|
Abstract |
The discovery of antibiotics represented one of the greatest breakthroughs in medicine. Their success combined with an increasing intensive use is apparently bound to be also their undoing. This is due to the development of acquired antibiotic resistance, leading to inefficient antibiotherapy and even to the impossibility of treatment and death. The development and spread of antibiotic resistance are fueled by the widespread presence of trace levels of antibiotics residue, in various media, from environment to aliments. One of the solutions is the rigorous monitoring of the levels of antibiotics, which in term requires an almost constant development of new, more accessible analytical methods, especially screening methods, capable of decentralized analysis. In this direction, the electrochemical detection of antibiotics represents a very viable alternative. In this context, the aim of this thesis was to develop new electrochemical methods for the detection of antibiotics by employing and expanding on several strategies, like biomimetic sensors and electrochemical fingerprinting. Five studies were described in this thesis, that can be roughly divided in three categories, based on the analytical strategy employed. The first group is represented by direct electrochemical methods. The second group focuses on the use of biomimetic elements, molecularly imprinted polymers and aptamers. The hyphenation of electrochemical methods with other analytical methods was explored in the last group. In the last study, included in this group, the singlet oxygen-based photoelectrochemical approach was used for the detection of a phenolic antibiotic, rifampicin. The originality of the thesis consists in the testing and development of new approaches to various strategies used in electrochemical detection, revealing new insights in the field of electrochemical detection of antibiotics. The complex electrochemical fingerprint and the mechanism of the electrochemical oxidation were created and investigated, respectively, for the antibiotic vancomycin. New sensitive nanoplatforms were prepared by employing and combining new protocols. Additionally, important contributions were brought through the study involving the singlet oxygen-based detection of rifampicin. We demonstrated how a photocatalyst can exhibit analyte selectivity by strongly interacting with a complex phenolic compound, rifampicin. Summing up, the studies presented in this thesis will have an important impact in the field of electrochemical detection of antibiotics. |
|