toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Santos-Castro, G.; Pandey, T.; Bruno, C.H.V.; Santos Caetano, E.W.; Milošević, M.V.; Chaves, A.; Freire, V.N. url  doi
openurl 
  Title Silicon and germanium adamantane and diamantane monolayers as two-dimensional anisotropic direct-gap semiconductors Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 3 Pages 035302-35310  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Structural and electronic properties of silicon and germanium monolayers with two different diamondoid crystal structures are detailed ab initio. Our results show that, despite Si and Ge being well-known indirect gap semiconductors in their bulk form, their adamantane and diamantane monolayers can exhibit optically active direct gap in the visible frequency range, with highly anisotropic effective masses, depending on the monolayer crystal structure. Moreover, we reveal that gaps in these materials are highly tunable with applied strain. These stable monolayer forms of Si and Ge are therefore expected to help bridging the gap between the fast growing area of opto-electronics in two-dimensional materials and the established silicon-based technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001074455300012 Publication Date 2023-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number (up) UA @ admin @ c:irua:200348 Serial 9089  
Permanent link to this record
 

 
Author Lima, I.L.C.; Milošević, M.V.; Peeters, F.M.; Chaves, A. doi  openurl
  Title Tuning of exciton type by environmental screening Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 11 Pages 115303-115308  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the binding energy and electron-hole (e-h) overlap of excitonic states confined at the interface between two-dimensional materials with type-II band alignment, i.e., with lowest conduction and highest valence band edges placed in different materials, arranged in a side-by-side planar heterostructure. We propose a variational procedure within the effective mass approximation to calculate the exciton ground state and apply our model to a monolayer MoS2/WS2 heterostructure. The role of nonabrupt interfaces between the materials is accounted for in our model by assuming a WxMo1-xS2 alloy around the interfacial region. Our results demonstrate that (i) interface-bound excitons are energetically favorable only for small interface thickness and/or for systems under high dielectric screening by the materials surrounding the monolayer, and that (ii) the interface exciton binding energy and its e-h overlap are controllable by the interface width and dielectric environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001077758300002 Publication Date 2023-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number (up) UA @ admin @ c:irua:200356 Serial 9110  
Permanent link to this record
 

 
Author Xiang, F.; Gupta, A.; Chaves, A.; Krix, Z.E.; Watanabe, K.; Taniguchi, T.; Fuhrer, M.S.; Peeters, F.M.; Neilson, D.; Milošević, M.V.; Hamilton, A.R. pdf  doi
openurl 
  Title Intra-zero-energy Landau level crossings in bilayer graphene at high electric fields Type A1 Journal article
  Year 2023 Publication Nano letters Abbreviated Journal  
  Volume 23 Issue 21 Pages 9683-9689  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The highly tunable band structure of the zero-energy Landau level (zLL) of bilayer graphene makes it an ideal platform for engineering novel quantum states. However, the zero-energy Landau level at high electric fields has remained largely unexplored. Here we present magnetotransport measurements of bilayer graphene in high transverse electric fields. We observe previously undetected Landau level crossings at filling factors nu = -2, 1, and 3 at high electric fields. These crossings provide constraints for theoretical models of the zero-energy Landau level and show that the orbital, valley, and spin character of the quantum Hall states at high electric fields is very different from low electric fields. At high E, new transitions between states at nu = -2 with different orbital and spin polarization can be controlled by the gate bias, while the transitions between nu = 0 -> 1 and nu = 2 -> 3 show anomalous behavior.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001102148900001 Publication Date 2023-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 10.8 Times cited Open Access  
  Notes Approved Most recent IF: 10.8; 2023 IF: 12.712  
  Call Number (up) UA @ admin @ c:irua:201200 Serial 9052  
Permanent link to this record
 

 
Author Linek, J.; Wyszynski, M.; Müller, B.; Korinski, D.; Milošević, M.V.; Kleiner, R.; Koelle, D. pdf  doi
openurl 
  Title On the coupling of magnetic moments to superconducting quantum interference devices Type A1 Journal article
  Year 2024 Publication Superconductor science and technology Abbreviated Journal  
  Volume 37 Issue 2 Pages 025010-25012  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the coupling factor phi( mu) that quantifies the magnetic flux phi per magnetic moment mu of a point-like magnetic dipole that couples to a superconducting quantum interference device (SQUID). Representing the dipole by a tiny current-carrying (Amperian) loop, the reciprocity of mutual inductances of SQUID and Amperian loop provides an elegant way of calculating phi(mu)(r,e(mu)) vs. position r and orientation e(mu) of the dipole anywhere in space from the magnetic field B-J(r) produced by a supercurrent circulating in the SQUID loop. We use numerical simulations based on London and Ginzburg-Landau theory to calculate phi (mu) from the supercurrent density distributions in various superconducting loop geometries. We treat the far-field regime ( r greater than or similar to a= inner size of the SQUID loop) with the dipole placed on (oriented along) the symmetry axis of circular or square shaped loops. We compare expressions for phi (mu) from simple filamentary loop models with simulation results for loops with finite width w (outer size A > alpha), thickness d and London penetration depth lambda(L )and show that for thin ( d << alpha ) and narrow (w < alpha) loops the introduction of an effective loop size a(eff) in the filamentary loop-model expressions results in good agreement with simulations. For a dipole placed right in the center of the loop, simulations provide an expression phi(mu)(a,A,d,lambda(L)) that covers a wide parameter range. In the near-field regime (dipole centered at small distance z above one SQUID arm) only coupling to a single strip representing the SQUID arm has to be considered. For this case, we compare simulations with an analytical expression derived for a homogeneous current density distribution, which yields excellent agreement for lambda(L)>w,d . Moreover, we analyze the improvement of phi(mu) provided by the introduction of a narrow constriction in the SQUID arm below the magnetic dipole.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001145725500001 Publication Date 2024-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.6 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.6; 2024 IF: 2.878  
  Call Number (up) UA @ admin @ c:irua:202759 Serial 9067  
Permanent link to this record
 

