and the homogenization of their spatial distribution. Furthermore, the microstructure after FSP shows equiaxed refined grains which favour crack deviation as opposed to large cracks parallel to the elongated coarse grains in rolled plate. These results are paving the way to better formability and crashworthiness of 7XXX alloys.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000718127100006 Publication Date 2021-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2589-1529 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:184145 Serial 6894  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: