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Two-band superconductors: Extended Ginzburg-Landau formalism by a systematic expansion
in small deviation from the critical temperature
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We derive the extended Ginzburg-Landau (GL) formalism for a clean s-wave two-band superconductor by
employing a systematic expansion of the free-energy functional and the corresponding matrix gap equation in
powers of the small deviation from the critical temperature τ = 1 − T/Tc. The two lowest orders of this expansion
produce the equation for Tc and the standard GL theory. It is shown that in agreement with previous studies, this
two-band GL theory maps onto the single-band GL model and thus fails to describe the difference in the spatial
profiles of the two-band condensates. We prove that this difference appears already in the leading correction to
the standard GL theory, which constitutes the extended GL formalism. We derive linear differential equations that
determine the leading corrections to the band order parameters and magnetic field, discuss the validity of these
equations, and consider examples of an important interplay between the band condensates. Finally, we present
numerical results for the thermodynamic critical magnetic field and temperature-dependent band gaps for recent
materials of interest, which are in very good agreement with those obtained from the full BCS approach in a wide
temperature range. To this end, we emphasize the advantages of our extended GL theory in comparison with the
often used two-component GL-like model based on an unreconstructed two-band generalization of the Gor’kov
derivation.
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I. INTRODUCTION

The Ginzburg-Landau (GL) equations1 are arguably the
most convenient and frequently employed tool in studying
spatially inhomogeneous superconducting condensates. Orig-
inally these equations were derived using the free-energy func-
tional introduced by Landau2 to describe a system in the vicin-
ity of the phase transition. A relation between this phenomeno-
logical theory and the microscopic Bardeen-Cooper-Schrieffer
(BCS) model has subsequently been established by Gor’kov.3

Both the Landau theory and the Gor’kov derivation impose re-
strictions on the validity domain of the GL equations. However,
the intuitively transparent physical ideas behind the Landau
theory as well as the long history of its successful applications
have led to a general belief that the GL approach correctly cap-
tures, at least qualitatively, essential physics of the supercon-
ducting state not only in the vicinity of the critical temperature
but in a much wider range of physically plausible situations.

Strikingly, generalization of the GL theory for multiband
superconductors has encountered serious difficulties related
to the intrinsic inconsistencies of its derivation from the
microscopic formalism. In particular, it seems straightforward
to generalize the Gor’kov derivation to the two-band case
by simply making expansion in two order parameters, both
assumed small. This gives a system of two GL-like equations
linearly coupled through the Josephson-like term (see, e.g.,
Ref. 4). However, a careful analysis revealed that a solution
to these equations contains terms of orders higher than
τ 1/2 (with τ = 1 − T/Tc), which are inconsistent with the
truncation of the free energy performed in the Gor’kov
derivation.5,6 A correct reconstruction of the two-component
GL-like model with account of the orders in τ of all the
relevant contributions maps the resulting approach onto the
single-band GL theory: The two-band order parameters turn
out to be strictly proportional to one another.5–7

This observation displays a serious shortcoming of, let us
call it, the ordinary GL theory for two-band superconductors.
Physically, the spatial characteristics of the band condensates,
e.g., the healing lengths, must be generally different. There-
fore, the important physics coming from the disparity between
the spatial characteristics of the different band condensates
is not captured by the ordinary GL approach. Notice that
many phenomena of current interest are directly related to
the difference in the healing lengths of the band condensates,
such as the nonmonotonic interaction between vortices,8 being
a possible explanation9 for highly debated unusual vortex
configurations observed in MgB2 and Ba(Fe0.95Co0.05)2As2;
see Refs. 10 and 11.

Effects due to the difference in the spatial profiles of
different band condensates can be accounted for within the
full microscopic treatment, i.e., by solving the Bogoliubov–de
Gennes, Gor’kov, or semiclassical Eilenberger equations.12,13

However, a solution to these equations can, as a rule, be
obtained only numerically, and the corresponding calculations,
especially in the multiband case, require enormous computa-
tional efforts. This has significantly limited the progress in the
full-microscopic study of spatially nonuniform condensates
(even in the single-band case), where such analysis can
be done only with additional, very restrictive assumptions,
e.g., by introducing the Abrikosov ansatz for multiple-vortex
configurations (see, e.g., Ref. 14).

These formidable difficulties have stimulated a search for
an extended GL formalism that would retain the simplicity
of the ordinary GL equations and, at the same time, address
the coexistence of band condensates with different healing
lengths. Developing such formalism for two-band systems is
the main goal of the present work.

Since the development of the original GL theory, many
variants of its extension have been proposed (see, e.g.,
Refs. 15–23). The most straightforward procedure is to
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continue the expansion of the free energy functional by
including higher powers of the order parameter(s) and its
spatial gradients. Unfortunately, as is known, this procedure
introduces additional difficulties. One of them is the problem
of selecting all relevant contributions of the same order of
magnitude, which is not trivial for the terms that contain
spatial derivatives of the order parameter(s). Another problem
is related to the increased nonlinearity and to the appearance
of higher-order spatial derivatives in the resulting equations.
Analysis of such nonlinear equations is not only considerably
more complicated21,23 but can also suffer from unphysical
solutions, such as that with a characteristic length scale much
smaller than the GL coherence length.

It has recently been demonstrated7,24 that a consistent
extension of the GL theory free from these problems can
be constructed if one explicitly employs the proximity of
the system to the critical temperature τ = 1 − T/Tc as a
single small parameter rather than the order parameter and
its spatial derivatives. Within this approach, the GL theory and
its extension follow from the systematic τ expansion of the
free energy and the gap equation. An important advantage of
this approach is that the extension to the GL theory is specified
by linear differential equations, which do not have unphysical
solutions and can be easily solved numerically and, in many
cases, even analytically.

For the two-band system this approach has been briefly
outlined in Ref. 7 where the main steps of the derivation were
presented and the prime physical conclusions were discussed.
In particular, it has been shown that the approach captures
the difference between the spatial profiles of different band
condensates in the leading correction to the ordinary GL
theory. For the sake of clarity the analysis in Ref. 7 has
been limited to the case of zero magnetic field. Validity and
accuracy of the obtained equations have not been discussed.
Subsequently, in Ref. 24 we have provided details of the
derivation of the extended GL theory for a single-band clean
superconductor with the s-wave pairing in the general case of
a nonzero magnetic field.

Using these works as a basis, here we present a complete
and detailed derivation of the extended GL formalism for a
two-band system by means of a systematic expansion in τ for a
nonzero field. Unlike Ref. 7, where the formalism was obtained
after two coupled gap equations had been explicitly separated,
here we find the series expansion in τ for the original system of
the two equations for two-band order parameters in the matrix
form. While being more transparent and intuitively clear, this
approach significantly simplifies the technical aspects and also
allows a generalization to the case of multiple contributing
bands.

The present paper is organized as follows. In Sec. II a
general expression for the free-energy functional of a clean
two-band superconductor with s-wave pairing as well as the
corresponding matrix gap equation are recollected. Section III
introduces the τ expansion following the main steps discussed
in Ref. 24. In Sec. IV we obtain the three leading terms of
the expansion of the free-energy functional. In Sec. V the
corresponding τ expansion for the matrix gap equation is
derived, which yields consequently the equation for Tc, the
ordinary GL theory, and the leading correction to the ordinary
GL formalism (altogether it is referred to as the extended GL

theory). The validity of the τ expansion is also discussed here.
In Sec. VI we consider the interplay of the two contributing
condensates that reveals itself in the leading correction to
the ordinary GL formalism. We calculate the next-to-leading
contribution to the thermodynamic critical magnetic field and
show that it differs significantly from the single-band case.
Here we also investigate the difference in the length scales of
the band condensates as dependent on the basic microscopic
parameters. A high accuracy of the extended GL formalism
is demonstrated in Sec. VII by comparing its results to the
solution of the full BCS model in the spatially homogeneous
case. The results of the existing two-component GL-like
models4,25 are also displayed here. Summary and conclusions
are given in Sec. VIII.