 
Author Dong, H.M.; Liang, H.P.; Tao, Z.H.; Duan, Y.F.; Milošević, M.V.; Chang, K. doi  openurl
  Title Interface thermal conductivities induced by van der Waals interactions Type A1 Journal article
  Year 2024 Publication Physical chemistry, chemical physics Abbreviated Journal  
  Volume 26 Issue 5 Pages 4047-4051  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The interface heat transfer of two layers induced by van der Waals (vdW) contacts is theoretically investigated, based on first-principles calculations at low temperatures. The results suggest that out-of-plane acoustic phonons with low frequencies dominate the interface thermal transport due to the vdW interaction. The interface thermal conductivity is proportional to the cubic of temperature at very low temperatures, but becomes linearly proportional to temperature as temperature increases. We show that manipulating the strain alters vdW coupling, leading to increased interfacial thermal conductivity at the interface. Our findings provide valuable insights into the interface heat transport in vdW heterostructures and support further design and optimization of electronic and optoelectronic nanodevices based on vdW contacts. The heat transfer induced by van der Waals contacts is dominated by ZA phonons. The interface thermal conductivity is proportional to the cubic of temperature, but becomes linearly proportional to temperature as temperature increases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001142323400001 Publication Date 2024-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.3 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.3; 2024 IF: 4.123  
  Call Number (up) UA @ admin @ c:irua:202795 Serial 9050  
Permanent link to this record
 

 
Author Tran, T.T.; Lee, Y.; Roy, S.; Tran, T.U.; Kim, Y.; Taniguchi, T.; Watanabe, K.; Milošević, M.V.; Lim, S.C.; Chaves, A.; Jang, J.I.; Kim, J. pdf  doi
openurl 
  Title Synergetic enhancement of quantum yield and exciton lifetime of monolayer WS₂ by proximal metal plate and negative electric bias Type A1 Journal article
  Year 2023 Publication ACS nano Abbreviated Journal  
  Volume 18 Issue 1 Pages 220-228  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The efficiency of light emission is a critical performance factor for monolayer transition metal dichalcogenides (1L-TMDs) for photonic applications. While various methods have been studied to compensate for lattice defects to improve the quantum yield (QY) of 1L-TMDs, exciton-exciton annihilation (EEA) is still a major nonradiative decay channel for excitons at high exciton densities. Here, we demonstrate that the combined use of a proximal Au plate and a negative electric gate bias (NEGB) for 1L-WS2 provides a dramatic enhancement of the exciton lifetime at high exciton densities with the corresponding QY enhanced by 30 times and the EEA rate constant decreased by 80 times. The suppression of EEA by NEGB is attributed to the reduction of the defect-assisted EEA process, which we also explain with our theoretical model. Our results provide a synergetic solution to cope with EEA to realize high-intensity 2D light emitters using TMDs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001139516800001 Publication Date 2023-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 17.1 Times cited Open Access  
  Notes Approved Most recent IF: 17.1; 2023 IF: 13.942  
  Call Number (up) UA @ admin @ c:irua:202811 Serial 9101  
Permanent link to this record
 

 
Author Blagojević, J.; Mijin, S.D.; Bekaert, J.; Opačić, M.; Liu, Y.; Milošević, M.V.; Petrović, C.; Popović, Z.V.; Lazarević, N. url  doi
openurl 
  Title Competition of disorder and electron-phonon coupling in 2H-TaSe2-xSx (0≤x≤2) as evidenced by Raman spectroscopy Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 2 Pages 024004-24008  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The vibrational properties of 2H-TaSe<sub>2-x</sub>S<sub>x</sub> (0≤x≤2) single crystals were probed using Raman spectroscopy and density functional theory calculations. The end members revealed two out of four symmetry-predicted Raman active modes, together with the pronounced two-phonon structure, attributable to the enhanced electron-phonon coupling. Additional peaks become observable due to crystallographic disorder for the doped samples. The evolution of the E<sub>2</sub>g<sup>2</sup> mode Fano parameter reveals that the disorder has a weak impact on electron-phonon coupling, which is also supported by the persistence of two-phonon structure in doped samples. As such, this research provides thorough insights into the lattice properties, the effects of crystallographic disorder on Raman spectra, and the interplay of this disorder with the electron-phonon coupling in 2H-TaSe<sub>2-x</sub>S<sub>x</sub> compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001171649400004 Publication Date 2024-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:204404 Serial 9141  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Tailoring weak and metallic phases in a strong topological insulator by strain and disorder : conductance fluctuations signatures Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 4 Pages 045129-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Transport measurements are readily used to probe different phases in disordered topological insulators (TIs), where determining topological invariants explicitly is challenging. On that note, universal conductance fluctuations (UCF) theory asserts the conductance G for an ensemble has a Gaussian distribution, and that standard deviation 8G depends solely on the symmetries and dimensions of the system. Using a real-space tight -binding Hamiltonian on a system with Anderson disorder, we explore conductance fluctuations in a thin Bi2Se3 film and demonstrate the agreement of their behavior with UCF hypotheses. We further show that magnetic field applied out-of-plane breaks the time -reversal symmetry and transforms the system's Wigner-Dyson class from root symplectic to unitary, increasing 8G by 2. Finally, we reveal that while Bi2Se3 is a strong TI, weak TI and metallic phases can be stabilized in presence of strain and disorder, and detected by monitoring the conductance fluctuations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001173938400008 Publication Date 2024-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:204765 Serial 9177  
Permanent link to this record
 

 
Author Yorulmaz, U.; Šabani, D.; Sevik, C.; Milošević, M.V. pdf  doi
openurl 
  Title Goodenough-Kanamori-Anderson high-temperature ferromagnetism in tetragonal transition-metal xenes Type A1 Journal article
  Year 2024 Publication 2D materials Abbreviated Journal  
  Volume 11 Issue 3 Pages 035013-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Seminal Goodenough-Kanamori-Anderson (GKA) rules provide an inceptive understanding of the superexchange interaction of two magnetic metal ions bridged with an anion, and suggest fostered ferromagnetic interaction for orthogonal bridging bonds. However, there are no examples of two-dimensional (2D) materials with structure that optimizes the GKA arguments towards enhanced ferromagnetism and its critical temperature. Here we reveal that an ideally planar GKA ferromagnetism is indeed stable in selected tetragonal transition-metal xenes (tTMXs), with Curie temperature above 300 K found in CrC and MnC. We provide the general orbitally-resolved analysis of magnetic interactions that supports the claims and sheds light at the mechanisms dominating the magnetic exchange process in these structures. Furthermore, we propose the set of three GKA-like rules that will guarantee room temperature ferromagetnism. With recent advent of epitaxially-grown tetragonal 2D materials, our findings earmark tTMXs for facilitated spintronic and magnonic applications, or as a desirable magnetic constituent of functional 2D heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001208053200001 Publication Date 2024-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:205464 Serial 9153  
Permanent link to this record
 

 
Author Moura, V.N.; Chaves, A.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title McMillan-Ginzburg-Landau theory of singularities and discommensurations in charge density wave states of transition metal dichalcogenides Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 9 Pages 094507-94511  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The McMillan-Ginzburg-Landau (MGL) model for charge density waves (CDW) is employed in a systematic phenomenological study of the different phases that have been probed in recent experiments involving transition metal dichalcogenides. We implemented an efficient imaginary time evolution method to solve the MGL equations, which enabled us to investigate the role of different coupling parameters on the CDW patterns and to perform calculations with different energy functionals that lead to several experimentally observed singularities in the CDW phase profiles. In particular, by choosing the appropriate energy functionals, we were able to obtain phases that go beyond the well-known periodic phase slips (discommensurations), exhibiting also topological defects (i.e., vortex-antivortex pairs), domain walls where the CDW order parameter is suppressed, and even CDW with broken rotational symmetry. Finally, we briefly discuss the effect of these different CDW phases on the profile and critical temperature of the competing superconducting state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001199651500001 Publication Date 2024-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:205491 Serial 9158  
Permanent link to this record
 