II. FREE-ENERGY FUNCTIONAL AND
SELF-CONSISTENT GAP EQUATION

The free-energy functional for a two-band superconductor
is routinely derived, e.g., by using the path-integral represen-
tation of the BCS model, where the new bosonic variables �ν

(ν = 1,2 denotes the bands) are introduced to eliminate the
fermionic degrees of freedom.26 After integrating out the latter,
the free energy becomes a functional of �ν and �∗

ν , which
for a two-band s-wave superconductor with pairing between
electrons in the same subband reads

Fs = Fn,B=0 +
∫

d3r

{
B2(r)

8π
+ ��†(r)ǧ−1 ��(r)

}
+

∑
ν=1,2

Fν[�ν], (1)

where Fn,B=0 is the free energy of the normal state at zero
magnetic field, B denotes the magnetic field, the vector
notation ��T = (�1(r),�2(r)) is introduced to shorten the
relevant formulas, and ǧ is the 2 × 2 matrix for the fermionic
coupling constants:

ǧ =
(

g11 g12

g12 g22

)
, ǧ−1 = 1

G

(
g22 −g12

−g12 g11

)
, (2)

with the determinant G = g11g22 − g2
12. The functional

Fν[�ν] depends on �ν and �∗
ν and can be formally written as

the trace of the Bogoliubov–de Gennes matrix operator as

Fν = Tr ln

(
Ĥν �̂ν

�̂∗
ν −Ĥ ∗

ν

)
, (3)

where Ĥν is the single-particle Hamiltonian associated with
band ν (measured from the chemical potential μ), and the
operator �̂ν is diagonal with the matrix elements given by
〈r|�̂ν |r′〉 = �ν(r′)δ(r − r′).

Finding the trace in Eq. (3) is equivalent to solving the
Bogoliubov–de Gennes eigenvalue problem in the microscopic
BCS theory. However, in the vicinity of the critical temperature
Tc, Fν can be represented as an infinite series in powers
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of �ν as

Fν = −
∫

d3r d3y Kνa(r,y) �∗
ν(r)�ν(y)

− 1

2

∫
d3r

3∏
j=1

d3yj Kνb(r,{y}3) �∗
ν(r)�ν(y1)

×�∗
ν(y2)�ν(y3) − 1

3

∫
d3r

5∏
j=1

d3yj Kνc(r,{y}5)

×�∗
ν(r)�ν(y1)�∗

ν(y2)�ν(y3)�∗
ν(y4)�ν(y5) − · · · , (4)

where {y}n = {y1, . . . ,yn} and the integral kernels read

Kνa(r,y) = −T
∑

ω

G(0)
νω(r,y)G̃(0)

νω(y,r),

Kνb(r,{y}3) = −T
∑

ω

G(0)
νω(r,y1)G̃(0)

νω(y1,y2)

×G(0)
νω(y2,y3)G̃(0)

νω(y3,r), (5)

Kνc(r,{y}5) = −T
∑

ω

G(0)
νω(r,y1)G̃(0)

νω(y1,y2)G(0)
νω(y2,y3)

× G̃(0)
νω(y3,y4)G(0)

νω(y4,y5)G̃(0)
νω(y5,r).

Here G(0)
νω(r,y) is the normal-state temperature Green’s func-

tion, and G̃ω(r,y) = −G∗
ω(r,y). For zero magnetic field we

assume (for a clean system)

G(0)
ω (r,y) =

∫
d3k

(2π )3

eik(r−y)

ih̄ω − ξk

, (6)

with the single-particle energy ξk = h̄2k2/(2m) − μ. Here we
consider that the two available bands have spherical Fermi
surfaces.

The mean-field values of �ν are found from the extremum
condition for the free-energy functional given by Eq. (1). By
calculating its functional derivatives with respect to �∗

ν , we
obtain the system of two equations, written in the vector-matrix
notations as

ǧ−1 �� = �R, (7)

where the band component of �R is given by

Rν =
∫

d3y Kνa(r,y)�ν(y) +
∫ 3∏

j=1

d3yj Kνb(r,{y}3)

×�ν(y1)�∗
ν(y2)�ν(y3) +

∫ 5∏
j=1

d3yj Kνc(r,{y}5)

×�ν(y1)�∗
ν(y2)�ν(y3)�∗

ν(y4)�ν(y5) + · · · . (8)

This is nothing more but the self-consistency condition or the
(matrix) gap equation of the BCS theory. We note that in the
literature this equation is frequently written as �� = ǧ �R.

III. GENERAL ASPECTS OF THE τ EXPANSION

The system of Eqs. (7) and (8) is a complete basis for the
microscopic description of a clean s-wave two-band super-
conductor. Approximations to this system can be obtained
by truncating the series in powers of �ν in Eq. (8) to a
desired order. As the GL coherence length, which controls the

gradients of �ν , diverges at T → Tc, it is convenient to invoke
a partial-differential-equation approximation to Eq. (8). This
is performed by using the gradient expansion for the entering
quantities as

ϒ(r + z) =
∞∑

n=0

1

n!
(z · ∇r)nϒ(r), (9)

where ϒ stands for any of �ν , B, or the vector potential
A. After inserting Eq. (9) into Eq. (8) and evaluating the
resulting integrals, one arrives at a system of equations that
in addition to powers of �ν and A also contains their gradients
up to all orders. The appearance of the gradient terms makes
the truncation procedure very complicated, since it becomes
highly nontrivial to identify and select terms of the same order
of magnitude.

As has been pointed out in our analysis of the single-band
case in Ref. 24, a natural remedy to this difficulty is to
utilize the fact that all relevant quantities of the problem,
including the coherence length(s), are controlled by the same
small parameter τ = 1 − T/Tc. Constructing the perturbation
series in τ , one can employ a strategy similar to the so-
called asymptotic boundary layer method in mathematical
physics.27,28 First, taking into account known asymptotic of the
BCS solution in the vicinity of Tc, we introduce the following
scaling:

�ν = τ 1/2�̄ν, r = τ−1/2r̄, A = τ 1/2Ā, f = τ 2f̄ , (10)

where f = fs − fn,B=0 denotes the difference of the free-
energy densities of the superconducting and normal (at B = 0)
states. The scaling of the spatial coordinates applies also to
the spatial derivatives as ∇r = τ 1/2∇r̄ and is reflected in the
scaling for the magnetic field as B = τ B̄. Then, solution of
Eqs. (7) and (8) as well as the field are represented as the
expansions

�̄ν = �̄(0)
ν + τ�̄(1)

ν + τ 2�̄(2)
ν + · · · , (11a)

Ā = Ā(0) + τ Ā(1) + τ 2Ā(2) + · · · , (11b)

B̄ = B̄(0) + τ B̄(1) + τ 2B̄(2) + · · · . (11c)

Notice that Eqs. (10) and (11) explicitly display the
dependence of �̄ν , Ā, and B̄ on τ , which is convenient
for selecting contributions of the same order of magnitude.
In particular, any combination of the spatial derivatives
∇r̄ with the quantities �̄(n)

ν , Ā(n), and B̄(n) (n = 0,1,2, . . .)
does not depend on τ . We note that either introducing a
different scaling, or invoking a series expansion in τ different
from Eq. (11), leads to fundamental inconsistencies; i.e., the
resulting equations become ill defined.

The expansion series for the energy functional is obtained
by substituting Eqs. (9)–(11) into Eq. (4), evaluating the cor-
responding integrals, and expanding all obtained temperature-
dependent quantities in powers of τ . We note that the explicit
derivation is not required here: Quantities Fν and Rν are
formally the same as their counterparts in the single-band
theory, which allows us to simply quote the final results from
Ref. 24. We also remark that as the free-energy density does
not enter the basic equations (7) and (8), its scaling in Eq. (10)
is not dictated by the need of a proper selection of the relevant
terms but is applied for the sake of simplifying our formulas.
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Notice that unlike Ref. 24, where the existence of a single
scaling parameter is obvious from the GL theory, the use
of a single small parameter in the presence of two (many)
bands requires an additional justification. For example, if
one considers noninteracting band condensates with different
critical temperatures, no unique small parameter can be found.
The reason why the single-parameter-scaling procedure is
applicable for the interacting condensates follows from the
earlier analysis where the matrix gap equation was decoupled
into two separate equations for each condensate.6,7 It has
been demonstrated that for nonzero interband coupling, the
separated equations are governed by the same parameter τ

measuring the deviation from the single critical temperature.
In this paper we directly employ this fact without following the
same procedure of the explicit separation into two equations
for the band components. The consistency of the formalism
is ensured by the fact that the series expansion, obtained as
a result of this procedure, is unique and coincides with that
previously obtained by decoupling the matrix gap equation.
This fully justifies the use of Eq. (10).

We also note that our formalism leads to linear differential
equations for the corrections to the ordinary GL equations to all
higher orders in τ . By virtue of its construction, our approach
has only solutions with physically relevant asymptotic at
τ → 0. This eliminates the problem of unphysical results that
could appear in the analysis of highly nonlinear equations
resulting from a simple truncation procedure for the anomalous
Green’s functions. Our expansion is valid as long as the
obtained series are nonsingular. The corresponding limitations
will be discussed later in Sec. VIII.

IV. EXPANSION OF THE FREE-ENERGY FUNCTIONAL

The procedure outlined in the previous section yields the
series expansion of the free-energy density functional in the
form

fs − fn,B=0 = τ−1f (−1) + f (0) + τf (1) + · · · . (12)

Hereafter we omit bars over the scaled quantities unless it
causes confusion. The lowest-order term in this expansion
reads

f (−1) = ��(0)†Ľ ��(0), (13)

where the matrix Ľ is defined as

Ľ = 1

G

(
g22 − GN1(0)A −g12

−g12 g11 − GN2(0)A

)
, (14)

with

A = ln

(
2eγ h̄ωc

πTc

)
. (15)

In this expression ωc denotes the cutoff frequency and γ =
0.577 is the Euler constant.

The next-order term in the free-energy density reads

f (0) = B(0)2

8π
+ ( ��(0)†Ľ ��(1) + c.c.) +

∑
ν=1,2

f (0)
ν , (16)

where

f (0)
ν = aν

∣∣�(0)
ν

∣∣2 + bν

2

∣∣�(0)
ν

∣∣4 + Kν

∣∣D�(0)
ν

∣∣2
, (17)

with D = ∇ − i 2e
h̄c

A(0). The coefficients of the expansion
depend on the particular superconducting system. For the clean
limit these coefficients are obtained as24

aν = −Nν(0), bν = Nν(0)
7ζ (3)

8π2T 2
c

, Kν = bν

6
h̄2v2

ν , (18)

where Nν(0) = mkν/(2π2h̄2) is the DOS at the Fermi energy
in the band ν, kν and vν are respectively the band Fermi
momentum and velocity, and ζ (· · · ) is the Riemann zeta
function.

Finally, the term f (1) can be written as

f (1) = B(0) · B(1)

4π
+ ( ��(0)†Ľ ��(2) + c.c.)

+ ��(1)†Ľ ��(1) +
∑
ν=1,2

f (1)
ν , (19)

where

f (1)
ν = (

aν + bν

∣∣�(0)
ν

∣∣2)(
�(0)∗

ν �(1)
ν + c.c.

)
+Kν

[(
D�(0)

ν · D∗�(1)∗
ν + c.c.

) − A(1) · iν
]

+ aν

2

∣∣�(0)
ν

∣∣2 + 2Kν

∣∣D�(0)
ν

∣∣2

−Qν

(∣∣D2�(0)
ν

∣∣2 + 1

3
rotB(0) · iν + 4e2

h̄2c2
B(0)2

∣∣�(0)
ν

∣∣2
)

+ bν

36

e2h̄2

m2c2
B(0)2

∣∣�(0)
ν

∣∣2 + bν

∣∣�(0)
ν

∣∣4

− Lν

2

[
8
∣∣�(0)

ν

∣∣2∣∣D�(0)
ν

∣∣2 + (
�(0)∗

ν

)2(
D�(0)

ν

)2

+�(0)2
ν

(
D∗�(0)∗

ν

)2
]

− cν

3

∣∣�(0)
ν

∣∣6
, (20)

the current-like term, proportional to the band current density
in the leading order in τ [see Eq. (34)], is given by

iν = i
2e

h̄c

(
�(0)

ν D∗�(0)∗
ν − �(0)∗

ν D�(0)
ν

)
, (21)

and the coefficients, calculated in the clean limit, read24

cν = Nν(0)
93ζ (5)

128π4T 4
c

, Qν = cν

30
h̄4v4

ν , Lν = cν

9
h̄2v2

ν .

(22)

We stress that the τ expansion of the single-band free-
energy functional is obtained from the initial expansion of
this functional in powers of the order parameter and its
spatial derivatives, which in our work is similar to that of
Refs. 19–21 and 23. It is known19–21,23 that the same structure
of the expansion retains also for dirty systems with the
corresponding changes in the coefficients of Eqs. (18) and
(22). However, the term proportional to bν/36 in Eq. (20)
follows from the field-induced corrections to the free-electron
Green’s function beyond the Gor’kov approximation and was
overlooked in the previous derivations. It is also worth noting
that besides the Josephson-like coupling between bands, an
additional interband coupling can appear in very dirty systems
due to significant interband scattering; see, e.g., Ref. 29.
Consideration of such additional coupling effects is beyond
the scope of the present paper.
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V. EXPANSION OF THE GAP EQUATION

The series expansion for the gap equation (7) is obtained as
a stationary point of the free-energy functional with the density
given by Eq. (12). The three leading terms in Eq. (12) produce
the first three equations in the series expansion of Eq. (7).
Obviously, the same equations can be obtained directly from
Eq. (7). We note that calculations of the functional derivatives
of the free-energy functional with the density (12) are almost
equivalent to those for the single-band case (given in Ref. 24),
which enables us to skip the technical details in the present
paper.

A. Equation for Tc

Taking the functional derivative of the free energy with the
density f (−1), see Eq. (13), with respect to �(0)∗

ν , we obtain
two equations that can be written in the following matrix form:

Ľ ��(0) = 0, (23)

where Ľ is defined by Eq. (14). The condition for the existence
of a nontrivial solution to Eq. (23), i.e., det Ľ = 0, yields the
equation for the critical temperature Tc of the two-band system
as

[g22 − N1(0)GA][g11 − N2(0)GA] = g2
12, (24)

with A defined by Eq. (15). This equation has two solutions
for A, and we must choose the one with the largest Tc (with
the exception noted in Ref. 30).