 
Author Li, C.; Lyu, Y.-Y.; Yue, W.-C.; Huang, P.; Li, H.; Li, T.; Wang, C.-G.; Yuan, Z.; Dong, Y.; Ma, X.; Tu, X.; Tao, T.; Dong, S.; He, L.; Jia, X.; Sun, G.; Kang, L.; Wang, H.; Peeters, F.M.; Milošević, M.V.; Wu, P.; Wang, Y.-L. pdf  doi
openurl 
  Title Unconventional superconducting diode effects via antisymmetry and antisymmetry breaking Type A1 Journal article
  Year 2024 Publication Nano letters Abbreviated Journal  
  Volume 24 Issue 14 Pages 4108-4116  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Symmetry breaking plays a pivotal role in unlocking intriguing properties and functionalities in material systems. For example, the breaking of spatial and temporal symmetries leads to a fascinating phenomenon: the superconducting diode effect. However, generating and precisely controlling the superconducting diode effect pose significant challenges. Here, we take a novel route with the deliberate manipulation of magnetic charge potentials to realize unconventional superconducting flux-quantum diode effects. We achieve this through suitably tailored nanoengineered arrays of nanobar magnets on top of a superconducting thin film. We demonstrate the vital roles of inversion antisymmetry and its breaking in evoking unconventional superconducting effects, namely a magnetically symmetric diode effect and an odd-parity magnetotransport effect. These effects are nonvolatilely controllable through in situ magnetization switching of the nanobar magnets. Our findings promote the use of antisymmetry (breaking) for initiating unconventional superconducting properties, paving the way for exciting prospects and innovative functionalities in superconducting electronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001193010700001 Publication Date 2024-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:205553 Serial 9180  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Floquet engineering of axion and high-Chern number phases in a topological insulator under illumination Type A1 Journal article
  Year 2024 Publication SciPost Physics Core Abbreviated Journal  
  Volume 7 Issue 7 Pages 024-16  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quantum anomalous Hall, high-Chern number, and axion phases in topological insulators are characterized by its Chern invariant C (respectively, C = 1, integer C > 1, and C = 0 with half-quantized Hall conductance of opposite signs on top and bottom surfaces). They are of recent interest because of novel fundamental physics and prospective applications, but identifying and controlling these phases has been challenging in practice. Here we show that these states can be created and switched between in thin films of Bi2Se3 by Floquet engineering, using irradiation by circularly polarized light. We present the calculated phase diagrams of encountered topological phases in Bi2Se3, as a function of wavelength and amplitude of light, as well as sample thickness, after properly taking into account the penetration depth of light and the variation of the gap in the surface states. These findings open pathways towards energy-efficient optoelectronics, advanced sensing, quantum information processing and metrology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001217885300001 Publication Date 2024-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:205972 Serial 9151  
Permanent link to this record
 

 
Author Ozdemir, I.; Arkin, H.; Milošević, M.V.; V. Barth, J.; Aktuerk, E. pdf  doi
openurl 
  Title Exploring the adsorption mechanisms of neurotransmitter and amino acid on Ti3C2-MXene monolayer : insights from DFT calculations Type A1 Journal article
  Year 2024 Publication Surfaces and interfaces Abbreviated Journal  
  Volume 46 Issue Pages 104169-9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this study, we conducted a systematic density functional theory (DFT) investigation of the interaction between Ti3C2-MXene monolayer and biological molecules dopamine (DA) and serine (Ser) as neurotransmitter and amino acid, respectively. Our calculations show good agreement with previous literature findings for the optimized Ti3C2 monolayer. We found that DA and Ser molecules bind to the Ti3C2 surface with adsorption energies of -2.244 eV and -3.960 eV, respectively. The adsorption of Ser resulted in the dissociation of one H atom. Electronic density of states analyses revealed little changes in the electronic properties of the Ti3C2-MXene monolayer upon adsorption of the biomolecules. We further investigated the interaction of DA and Ser with Ti3C2 monolayers featuring surface -termination with OH functional group, and Ti -vacancy. Our calculations indicate that the adsorption energies significantly decrease in the presence of surface termination, with adsorption energies of -0.097 eV and -0.330 eV for DA and Ser, respectively. Adsorption energies on the Ti -vacancy surface, on the other hand, are calculated to be -3.584 eV and -3.856 eV for DA and Ser, respectively. Our results provide insights into the adsorption behavior of biological molecules on Ti3C2-MXene, demonstrating the potential of this material for biosensing and other biomedical applications. These findings highlight the importance of surface modifications in the development of functional materials and devices based on Ti3C2-MXene, and pave the way for future investigations into the use of 2D materials for biomedical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001206950300001 Publication Date 2024-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:205977 Serial 9150  
Permanent link to this record
 

 
Author Milošević, M.V.; Perali, A. doi  openurl
  Title Emergent phenomena in multicomponent superconductivity: an introduction to the focus issue Type A1 Journal article
  Year 2015 Publication Superconductor Science & Technology Abbreviated Journal Supercond Sci Tech  
  Volume 28 Issue 28 Pages 060201  
  Keywords A1 Journal article; CMT  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000354110200001 Publication Date 2015-04-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links  
  Impact Factor 2.878 Times cited 41 Open Access  
  Notes ; ; Approved Most recent IF: 2.878; 2015 IF: 2.325  
  Call Number (up) UA @ lucian @ Serial 3945  
Permanent link to this record
 

 
Author Faraji, F.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M. pdf  doi
openurl 
  Title Capillary Condensation of Water in Graphene Nanocapillaries Type A1 Journal ArticleUA
  Year 2024 Publication Nano Letters Abbreviated Journal Nano Lett.  
  Volume 24 Issue 18 Pages 5625-5630  
  Keywords A1 Journal Article; CMT  
  Abstract Recent experiments have revealed that the macroscopic Kelvin equation remains surprisingly accurate even for nanoscale capillaries. This phenomenon was so far explained by the oscillatory behavior of the solid−liquid interfacial free energy. We here demonstrate thermodynamic and capillarity inconsistencies with this explanation. After revising the Kelvin equation, we ascribe its validity at nanoscale confinement to the effect of disjoining pressure.