When Eq. (24) is satisfied, the solution to Eq. (23) is
proportional to the eigenvector of the matrix Ľ with zero
eigenvalue, i.e.,

��(0)(r) = ψ(r)

(
S−1/2

S1/2

)
, (25)

where S is defined by

S = 1

g12
[g22 − N1(0)GA], (26)

and ψ(r) is an unknown function that will be specified later.
Equation (25) leads to the conclusion noted earlier in

Refs. 6 and 7, that to the leading order in τ , the band order
parameters are strictly proportional to one another �

(0)
1 (r) ∝

�
(0)
2 (r), where their position dependence is governed by ψ(r).

However, unlike the analysis of the earlier works, following the
separation of the band components in the matrix gap equation,
here the proportionality is established already in the leading
order of the τ expansion of the matrix gap equation, following
simply from the form of a solution consistent with the equation
for Tc.

B. Ordinary GL theory

As the next step, we calculate the functional derivative of
the free energy with density f (0) [see Eq. (16)] with respect to
�(0)∗

ν , which yields

Ľ ��(1) + �W [ ��(0)] = 0, (27)

where the band components Wν of �W are given by

Wν = aν�
(0)
ν + bν

∣∣�(0)
ν

∣∣2
�(0)

ν − KνD2�(0)
ν . (28)

Comparing this with the GL theory for the single-band
system,24 one immediately notices that Eq. (27) mixes con-
tributions ��(0) and ��(1). This is an important general feature
of the two-band formalism that persists in higher orders in τ :
both ��(n) and ��(n+1) are present in the n-th order equation.

In spite of this feature of the τ expansion for the two-band
system, it is easy to construct a recursive solution scheme, in
which ��(n) is calculated independently from ��(n+1). This is
achieved when ��(n)’s are represented as a linear combination
of the two basis vectors

�η+ =
(

S−1/2

S1/2

)
, �η− =

(
S−1/2

−S1/2

)
. (29)

In particular, ��(1) is written as

��(1)(r) = ϕ+ (r) �η+ + ϕ− (r) �η− , (30)

where the functions ϕ± (r) are to be specified later.
Substituting Eqs. (25) and (30) into Eq. (27) and keeping

in mind that Ľ�η+ = 0, we obtain

ϕ− Ľ�η− + �W [ψ �η+] = 0, (31)

where ϕ+ does not appear. Projecting this equation onto �η+
and recalling that �η †

+ Ľ = 0, we obtain the equation for ψ in
the familiar GL form

aψ + b|ψ |2ψ − KD2ψ = 0, (32)

with the coefficients

a = S−1a1 + Sa2, b = S−2b1 + S2b2,
(33)

K = S−1K1 + SK2.

It is easy to verify that Eqs. (25), (32), and (33) reproduce
the GL theory for the two-band system derived earlier in
Refs. 6 and 7. Thus, a consistent implementation of the two-
band GL theory produces the effectively-single-component
GL formalism but with the parameters averaged over the
contributing bands. However, one should keep in mind that
ψ cannot be interpreted as an excitation gap but it is related to
the band energy gaps through Eq. (25).

The accompanying Maxwell equation in the same order in
τ is derived by calculating the functional derivative of the free
energy with density f (0) with respect to A(0). This yields

1

4π
rotB(0) =

∑
ν=1,2

Kν iν = Ki, (34)

where i is obtained from Eq. (21) by substituting ψ for �(0)
ν .

As follows from Eq. (34), the supercurrent density j to this
order is given by j(0) = Kci. The band contribution to j(0) is
j(0)
ν = Kνciν .

Substituting Eq. (25) into Eq. (16), the free-energy density
f (0) becomes

f
(0)
st = B(0)2

8π
+ a|ψ |2 + b

2
|ψ |4 + K|Dψ |2. (35)

Notice that f (0)
st generates both Eqs. (32) and (34). However,

an important limitation is that Eq. (35) contains no information
about the contribution of ��(1) to f (0) as the corresponding
terms are zero at the stationary point.
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C. Extended GL formalism

To construct the extended GL formalism we need to
derive equations that control the next-to-leading order in τ

contributions to the band order parameters and the vector
potential, i.e., �(1)

ν and A(1). The spatial dependence of �(1)
ν is

determined by ϕ± . The component ϕ− is calculated by simply
projecting Eq. (31) onto �η− . The resulting equation reads as

ϕ− = − G

4g12
(αψ + β|ψ |2ψ − �D2ψ), (36)

with the coefficients defined by

α = S−1a1 − Sa2, β = S−2b1 − S2b2,
(37)

� = S−1K1 − SK2.

In turn, the equation for ϕ+ is obtained by taking the
functional derivative of the free energy with density f (1) with
respect to �(0)

ν . After tedious but straightforward calculations
(similar to those in the single-band case; see Ref. 24), one
arrives at

Ľ ��(2) + �Y [ ��(0), ��(1)] = 0, (38)

where the band component Yν of the vector �Y is given by

Yν = aν�
(1)
ν + bν

(
2
∣∣�(0)

ν

∣∣2
�(1)

ν + �(0)2
ν �(1)∗

ν

)
−KνD2�(1)

ν − Fν

[
�(0)

ν

]
, (39)

with

Fν = −aν

2
�(0)

ν + 2KνD2�(0)
ν + Qν

[
D2

(
D2�(0)

ν

)
− i

4e

3h̄c
rotB(0) · D�(0)

ν + 4e2

h̄2c2
B(0)2�(0)

ν

]
− bν

36

e2h̄2

m2c2
B(0)2�(0)

ν − 2bν

∣∣�(0)
ν

∣∣2
�(0)

ν

−Lν

[
2�(0)

ν

∣∣D�(0)
ν

∣∣2 + 3�(0)∗
ν

(
D�(0)

ν

)2

+�(0)2
ν

(
D2�(0)

ν

)∗ + 4
∣∣�(0)

ν

∣∣2
D2�(0)

ν

]
+ cν

∣∣�(0)
ν

∣∣4
�(0)

ν − i
2e

h̄c
Kν [A(1),D]+ �(0)

ν , (40)

and [A(1),D]+ = (A(1) · D) + (D · A(1)).
Again one notes that, similarly to Eq. (27), Eq. (38) includes

two unknown quantities ��(1) and ��(2). The solution to the
obtained equations proceeds in the same fashion as shown
above, i.e., by using the representation

��(2) = χ+(r)�η+ + χ−(r)�η− , (41)

where χ+(r) and χ−(r) are to be found. This representation is
used together with Eqs. (25) and (30) to rewrite Eq. (38) as

χ−Ľ�η− + �Y [ψ �η+ , ϕ+ �η+ + ϕ− �η−] = 0, (42)

which does not contain χ+ . Projecting Eq. (42) onto �η+ , we
obtain

aϕ+ + b(2|ψ |2ϕ+ + ψ2ϕ∗
+) − KD2ϕ+ = F [ψ,ϕ− ], (43)

where the inhomogeneous term is defined as

F = −αϕ− − β(2|ψ |2ϕ− + ψ2ϕ∗
− ) + �D2ϕ−

+ S−1/2F1(S−1/2ψ) + S1/2F2(S1/2ψ). (44)

The second line in Eq. (44) is obtained from Fν in Eq. (40),
in which ψ substitutes �(0)

ν and the band coefficients are
replaced as

aν → a, bν → b(b̃), cν → c̃,
(45)

Kν → K, Qν → Q, Lν → L.