To substantiate our hypothesis, we employed molecular dynamics simulations to evaluate interfacial heat transfer and wetting properties. Our assessments unveil a breakdown in a previously established proportionality between the work of adhesion and the Kapitza conductance at capillary heights below 1.3 nm, where the dominance of the work of adhesion shifts primarily from energy to entropy. Alternatively, the peak density of the initial water layer can effectively probe the work of adhesion. Unlike under bulk conditions, high confinement renders the work of adhesion entropically unfavorable.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links  
  Impact Factor 10.8 Times cited Open Access  
  Notes This work was supported by Research Foundation-Flanders (FWO, project No. G099219N). The computational resources used in this work were provided by the HPC core facility CalcUA of the University of Antwerp, and the Flemish Supercomputer Center (VSC), funded by FWO and the Flemish Government. Approved Most recent IF: 10.8; 2024 IF: 12.712  
  Call Number (up) UA @ lucian @ Serial 9123  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. pdf  doi
openurl 
  Title Spatially dependent sensitivity of superconducting meanders as single-photon detectors Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue 26 Pages 262603  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The photo-response of a thin current-carrying superconducting stripe with a 90 degrees turn is studied within the time-dependent Ginzburg-Landau theory. We show that the photon acting near the inner corner (where the current density is maximal due to the current crowding [J. R. Clem and K. K. Berggren, Phys. Rev. B 84, 174510 (2011)]) triggers the nucleation of superconducting vortices at currents much smaller than the expected critical one, but does not bring the system to a higher resistive state and thus remains undetected. The transition to the resistive state occurs only when the photon hits the stripe away from the corner due to there uniform current distribution across the sample, and dissipation is due to the nucleation of a kinematic vortex-antivortex pair near the photon incidence. We propose strategies to account for this problem in the measurements. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731627]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000305831500057 Publication Date 2012-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 27 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI). G. R. B. acknowledges individual support from FWO-VI. ; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number (up) UA @ lucian @ c:irua:100336 Serial 3066  
Permanent link to this record
 

 
Author Pina, J.C.; de Souza Silva, C.C.; Milošević, M.V. url  doi
openurl 
  Title Stability of fractional vortex states in a two-band mesoscopic superconductor Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 2 Pages 024512  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the stability of noncomposite fractional vortex states in a mesoscopic two-band superconductor within the two-component Ginzburg-Landau model. Our analysis explicitly takes into account the relationship between the model parameters and microscopic material parameters, such as partial density of states, Fermi velocities and elements of the electron-phonon coupling matrix. We have found that states with different phase winding number in each band (L-1 not equal L-2) and fractional flux can exist in many different configurations, including rather unconventional ones where the dominating band carries larger winding number and states where vertical bar L-1 – L-2 vertical bar > 1. We present a detailed analysis of the stability of the observed vortex structures with respect to changing the microscopic parameters, showing that, in the weak coupling case, fractional vortex states can be assessed in essentially the whole range of temperatures and applied magnetic fields in which both bands are active. Finally, we propose an efficient way of increasing the range of parameters for which these fractional vortex states can be stabilized. In particular, our proposal allows for observation of fractional vortex structures in materials with stronger coupling, where those states are forbidden at a homogeneous field. This is accomplished with the help of the stray fields of a suitably prepared magnetic dot placed nearby the superconducting disk.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000306309600006 Publication Date 2012-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes ; We thank Eric B. Claude, Miguel A. Zorro, and Rogerio M. da Silva for assistance in the development of the numerical code used in our simulations. This work was supported by the Brazilian science agencies CNPq and FACEPE, by the FACEPE/CNPq-PRONEX program, under Grant No. APQ-0589-1.05/08, and by CNPq-FWO Brazil-Flanders co-operation program. M.V.M. acknowledges support from the CAPES-PVE program. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number (up) UA @ lucian @ c:irua:100766 Serial 3126  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Latimer, M.L.; Xiao, Z.L.; Kwok, W.K.; Peeters, F.M. url  doi
openurl 
  Title Large magnetoresistance oscillations in mesoscopic superconductors due to current-excited moving vortices Type A1 Journal article
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 109 Issue 5 Pages 057004  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We show in the case of a superconducting Nb ladder that a mesoscopic superconductor typically exhibits magnetoresistance oscillations whose amplitude and temperature dependence are different from those stemming from the Little-Parks effect. We demonstrate that these large resistance oscillations (as well as the monotonic background on which they are superimposed) are due to current-excited moving vortices, where the applied current in competition with the oscillating Meissner currents imposes or removes the barriers for vortex motion in an increasing magnetic field. Because of the ever present current in transport measurements, this effect should be considered in parallel with the Little-Parks effect in low-critical temperature (T-c) samples, as well as with recently proposed thermal activation of dissipative vortex-antivortex pairs in high-T-c samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000306994900024 Publication Date 2012-07-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 65 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP) (theory) and by the U. S. Department of Energy (DOE) Award No. DE-FG02-06ER46334 (experiment). G. R. B. acknowledges individual grant from FWO-Vl. W. K. K. acknowledges support from DOE BES under Contract No. DE-AC02-06CH11357, which also funds Argonne's Center for Nanoscale Materials (CNM) where the focused-ion-beam milling was performed. ; Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number (up) UA @ lucian @ c:irua:100832 Serial 1780  
Permanent link to this record
 