Here a, b, and K are given by Eq. (33) and the remaining
coefficients are defined as

b̃ = S−1b1 + Sb2, c̃ = S−3c1 + S3c2,
(46)

Q = S−1Q1 + SQ2, L = S−2L1 + S2L2.

Note that there are two coefficients connected with bν in
Eq. (44): b appears in the term proportional to |ψ |2ψ , whereas
b̃ is a factor for the term proportional to B(0)2ψ . We also note
that there is only one coefficient generated by cν , and notation
c̃ is used to distinguish it from the speed of light.

The supplementary Maxwell equation for the next-to-
leading order in τ correction to the vector potential, A(1), is
obtained from f (1) by taking the functional derivative with
respect to A(0). Substituting Eqs. (23) and (30) into the obtained
expressions, one gets

1

4π
rotB(1) = Ki+ + �i− + J, (47)

where i+ and i− are defined as

i+ = i
2e

h̄c
(ψD∗ϕ∗

+ + ϕ+D∗ψ∗ − ϕ∗
+Dψ − ψ∗Dϕ+ )

− 8e2

h̄2c2
A(1)|ψ |2, (48)

i− = i
2e

h̄c
(ψD∗ϕ∗

− + ϕ−D∗ψ∗ − ϕ∗
−Dψ − ψ∗Dϕ− ), (49)

and J is given by

J = (2K − 3L|ψ |2)i + Qi′ + Q
3

rot rot i

+Q 8e2

h̄2c2

[
rot(B(0)|ψ |2) − 1

3
|ψ |2rotB(0)

]
− b̃

18

e2h̄2

m2c2
rot(B(0)|ψ |2), (50)

with

i′ = i
2e

h̄c
[ψ(DD2ψ)∗ + D2ψ D∗ψ∗ − (D2ψ)∗ Dψ

−ψ∗DD2ψ]. (51)

The last expression can be further simplified to

i′ = 2

K (a + b|ψ |2)i (52)

with the help of Eq. (32).
In summary, solving Eqs. (30), (36), (43), and (47) fully

defines the next-to-leading order in τ contributions to �ν

and A.

D. Validity of the expansion

The validity of the formalism developed above relies on
the relevance of the overall expansion in τ as well as on the
accuracy of the approximation when only the two lowest orders
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are retained. The relevance of any expansion is limited by the
convergence of the resulting series, which is defined by the
presence of the critical points and singularities in the function
they describe. In our case this function is the solution to the
BCS gap equation that has two critical points. The first one
is the transition temperature Tc, which is the starting point
of our expansion and so does not influence the convergence
of our series in τ . The second critical point appears due to
the presence of two bands. One can see that in the limiting
case of the vanishing interband coupling, each of the two
decoupled condensates has its own critical temperature. This
is reflected in the fact that Eq. (24) has two solutions: Tc and
T ∗ < Tc. The second critical point is approached at T = T ∗ in
the limit g12 → 0: Here T ∗ becomes the critical temperature
of a weaker band taken as an independent superconducting
system. This is why at sufficiently small interband couplings
one observes pronounced changes in the properties of the
weaker band close to T ∗, which prompted the name “hidden
criticality.”31 Even though formally the τ expansion will not
break at T ∗ for g12 
= 0, one can hardly expect that keeping
only the two lowest-order terms in the expansion will be
sufficient to capture both the critical behavior near Tc and
the hidden criticality around T ∗ (see the discussion of our
numerical results below in Sec. VII). However, when the
interband coupling increases, effects due to the presence of
the second critical point are smoothed and eventually washed
out. Results of Ref. 31 make it possible to find [based on
Eq. (4) in this reference] that the impact of the hidden
criticality is controlled by the parameter (τ ∗/δ)1/3, where
τ ∗ = 1 − T ∗/Tc and δ = λ12/(λ11λ22), with the dimensionless
coupling constants λij = gijN (0) and N (0) = ∑

j Nj (0) the
total DOS. It is, therefore, expected that at moderate or strong
interband couplings the accuracy of the formalism will be
sufficient also in the vicinity of T ∗ and, possibly, even at lower
temperatures.

Special care should also be exercised when Tc ≈ T ∗. Strict
equality of these temperatures cannot be reached in the two-
band case. However, when g11N1(0) = g22N2(0), one obtains
Tc = T ∗ in the limit g12 → 0. In this case S defined by Eq. (26)
becomes independent of g12, and thus ϕ− in Eq. (36) diverges
for g12 → 0. It is clear that the τ expansion becomes ill defined.
However, to our knowledge, this very special situation is not
realized in known two-band superconductors.

To reiterate, the above arguments suggest that the extended
GL theory is well applicable for T ∗ < T < Tc and even at
lower temperatures provided that the interband coupling is
not extremely small. To check this conclusion, in Sec. VII
we compare results of the extended GL theory with those
of the full-BCS treatment in a number of realistic situations
with different interband couplings. This comparison will fully
confirm our expectations about the validity of the extended GL
formalism.

VI. INTERPLAY OF CONDENSATES

The most interesting aspect of multiband superconductivity
is how the interplay between the condensate components
manifests itself in the properties of the system. It has been
demonstrated in the previous section that accounting for terms
of the same accuracy to the two lowest orders in τ leads to

the effectively-single-band GL theory with the two-band order
parameters simply proportional to one another. However, in the
leading correction to this theory, the structure of the relevant
equations dictates that the spatial distributions of different
condensates become different, leading to a competition of
the different length scales which is absent in single-band
superconductors. Furthermore, microscopic parameters of
the bands enter both the effectively-single-band GL theory
and the leading correction to it as follows from Eqs. (33)
and (37). Therefore, both bands always contribute to all
pertinent characteristics of the system. This may also lead to
considerable deviations of the system properties as compared
to the single-band case. Below we provide two examples,
where the interplay of the band condensates is essential;
i.e., (i) we consider the next-to-leading contribution in τ to
the thermodynamic critical magnetic field and (ii) investigate
how the difference in the spatial profiles of the two-band
condensates depends on the basic microscopic parameters.

A. The thermodynamic critical magnetic field

The thermodynamic critical magnetic field measures the
condensation energy according to the well-known relation

H 2
c

8π
= fn,B=0 − fs,B=0, (53)

where fs,B=0 is the density of the free energy for a homo-
geneous superconducting state in the absence of the applied
magnetic field. The calculation of the condensation energy
within the extended GL theory is performed in the same
manner as for the single-band case24 and yields the following
result:

Hc = H (0)
c + τH (1)

c , H (0)
c =

√
4πa2

b
,

(54)

H (1)
c /H (0)

c = −1

2
− ac̃

3b2
− Ga

4g12

(
α

a
− β

b

)2

,

where we stay with the scaled magnetic field [see Eq. (11)]. The
lowest-order contribution to Hc follows from the effectively-
single-band equation (32). Its form thus coincides with the
result from the ordinary single-band GL theory, except for the
fact that now the coefficients a and b comprise contributions
of the two bands. However, the leading correction to the
thermodynamic critical magnetic field H (1)

c differs from its
single-band counterpart24 not only because of the different
coefficients a, b, and c̃. There is an extra term proportional
to G.

For a further analysis, it is convenient to recast the
expression for H (1)

c in the form

H (1)
c /H (0)

c = −1

2

[
1 − 31ζ (5)

49ζ 2(3)

(1 + S6χ )(1 + S2χ )

(1 + S4χ )2

]
+ λ11λ22 − λ2

12

4λ12

1 + S2χ

S(1 + χ )

×
(

1 − S2χ

1 + S2χ
− 1 − S4χ

1 + S4χ

)2

, (55)

where χ = N2(0)/N1(0) is the ratio of the band-dependent
DOS’s and λij is the dimensionless coupling constant defined
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FIG. 1. (Color online) H (1)
c /H (0)

c as a function of χ = N2(0)/N1(0) as calculated from the extended GL formalism [see Eqs. (53)–(55)] for
the coupling parameters of MgB2 (a), OsB2 (b), and LiFeAs (c). The dashed line displays the result for the single-band superconductor given
by Eq. (57): H (1)

c /H (0)
c = −0.273. The inset in panel (a) shows the results from the two-component (TC) GL-like model (see Sec. VII A) given

by Eqs. (65) and (66).

in Sec. V D. The quantity S introduced in Eq. (26) can also be
rewritten as

S = 1

2λ12

[
λ22 − λ11

χ
+

√(
λ22 − λ11

χ

)2

+ 4
λ2

12

χ

]
. (56)

Physically, one can expect that the single-band case is
recovered in the limit χ → 0 where band 1 predominates.
The same holds for the limit χ → ∞ where in turn, band 2
becomes dominant. As is easily seen, in both limits Eq. (55)
indeed reproduces the single-band result24

H (1)
c /H (0)

c |single = −1

2

[
1 − 31ζ (5)

49ζ 2(3)

]
= −0.273. (57)

However, at intermediate values of χ , Eq. (55) exhibits
significant deviations from the single-band theory due to the
interplay between the band condensates. This is demonstrated
in Fig. 1, where the ratio H (1)

c /H (0)
c is plotted as a function

of χ . In the calculations we use three sets of the dimen-
sionless coupling constants: (a) λ11 = 1.88, λ22 = 0.5, and
λ12 = 0.21 extracted from the data for MgB2 (see Ref. 32);
(b) λ11 = 0.39, λ22 = 0.29, and λ12 = 0.0084 for OsB2 (see
Ref. 33); and (c) λ11 = 0.63, λ22 = 0.642, and λ12 = 0.061
for LiFeAs (see Ref. 34). Figure 1 shows pronounced changes
in H (1)

c /H (0)
c with χ in all cases, especially notable for the

MgB2-parameters in (a) and for the OsB2-parameters in (b).
For the intermediate values of χ the correction can even
change sign and becomes positive: at χ ≈ 3.5–4.0 in (a) and
at χ ≈ 1.3 in (b). This contrasts the single-band case, for
which such a correction is always negative and independent
of the microscopic parameters. We should emphasize here
that the value χ ≈ 1.22 experimentally obtained for OsB2

36

is very close to the range where H (1)
c /H (0)

c exhibits the most
pronounced deviation from the single-band result.

B. Difference in length scales of the two-band condensates

It has been demonstrated in Sec. V that the ordinary GL
theory, defined by Eqs. (25), (32), and (34), leads to the
same spatial profile for the two-band condensates, although the
parameters of the effectively-single-component GL equation
(32) do depend on both bands. However, invoking the extended

GL formalism, one can easily see from Eqs. (30), (36), (43),
and (47) that differences in the spatial characteristics of the
band condensates appear already in the leading correction
to the ordinary GL theory. As follows from Eq. (30), there
are two terms in ��(1). The first term is proportional to �η+
and has the same structure as Eq. (25). Its presence does not
induce any difference in the spatial profiles of the condensates.
However, the second term is proportional to the second basis
vector �η− that has a component orthogonal to �η+ . Therefore,
when ϕ− 
= 0, one immediately finds that �

(1)
1 (r) is not

proportional to �
(1)
2 (r). Thus, the band order parameters �1(r)

and �2(r) are generally specified by different spatial profiles,
and this difference disappears only in the limit T → Tc, which
reproduces the result of our previous short study.7 Notice that
the present derivation follows from the general structure of the
τ expansion for the matrix gap equation and is significantly
simpler than the comparative analysis of the separate equations
for �

(1)
1 and �

(2)
2 performed in Ref. 7.

One might expect that the difference in the healing lengths
of the two band condensates will not be pronounced, as the
effect manifests itself only in the corrections to the ordinary
GL theory. However, this is the case only when the system
is very close to Tc, where the relevant physics follows from
the effectively-single-component GL equation. Numerical
analysis of the extended GL equations35 performed for the
parameters of MgB2 has revealed that the healing lengths
of the two-band condensates may differ by a factor of 1.6
already at τ ∼ 0.1. An important reason for such a pronounced
enhancement of the deviation between the healing lengths with
τ is that the contribution proportional to ϕ− appears in �1

and �2 with opposite signs; see Eq. (30). This demonstrates
that the extended GL formalism constructed in the previous
sections is capable of capturing noticeable alterations in the
spatial characteristics of band condensates.

The technique developed in the previous sections makes
it possible to easily check, based on the general structure
of the theory, the impact of the microscopic parameters on
the difference in the length scales of the two condensates.
In particular, it is instructive to verify whether there exists a
parametric choice for which this difference becomes negligible
even in the next-to-leading contribution to �ν . To this goal,
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we use Eq. (32) to rewrite Eq. (36) in the form

ϕ− = − G

4g12

[(
α − �

Ka

)
ψ +

(
β − �

Kb

)
|ψ |2ψ

]
. (58)

As seen, ϕ− becomes small when all the coefficients α, β, and
� approach zero. This is true for almost equivalent bands, but
the length scales are trivially expected to match each other
in this case. Less trivial is the case when α − (�/K)a = β −
(�/K)b = 0. This may be achieved for nonequivalent bands
and for this case the condensates remain “spatially equivalent”
in the next-to-leading order in τ . Another nontrivial case is
G → 0 (see Ref. 30). Here the spatial distribution of the
condensates remains equivalent at all temperatures. This is
seen from the general structure of the τ expansion for the gap
equation. In particular, projecting Eq. (42) onto �η− one finds
that χ− disappears in this limit.

As a short summary of this analysis, we stress that the
difference of the spatial lengths of the two-band condensates
depends strongly on the governing parameters (couplings, the
band DOS’s, etc.): It can be pronounced even at τ ∼ 0.1 but it
can also be negligible in some special situations. This certainly
demonstrates that there is no justification to a priori ignore
this important feature of a two (many) band system by, e.g.,
following the misleading argument that the difference in the
spatial profiles of the band condensates in the extended GL
formalism is by construction small (see the note added in
proof in Ref. 6).

VII. EXTENDED GL THEORY VERSUS EXISTING
THEORETICAL APPROACHES

Advantages of the extended GL theory are best illustrated
by comparing it with existing theoretical approaches. Below
we confront the constructed theory with the two-component
GL-like model (TC)4,25 that is often used in the analysis of the
properties of two-band superconductors. In addition, as a test
for an accuracy of the extended formalism (see the discussion
in Sec. V D), we also provide a detailed comparison of its
results with those of the full BCS treatment for the spatially
homogeneous case.