 
Author Vagov, A.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M. url  doi
openurl 
  Title Two-band superconductors : extended Ginzburg-Landau formalism by a systematic expansion in small deviation from the critical temperature Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 14 Pages 144514  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We derive the extended Ginzburg-Landau (GL) formalism for a clean s-wave two-band superconductor by employing a systematic expansion of the free-energy functional and the corresponding matrix gap equation in powers of the small deviation from the critical temperature tau = 1 – T/T-c. The two lowest orders of this expansion produce the equation for T-c and the standard GL theory. It is shown that in agreement with previous studies, this two-band GL theory maps onto the single-band GL model and thus fails to describe the difference in the spatial profiles of the two-band condensates. We prove that this difference appears already in the leading correction to the standard GL theory, which constitutes the extended GL formalism. We derive linear differential equations that determine the leading corrections to the band order parameters and magnetic field, discuss the validity of these equations, and consider examples of an important interplay between the band condensates. Finally, we present numerical results for the thermodynamic critical magnetic field and temperature-dependent band gaps for recent materials of interest, which are in very good agreement with those obtained from the full BCS approach in a wide temperature range. To this end, we emphasize the advantages of our extended GL theory in comparison with the often used two-component GL-like model based on an unreconstructed two-band generalization of the Gor'kov derivation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000309776800001 Publication Date 2012-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 44 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Authors are indebted to Y. Singh and R. Prozorov for discussions and for providing recent experimental data. A. V. is grateful to W. Pesch for stimulating discussions and critical comments on this work. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number (up) UA @ lucian @ c:irua:101798 Serial 3769  
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M. url  doi
openurl 
  Title Unconventional vortex states in nanoscale superconductors due to shape-induced resonances in the inhomogeneous Cooper-pair condensate Type A1 Journal article
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 109 Issue 10 Pages 107001  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Vortex matter in mesoscopic superconductors is known to be strongly affected by the geometry of the sample. Here we show that in nanoscale superconductors with coherence length comparable to the Fermi wavelength the shape resonances of the order parameter results in an additional contribution to the quantum topological confinement-leading to unconventional vortex configurations. Our Bogoliubov-de Gennes calculations in a square geometry reveal a plethora of asymmetric, giant multivortex, and vortex-antivortex structures, stable over a wide range of parameters and which are very different from those predicted by the Ginzburg-Landau theory. These unconventional states are relevant for high-T-c nanograins, confined Bose-Einstein condensates, and graphene flakes with proximity-induced superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000308295700014 Publication Date 2012-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 31 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen). ; Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number (up) UA @ lucian @ c:irua:101850 Serial 3801  
Permanent link to this record
 

 
Author de Aquino, B.R.C.H.T.; Cabral, L.R.E.; de Souza Silva, C.C.; Albino Aguiar, J.; Milošević, M.V.; Peeters, F.M. pdf  doi
openurl 
  Title Dynamic phases of vortex-antivortex molecules in a Corbino disk with magnetic dipole on top Type A1 Journal article
  Year 2012 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 479 Issue Pages 115-118  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We performed a molecular dynamics study of vortex-antivortex motion in a superconducting disk with a magnetic dot on top, in the Corbino disk geometry. In this system, vortices and antivortices are forced to move in opposite azimuthal directions by a radially applied current. The dot is magnetized out of plane in order to stabilize composite vortex-antivortex configurations, with vortices closer to the center of the disk and antivortices near to the disk edge. We observe that the interplay between the spatially inhomogeneous current distribution, the screening currents induced by the dipole, and the attractive vortex-antivortex (v-av) interaction result in different dynamical phases. At low current values, antivortices which are distributed at outer rings – remain bounded to vortices at inner rings and the whole configuration rotates rigidly. Above a threshold current, vortices and antivortices unbind and move at different angular velocities in a highly correlated way. Finally, at very strong drive, vortex-antivortex attraction is overhelmed by the external current Lorentz force, causing them to move in opposite directions. (C) 2011 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited Open Access  
  Notes Approved Most recent IF: 1.404; 2012 IF: 0.718  
  Call Number (up) UA @ lucian @ c:irua:101870 Serial 764  
Permanent link to this record
 

 
Author Komendová, L.; Shanenko, A.A.; Milošević, M.V.; Peeters, F.M. pdf  doi
openurl 
  Title The healing lengths in two-band superconductors in extended Ginzburg-Landau theory Type A1 Journal article
  Year 2012 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 479 Issue Pages 126-129  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the vortex profiles in two-gap superconductors using the extended Ginzburg-Landau theory. The results shed more light on the disparity between the effective length scales in two bands. We compare the behavior expected from the standard Ginzburg-Landau theory with this new approach, and find good qualitative agreement in the case of LiFeAs. (C) 2011 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000308580600029 Publication Date 2012-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 1 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-INSTANS network. ; Approved Most recent IF: 1.404; 2012 IF: 0.718  
  Call Number (up) UA @ lucian @ c:irua:101871 Serial 3585  
Permanent link to this record
 

 
Author Müller, A.; Milošević, M.V.; Dale, S.E.C.; Engbarth, M.A.; Bending, S.J. url  doi
openurl 
  Title Magnetization measurements and Ginzburg-Landau simulations of micron-size \beta-tin samples : evidence for an unusual critical behavior of mesoscopic type-I superconductors Type A1 Journal article
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 109 Issue 19 Pages 197003  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We describe investigations of the largely unexplored field of mesoscopic type-I superconductors. Micromagnetometry and 3D Ginzburg-Landau simulations of our single crystal β-tin samples in this regime reveal size- and temperature-dependent supercritical fields whose behavior is radically different from the bulk critical field HcB. We find that complete suppression of the intermediate state in medium-size samples can result in a surprising reduction of the critical field significantly below HcB. We also reveal an evolution of the superconducting-to-normal phase transition from the expected irreversible first order at low temperatures through the previously unobserved reversible first-order to a second-order transition close to Tc, where the critical field can be many times larger than HcB. Finally, we have identified striking correlations between the mesoscopic Hc3 for nucleation of surface superconductivity and the thermodynamic Hc near Tc. All these observations are entirely unexpected in the conventional type-I picture.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000310853100017 Publication Date 2012-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 21 Open Access  
  Notes ; This work was supported by the EPSRC-UK under Grant No. EP/E039944/1, and the Flemish Science Foundation (FWO). ; Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number (up) UA @ lucian @ c:irua:102401 Serial 1893  
Permanent link to this record
 

 
Author Geurts, R.; Milošević, M.V.; Albino Aguiar, J.; Peeters, F.M. url  doi
openurl 
  Title Enhanced stability of vortex-antivortex states in two-component mesoscopic superconductors Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 2 Pages 024501-24508  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the Ginzburg-Landau (GL) theory, we calculate the stability of sample symmetry-induced vortex-antivortex molecules in a mesoscopic superconducting bilayer exposed to a homogeneous magnetic field. We demonstrate the conditions under which the two condensates cooperatively broaden the field-temperature stability range of the composite (joint) vortex-antivortex state. In cases when such broadening is not achieved, a reentrance of the vortex-antivortex state is found at lower temperatures. In a large portion of the phase diagram noncomposite states are possible, in which the antivortex is present in only one of the layers. In this case, we demonstrate that the vortex-antivortex molecule in one of the layers can be pinned and enlarged by interaction with a vortex molecule in the other. Using analogies in the respective GL formalisms, we map our findings for the bilayer onto mesoscopic two-band superconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000313029800003 Publication Date 2013-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 25 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen), the Brazilian science agencies FACEPE/CNPq under Grant No. APQ-0589-1.05/08 and CNPq under Grant No. 309832/2007-1, and the CNPq-FWO cooperation program under Grant No. 490681/2010-7. M.V.M. acknowledges support from the CAPES-PVE program. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number (up) UA @ lucian @ c:irua:105925 Serial 1058  
Permanent link to this record
 

 
Author Bending, S.J.; Neal, J.S.; Milošević, M.V.; Potenza, A.; san Emeterio, L.; Marrows, C.H. url  doi
openurl 
  Title Vortex-antivortex 'molecular crystals' in hybrid ferromagnet/superconductor structures Type A1 Journal article
  Year 2009 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 150 Issue 5 Pages 052019  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We have used high resolution Hall probe microscopy to image vortex-antivortex (V-AV) 'molecules' induced in superconducting Pb films by the stray fields from square arrays of ferromagnetic Co/Pt dots. We have directly observed spontaneous V-AV pairs and studied how they interact with added 'free' (anti)fluxons in an applied magnetic field. We observe a rich variety of subtle phenomena arising from competing symmetries in our system which can either drive added antivortices to join AV shells around nanomagnets or stabilise the translationally symmetric AV lattice between the dots. Added vortices annihilate AV shells, leading eventually to a stable 'nulling' state with no free fluxons, which should exhibit a strongly (field-)enhanced critical current. At higher densities we actually observe vortex shells around the magnets, stabilised by the asymmetric anti-pinning potential. Our experimental findings are in good agreement with Ginzburg-Landau calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos Publication Date 2009-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (up) UA @ lucian @ c:irua:106136 Serial 3855  
Permanent link to this record
 