A. Two-component model and the τ expansion

The TC model4,25 is obtained by truncating the expansion
of Rν in powers of �ν and its gradients [see Eqs. (8) and (9)] to
keep the leading power of the gradient and the first nonlinear
term in �ν (similar to the well-known Gor’kov procedure
for single-band superconductors). This results in (using the
unscaled variables)

R(TC)
ν = a(TC)

ν �ν − b(TC)
ν |�ν |2�ν + K(TC)

ν �2�ν, (59)

where � is obtained from D when substituting A for A(0). Two
variants of the TC model are commonly used, which differ
by the temperature dependence of their coefficients. In the
first version (which we abbreviate as TC1) the coefficients are
chosen as in the standard Gor’kov derivation: b(TC1)

ν and K(TC1)
ν

are equal to bν andKν of Eq. (18), and the remaining coefficient
is taken as a(TC1)

ν = Nν(0)A − aντ , where A and aν are given
by Eqs. (15) and (18), respectively. In the second variant (TC2)
the coefficients retain their full temperature dependence, i.e.,

a(TC2)
ν = Nν(0)A − Nν(0) ln(T/Tc), whereas b(TC2)

ν andK(TC2)
ν

are equal to bν and Kν of Eq. (18) but with Tc replaced by T .
The valuable insight is obtained when applying the τ

expansion for the TC model and confronting the resulting
series with the extended GL formalism. When expanding Rν

of Eq. (59) in τ and keeping the two lowest orders, one obtains
Eqs. (23) and (27). Thus, in the limit τ → 0 both variants of
the TC model map onto the effectively-single-band GL theory
discussed in Secs. V A and V B. We remark that this fact has
been already pointed out in Ref. 6.

Matching terms of the third order in the τ expansion, one
obtains Eqs. (38) and (39) where, however, Fν is not given by
Eq. (40) but reads as

F (TC1)
ν = −i

2e

h̄c
Kν [A(1),D]+ �(0)

ν (60)

for the TC1 version and

F (TC2)
ν = −aν

2
�(0)

ν − 2bν

∣∣�(0)
ν

∣∣2
�(0)

ν + 2KνD2�(0)
ν

− i
2e

h̄c
Kν [A(1),D]+ �(0)

ν (61)

for the TC2 variant. As seen, for the next-to-leading order
contribution to the order parameter �(1)

ν , the TC model fails to
reproduce the term proportional to �η+ . Indeed, within the TC
model the equation for ϕ+ reads as

aϕ+ + b(2|ψ |2ϕ+ + ψ2ϕ∗
+) − KD2ϕ+ = F (TC), (62)

where F (TC) for the TC1 variant is written as

F (TC1) = −αϕ− − β(2 |ψ |2ϕ− − ψ2ϕ∗
−) + �D2ϕ−

− i
2e

h̄c
K [A(1),D]+ψ, (63)

and for TC2 model it is of the form

F (TC2) = −αϕ− − β(2 |ψ |2ϕ− − ψ2ϕ∗
− ) + �D2ϕ− − a

2
ψ

− 2b|ψ |2ψ + 2KD2ψ − i
2e

h̄c
K [A(1),D]+ψ, (64)

which should be compared with Eq. (43), obtained from the
full expansion.

The presence of incomplete higher-order contributions in
τ in the TC formalism has been first noticed in Ref. 6.
As seen from our analysis, the underlying reason for this
feature is found in the structure of the τ expansion for the
matrix gap equation. As already mentioned in Sec. V B,
the expansion always mixes ��(n) with ��(n+1) [see, e.g.,
Eq. (27) where the leading-order term in the order parameter
��(0) is accompanied by the next-to-leading correction ��(1)].
Therefore, notwithstanding the concrete truncation of Rν ,
��(n+1) is a nonzero functional of ��(0), . . . ��(n). As a result, �ν

is always given by an infinite series in powers of τ . We note
that this problem does not occur in the single-band formalism,
where Ľ becomes a number (L). Solving the single-band
counterpart of Eq. (23), one finds L = 0 and this eliminates
the mixing mentioned above. In this case the appearance of the
contributions �(1),�(2), etc., depends only on the truncation
of Rν . In particular, the Gor’kov truncation simply results in
� = �(0) for the single-band case.

144514-9



A. VAGOV et al. PHYSICAL REVIEW B 86, 144514 (2012)

The presence of terms of arbitrary orders in the TC model
does not represent an advantage, as only some of all relevant
contributions in each order are accounted for. It can lead to
serious inconsistencies and wrong predictions. One example
of this type is obtained by calculating the leading correction
to the thermodynamic critical magnetic field in the TC model,
which yields
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for the TC1 variant and
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for the TC2 version. Comparing this with Eq. (54), one can see
that the TC1 model always overestimates the next-to-leading
contribution to the thermodynamic magnetic field, while the
TC2 variant always underestimates it. This is illustrated in the
inset in Fig. 1(a), where the results for H

(c)
1 as calculated from

the TC1 and TC2 variants of the two-component model are
compared with those of the extended GL theory. While the
dependence of H (1)

c on χ is similar for all the data sets given in
the inset, it is seen that the results for both versions of the TC
model deviate by more than 100%. We found that the same
conclusion holds for other sets of the coupling parameters.
Moreover, H (1)

c is always positive for the TC1 variant while
it is negative for the TC2 version. So, the TC model fails
to reproduce a change in the sign of H (1)

c that occurs when
changing χ in panels (a) and (b). Last but not least, the TC1
and TC2 data do not recover the single-band result of Eq. (57)
in the limits χ → 0,∞.

B. Comparison to the full BCS solution

Now we compare results of the extended GL model with
a numerical full-BCS solution for the spatially homogeneous
case; see Fig. 2. In the calculation we choose FeSe0.94 as the
prototype two-band system, with the microscopic parameters
from Ref. 37: h̄ωc = 40 meV, λ11 = 0.482, λ22 = 0.39, and
χ = 1.0. In order to test different regimes, we perform
calculations for the following set of interband couplings: λ12 =
0.001, 0.005, 0.03, and 0.15. Notice that the first value in the
list is the interband coupling parameter reported for FeSe0.94

in Ref. 37, but we also consider larger values following
existing opinion that the reported value of λ12 could be an
underestimation. The corresponding TC1 and TC2 results are
also given in Fig. 2.

The temperature-dependent band gaps �1 (left column of
panels in Fig. 2) and �2 (middle column of panels in Fig. 2)
show a very good quantitative agreement between the extended
GL model and the full-BCS solution for both bands in the
temperature range T ∗ < T < Tc. Note that the unscaled gaps
are shown in Fig. 2 [see Eq. (10)]. Here T ∗ ≈ 0.5Tc roughly
coincides with the critical temperature of the second (weaker)
band taken as an independent superconducting system. The
agreement for the stronger-band gap, �1, is excellent at all
temperatures, deviating from the BCS solution by less than
5%–6% even at zero temperature, and this accuracy holds for
all values of the interband coupling.

Results of the extended GL formalism for the smaller gap
�2 deviate considerably from the BCS solution at T < T ∗
only at extremely small interband couplings, i.e., λ12 
 0.001–
0.005. This agrees with the above discussion on the validity
domain of the τ expansion in Sec. V D, where we argued that
the expansion would lead to poor results in the vicinity of the
hidden critical point, i.e., for T = T ∗ and λ12 → 0. However,
as the coupling strength increases, the hidden-critical behavior
around T ∗ is washed out. As is mentioned in Sec. V D, the
impact of the hidden criticality at T ∗ is controlled by the
parameter (τ ∗/δ)1/3, which for the chosen interband couplings
yields approximately 4, 3, 1.5, and 0.7, respectively. For
sufficiently large interband couplings, (τ ∗/δ)1/3 approaches
unity and the accuracy of the expansion is expected to improve.
Indeed, as one can see in Figs. 2(c) and 2(d), the results of the
extended GL theory for �2 become considerably closer to the
BCS solution: For the largest coupling constant the deviation
between the extended-GL and BCS curves is almost negligible
at T = T ∗ and to within 15% at T = 0.

The validity of the formalism is further illustrated by
calculating the temperature dependence of the thermodynamic
critical magnetic field Hc being a measure for the condensation
energy (right column of panels in Fig. 2). A comparison with
the BCS solution shows excellent agreement even for rather
low temperatures for all values of the interband coupling. One
notes the absence of any signatures of the hidden critical be-
havior in Hc at T ∗. This is not surprising, given that in this case
the largest contribution to Hc is provided by the gap �1 that
exhibits no influence of the hidden criticality and is described
remarkably well by the extended GL theory for any parameters.

A comparison with the TC models, whose results are also
given in Fig. 2, reveals a generally superior accuracy of the
extended GL approach.39 This conclusion holds for �1 and Hc

at all temperatures as well as for �2 at T ∗ < T < Tc, which
is seen in the insets in the panels for �2 in Figs. 2(a) and 2(b).
Furthermore, at larger interband couplings, see Figs. 2(c) and
2(d), the extended GL theory yields much better results for �2

at all temperatures.
The only aspect in which the TC model seems to be

advantageous is the description of the gap of the weaker
band �2 in the immediate vicinity of T ∗ at extremely small
interband couplings λ12 = 0.001 and 0.005. In particular, as
seen from the panels for �2 in Figs. 2(a) and 2(b), the TC2
version of the two-component model partly reproduces a sharp
increase in the second-band gap as temperature decreases
below T ∗. However, this is a rather speculative advantage
because in the same temperature domain, the TC2 model
predicts a nonphysical decrease in �1 at smaller T .

The shortcomings of the TC models in the vicinity of T ∗
follow from the fact that at zero interband coupling they yield
two decoupled single-band GL equations, each valid in the
vicinity of the transition temperature of the corresponding
band. Close to the lower critical temperature, i.e., near T ∗ taken
for λ12 → 0, one of these GL equations yields �2 to a good
precision. However, �1, calculated from the other equation,
exhibits a poor accuracy in this temperature range because
T ∗ is sufficiently smaller than Tc (Tc approaches the critical
temperature of the stronger band in the limit λ12 → 0).

In turn, the accuracy of the TC1 model in the vicinity of T ∗
strongly depends on the choice of the microscopic parameters:
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FIG. 2. (Color online) The band excitation gaps �1,2, and the thermodynamic critical magnetic field Hc as functions of T calculated in the
spatially homogeneous case for the material parameters of FeSe0.94 (see the text) using the full BCS gap equation (solid curve), the extended GL
theory (dashed curve), and the TC1 (short-dashed curve) and TC2 (dotted curve) models. The interband coupling constant varies as λ12 = 0.001
(a), λ12 = 0.005 (b), λ12 = 0.03 (c), and λ12 = 0.15 (d). Insets in panels (a) and (b) zoom the temperature dependence for �2 in the vicinity of
Tc where the extended GL theory almost coincides with the BCS solution.

It looks reasonable for λ12 = 0.005 but rather poor for λ12 =
0.001. This is somewhat random: One cannot unambiguously
select the TC1 model, as its validity varies with changing
the material parameters. Obviously, one can improve accuracy
when coefficients are selected from the best fit to known data,
as is often proposed in practical application of the TC models;

see, e.g., Ref. 38. This procedure, however, invalidates the
predictive power of the approach.

As opposed to the TC model, the extended GL theory
demonstrates a very good quantitative agreement with the
full-BCS solution for any set of the microscopic parameters
and in a surprisingly wide temperature range. This agreement
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is achieved without any additional assumptions and is fully
consistent with the arguments on the validity of the τ

expansion. Notice that our conclusions are not sensitive to the
choice of FeSe0.94 for the calculation in Fig. 2: Similar results
are obtained with the parameters of V3Si, OsB2 and MgB2.

VIII. CONCLUSIONS

In summary, we highlight here the key achievements
presented in this article.

a. Derivation of the extended Ginzburg-Landau formalism.
We have presented a detailed derivation of the extended GL
formalism for a clean s-wave two-band superconductor. This
derivation follows the ideas briefly outlined in our earlier
letter7 and generalizes our recent analysis of the single-band
system.24 The formalism is based on a systematic expansion
of the free-energy functional and the matrix gap equation
in powers of the deviation from the critical temperature
τ = 1 − T/Tc. We have calculated the three lowest orders of
this expansion that yield the equation for Tc, the ordinary GL
theory, and the leading correction to it, which all together
are referred to as the extended GL formalism. Unlike the
analysis in our earlier work7 based on an explicit separation of
the two coupled gap equations, the present direct application
of the τ -expansion procedure to the matrix gap equation is
technically simpler, more elegant, offers a more physically
transparent interpretation, and points the way to a further
extension of the derivation to the case of truly multiband
superconductors.

b. Solving the formalism and main results. The next-
to-leading in τ contributions to the band order parameters
have been found to satisfy inhomogeneous linear differential
equations. They can be easily solved numerically and, in
many cases, even analytically. The extended GL formalism
constructed via the τ expansion does not suffer from unphys-
ical solutions which often hinders the applicability of other
extended GL theories.

Analytical results of the present work reiterate our earlier
conclusion7 that, apart from some very special cases, the band
condensates in a two (multiple) band superconductor have
generally different spatial length scales, and the extended GL
formalism can capture important physics stemming from this
difference. In addition, we have analytically calculated the
thermodynamic critical magnetic field of a two-band super-
conductor in the lowest and next-to-lowest orders in τ , which
will be of further use to both theory and experiment. Finally,

we have demonstrated a strong relevance of the interplay
between the two-band condensates, by pointing out significant
deviations of the properties of the two-band superconducting
system from the single-band case. For example, contrary to
single-band superconductors, the leading order correction to
the thermodynamic critical magnetic field can be of different
sign depending on the material parameters in the two-band
case, thereby changing the temperature dependence of the
critical field from concave to convex.

c. Comparison with other theories. We have compared
results from the extended GL theory with a numerical full-BCS
solution for the spatially homogenous case, calculated for
the microscopic parameters of FeSe0.94 but with different
values of the interband coupling. A very good quantitative
agreement with the full-BCS calculations has been found
down to surprisingly low temperatures T/Tc ≈ 0.2, certainly
far below the formal usual justification of the GL theory.

We have shown, on examples of several materials, that
the extended GL theory has an overall superior quantitative
accuracy in comparison with the popular variants of the TC
model. The reason for this is that the TC model only captures
correctly the lowest-order contribution in τ to the band order
parameters and fails to produce all the relevant terms in the next
orders. This intrinsic shortcoming of the TC model is crucial
in many situations, e.g., in studies of the disparity between
the length scales of two condensates that manifests itself only
in the next-to-lowest order of the τ expansion for the band
order parameters. Thus, revisiting those problems investigated
previously within the TC formalism is certainly needed.

We finally conclude that the extended GL theory provides a
reliable formalism, with a clearly defined applicability range,
that will be generally very useful in theoretical studies of
electronic, magnetic, calorimetric, and other properties of two-
band superconductors. To identify one particular direction, the
most promising application of the extended GL formalism
will be the search for exotic superconducting states arising
from the competition between different length scales of band
condensates.
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