 
Author Connolly, M.R.; Milošević, M.V.; Bending, S.J.; Clem, J.R.; Tamegai, T. url  doi
openurl 
  Title Vortex 'puddles' and magic vortex numbers in mesoscopic superconducting disks Type A1 Journal article
  Year 2009 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 150 Issue 5 Pages 052039  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The magnetic properties of a superconducting disk change dramatically when its dimensions become mesoscopic. Unlike large disks, where the screening currents induced by an applied magnetic field are strong enough to force vortices to accumulate in a 'puddle' at the centre, in a mesoscopic disk the interaction between one of these vortices and the edge currents can be comparable to the intervortex repulsion, resulting in a destruction of the ordered triangular vortex lattice structure at the centre. Vortices instead form clusters which adopt polygonal and shell-like structures which exhibit magic number states similar to those of charged particles in a confining potential, and electrons in artificial atoms. We have fabricated mesoscopic high temperature superconducting Bi2Sr2CaCu2O8+δ disks and investigated their magnetic properties using magneto-optical imaging (MOI) and high resolution scanning Hall probe microscopy (SHPM). The temperature dependence of the vortex penetration field measured using MOI is in excellent agreement with models of the thermal excitation of pancake vortices over edge barriers. The growth of the central vortex puddle has been directly imaged using SHPM and magic vortex numbers showing higher stability have been correlated with abrupt jumps in the measured local magnetisation curves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos Publication Date 2009-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (up) UA @ lucian @ c:irua:106137 Serial 3881  
Permanent link to this record
 

 
Author Engbarth, M.; Milošević, M.V.; Bending, S.J.; Nasirpouri, F. pdf  doi
openurl 
  Title Geometry-guided flux behaviour in superconducting Pb microcrystals Type A1 Journal article
  Year 2009 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 150 Issue 5 Pages 052048  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electrochemistry offers highly flexible routes to fabrication of a wide variety of mesostructures, including three-dimensional (3D) crystallites, thin films and nanowires. Using this method we have grown various 3D superconducting Pb mesostructures with vastly different morphologies. We present here results on a truncated(half)-icosahedron with a hexagonal base and a tripod structure with a triangular base. Using Hall probe magnetometry we have obtained magnetisation curves for these structures at several temperatures and see evidence of geometry-driven flux entry and exit as well as flux trapping caused by specific sample geometries. We also observe behaviour that we interpret in terms of the formation of giant vortices, bearing in mind that bulk Pb is a type-I superconducting material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos Publication Date 2009-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record  
  Impact Factor Times cited 1 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (up) UA @ lucian @ c:irua:106138 Serial 1332  
Permanent link to this record
 

 
Author Bending, S.J.; Milošević, M.V.; Moshchalkov, V.V. isbn  openurl
  Title Polarity-dependent vortex pinning and spontaneous vortex-antivortex structures in superconductor/ferromagnet hybrids Type H1 Book chapter
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages 299-322  
  Keywords H1 Book chapter; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Berlin Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-15136-1 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (up) UA @ lucian @ c:irua:106139 Serial 2659  
Permanent link to this record
 

 
Author Orlova, N.V.; Shanenko, A.A.; Milošević, M.V.; Peeters, F.M.; Vagov, A.V.; Axt, V.M. url  doi
openurl 
  Title Ginzburg-Landau theory for multiband superconductors : microscopic derivation Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 13 Pages 134510-134518  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A procedure to derive the Ginzburg-Landau (GL) theory from the multiband BCS Hamiltonian is developed in a general case with an arbitrary number of bands and arbitrary interaction matrix. It combines the standard Gor'kov truncation and a subsequent reconstruction in order to match accuracies of the obtained terms. This reconstruction recovers the phenomenological GL theory as obtained from the Landau model of phase transitions but offers explicit microscopic expressions for the relevant parameters. Detailed calculations are presented for a three-band system treated as a prototype multiband superconductor. It is demonstrated that the symmetry in the coupling matrix may lead to the chiral ground state with the phase frustration, typical for systems with broken time-reversal symmetry. DOI: 10.1103/PhysRevB.87.134510  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000317586700002 Publication Date 2013-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 57 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). A.A.S. acknowledges useful discussions with D. Neilson. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number (up) UA @ lucian @ c:irua:108464 Serial 1344  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Savel'ev, S.E.; Milošević, M.V.; Kusmartsev, F.V.; Peeters, F.M. url  doi
openurl 
  Title Synchronized dynamics of Josephson vortices in artificial stacks of SNS Josephson junctions under both dc and ac bias currents Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 18 Pages 184510-184519  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Nonlinear dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting Josephson junctions under simultaneously applied time-periodic ac and constant biasing dc currents is studied using the time dependent Ginzburg-Landau formalism with a Lawrence-Doniach extension. At zero external magnetic field and dc biasing current the resistive state of the system is characterized by periodic nucleation and annihilation of fluxon-antifluxon pairs, relative positions of which are determined by the state of neighboring junctions. Due to the mutual repulsive interaction, fluxons in different junctions move out of phase. Their collective motion can be synchronized by adding a small ac component to the biasing dc current. Coherent motion of fluxons is observed for a broad frequency range of the applied drive. In the coherent state the maximal output voltage, which is proportional to the number of junctions in the stack, is observed near the characteristic frequency of the system determined by the crossing of the fluxons across the sample. However, in this frequency range the dynamically synchronized state has an alternative-a less ordered state with smaller amplitude of the output voltage. Collective behavior of the junctions is strongly affected by the sloped sidewalls of the stack. Synchronization is observed only for weakly trapezoidal cross sections, whereas irregular motion of fluxons is observed for larger slopes of the sample edge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000319653400007 Publication Date 2013-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and by EU Marie Curie (Project No. 253057). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number (up) UA @ lucian @ c:irua:109643 Serial 3406  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: