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Stability of fractional vortex states in a two-band mesoscopic superconductor
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‘We investigate the stability of noncomposite fractional vortex states in a mesoscopic two-band superconductor
within the two-component Ginzburg-Landau model. Our analysis explicitly takes into account the relationship
between the model parameters and microscopic material parameters, such as partial density of states, Fermi
velocities and elements of the electron-phonon coupling matrix. We have found that states with different phase
winding number in each band (L, # L,) and fractional flux can exist in many different configurations, including
rather unconventional ones where the dominating band carries larger winding number and states where |L; —
L,| > 1. We present a detailed analysis of the stability of the observed vortex structures with respect to changing
the microscopic parameters, showing that, in the weak coupling case, fractional vortex states can be assessed in
essentially the whole range of temperatures and applied magnetic fields in which both bands are active. Finally,
we propose an efficient way of increasing the range of parameters for which these fractional vortex states can
be stabilized. In particular, our proposal allows for observation of fractional vortex structures in materials with
stronger coupling, where those states are forbidden at a homogeneous field. This is accomplished with the help

of the stray fields of a suitably prepared magnetic dot placed nearby the superconducting disk.
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I. INTRODUCTION

Many properties of the electronic condensate in a macro-
scopic quantum system can be unveiled by rotating it and
studying the structure of the induced quantized vortices.! In
particular, the amount of magnetic flux carried by Cooper-pair
vortices in bulk conventional superconductors determines
whether the material is of type I or type IL.> In the first
case, vortices tend to merge into large flux domains carrying
many flux quanta. Conversely, for the type-1I material, vortices
are singly quantized and repel each other, tending to arrange
themselves into a triangular lattice.

Some superconductors, however, are provided with two or
more electronic condensates arising from Cooper pairing in
different bands of the material. These multiband systems have
attracted much interest in the last decade because: (i) most
of the recently discovered superconducting materials, such as
MgB, and compounds of the iron-pnictide family, are recog-
nized as multiband superconductors, and (ii) they exhibit a
variety of new and interesting phenomena with no counterpart
in conventional single-component superconductors. Perhaps
the most intriguing of these phenomena are related to the
exotic vortex structures that can emerge in a multicomponent
superconductor.

In the bulk, a multicomponent vortex can exist in equilib-
rium only in a so-called composite state where vortices in the
different condensates share the same core.> However, because
of the different length scales & at which the Cooper-pair
density varies in each component,“’5 the interaction between
such composite vortices can be nonmonotonic: short-range
repulsive with an attractive tail.® This ultimately leads to vortex
clustering at low magnetic fields and, thereby, to the formation
of a semi-Meissner state, that is, a mixture of flux-free and
vortex-cluster regions coexisting in equilibrium. This phase
was predicted by Babaev and Speight’ and experimentally
observed by Moshchalkov et al.® in an ultraclean MgB, single
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crystal. In this case, the first critical field corresponds to the
thermodynamic stabilization of a vortex cluster in the sample,
rather than a single vortex. In this regime, besides clusters,
other exotic configurations are likely, such as vortex rings,
giant-multi-vortex groupings, and other unusual patterns.®°

Actually, the competing interactions in a multiband material
can lead to even more unconventional vortex topologies. For
instance, “unmatched” composite vortices, that is, with both
condensates having different phase winding numbers, can
exist out of equilibrium.'®!" Such vortices enclose arbitrary
magnetic flux, in contrast to quantized Abrikosov vortices
in conventional superconductors. Another example are non-
composite vortices in which the phase singularities in each
condensate are displaced from one another. These vortices
also carry arbitrary flux, however, since their energy increases
prohibitively with sample size, they can only be observed
in small samples. These exotic vortex structures could be
used as a hallmark of multiband superconductivity. Therefore
an important question is how to stabilize and detect such
fractional vortices.

Recently, Chibotaru and coworkers'?!3 have proposed that
fractional vortices can be realized and even thermodynami-
cally stabilized in a two-band mesocopic disk. Subsequently,
Geurts et al.'* extended the analysis by including magnetic
coupling, besides the interband Josephson coupling used in
previous works. All these studies were performed within the
two-component Ginzburg-Landau (TCGL) formalism, taking
phenomenological constants as parameters of the simulations.
However, as recently observed in Ref. 15, the phenomenolog-
ical constants of the TCGL model cannot be chosen freely
because they are coupled by microscopic material parameters,
such as electron-phonon coupling constants, Fermi velocities
and partial density of states. A more systematic study of
the stability of composite and noncomposite vortex states
in mesoscopic two-component superconductors, within the
correct microscopic framework, is still pending.
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In this work, we investigate the stability regions of
fractional flux vortices in a two-band mesoscopic supercon-
ductor in a parameter space defined by microscopic material
parameters. In addition, we demonstrate how the stability of
these states can be considerably enhanced by the presence of
a close by magnetic dot with a suitable magnetization.

II. THEORETICAL FORMALISM AND
SIMULATION DETAILS

We consider a mesoscopic two-band superconducting disk
of thickness d much smaller than the penetration depth A and
the two characteristic lengths of density variations in both
condensates, in such a way that the system is effectively
two dimensional. Our calculations rely on the minimal two-
component Ginzburg-Landau (TCGL) model, where the only
coupling appearing explicitly in the free-energy functional
is Josephson like.!>"'® Within this framework, the total free
energy can be written as the sum of the free energies of
the otherwise isolated bands and the Josephson coupling free

energy, that is,
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Jj = 1,2isthe band label and m ;, o, B, and I' are parameters
derivable from the microscopic theory. The last term accounts
for magnetic coupling between the bands, where Hy is the
applied magnetic field, and 2 = rotA is the local (total) field.
However, because of the small thickness and lateral size of the
system under investigation, screening effects are negligible
and thereby so is the magnetic coupling between the bands.

Within the two-band Eilenberger formalism,>%!7 the rele-
vant microscopic parameters are the Fermi velocities v;, the
partial densities of states n;N(0), and the elements of the
electron-phonon coupling matrix

A = (MAn 2
niiip nadn )
The critical temperature is given by the relation 1.767, =
2hwpe™S, where wp is the Debye frequency and

S trA &= /(trA)? — 4det A
- 2det A
are the roots of the linear system of self-consistency equations
for the gaps. The correct value of 7, is given by the
smallest root. It is also convenient to define the follow-
ing auxiliary parameters: 1 = —In(T/T.) 1 -T/T., W =
2321 T,/J7C(3), n = det A /nn,, and the positive constants

Sy = A1 — nanS.

S =Ap —nmS and

In terms of the microscopic parameters above, the
TCGL coefficients can be expressed as a; = —N(O)n;(t —
Si/njn), Bj = NOn;/W?,m; =3W?/[NO)n,vi],and T =
N(@O)X12/n. As usual, one can define the healing lengths
£; = hv;/~/6W, which are related to the characteristic lengths
of density variations of order parameters 1 and 2 (see, for
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instance, Ref. 4). However, the real healing lengths of the
condensates have to be calculated, and are strongly influenced
by the critical temperatures of the otherwise uncoupled bands'®
(that s, the temperature at which the corresponding o ; changes

sign),
S S
T, = T.exp (——f> ~T, <1 - —f) ) )
njn njn

Notice that both T are always smaller than 7. Therefore, for
11, T < T < T, both a; are positive and superconductivity
survives in the system only due to coupling between the bands,
whereas for T < T¢1,T,,, both bands are active («; < 0). For
temperatures such that T.p < T < T_a, one of the bands (band
A) is active while the other (band P) is passive, that is, it
remains superconducting only because of Cooper pairs coming
from band A.

Finally, minimization of the TCGL free energy (1) leads to
the following dimensionless GL equations:

o A
(—iV — A1 — (11 — |y | — ﬁwz =0, (3a)

2 N A
B iV = AP — (12 — 2P — 229, =0, (3b)
U nan

where 1, = —In(T/T,;) =t — §;/(n;n). Here, we adopted
the following temperature independent units: 7, for tempera-
tures, W for both order parameters, &; for distances, and Ay =
hc/2e& for the vector potential. Hereafter, we choose the disk
radius R = 10&, < A, Where Aer = A2/d is the effective
penetration depth, so that screening and demagnetizing effects
can be neglected. Accordingly, the vector potential in Eq. (3a)
can be well approximated by that corresponding to the external
magnetic field.

The minimal TCGL model with the t >~ 1 — T/ T, approx-
imation is, in principle, strictly valid only in the immediate
vicinity of 7, in which case the model is reduced to the
conventional GL theory featuring a single-order parameter
with a single-length scale.!” However, for lower temperatures,
the correct microscopic scenario points to two condensates
with two a priori different healing lengths. Inspired by the
success of the GL formalism in producing correct results
well out of its strict validity range in several other instances,
one may ask whether the applicability range of the TCGL
model can be pushed to lower temperatures. Indeed, in
Ref. 19, it was shown that an extension of the GL theory
to include complete 73/ terms to the expansion of the order
parameters pushes the validity of the theory to temperatures as
low as 0.627,, depending on the values of the microscopic
parameters. In addition, this model correctly predicts two
different density length scales, which become equal only for
T — T, thus in reconciliation with previous results from the
microscopic theory. Unfortunately, the extended GL model
for the nonzero field case is to date available only for the
single-band superconductors.?’

Recently, evidences that the standard TCGL model provides
a correct description of two-band superconductors has been
given in Ref. 5. The authors set out a systematic comparison
with the microscopic two-band Eilenberger theory suggesting
that the minimal TCGL model can offer a quite accurate
quantitative description of features specific of two-band su-
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perconductivity, including two-length-scales vortex solutions,
if one retains the full logarithmic temperature dependence
of t for temperatures smaller but not too close to 7.. Good
agreement was achieved for temperatures as low as T = 0.85.
Therefore, to ensure the validity of the TCGL model used in the
present work, we fix the temperature of the sample at 7 = 0.90
and choose microscopic parameters such that both 7,; and T,
are also close to T, (typically, higher than 0.9). Such critical
temperatures are also chosen in order to minimize the effects
of hidden criticality in the case of weak coupling between the
bands (see Ref. 18 for details).

The calculations are performed as follows. Equation (3a)
are numerically integrated by a relaxation method where a
diffusion-like time dependence of the fields is assumed. This
procedure is similar to solving the time-dependent Ginzburg-
Landau equations. However, once we are interested only in
the stationary states, we chose the same diffusion constant,
D =1, for both order parameters. The equations are then
discretized in space following the link-variable method and
the resulting gauge-invariant, finite-difference equations are
time-integrated via a semi-implicit scheme.?! As compared to
the conventional Euler method, the semi-implicit integration
provides better stability and higher accuracy, which are
particularly crucial for the convergence of fractional vortex
solutions. The results are presented as functions of the external
magnetic flux threading the disk area, ® = H /m R?, in units of
the magnetic flux quantum, ®y = hc/2e. The configurations
corresponding to bands 1 and 2 having a phase winding number
Ly and L,, respectively, are labeled as (L,L>).

III. INFLUENCE OF MICROSCOPIC PARAMETERS

In most previous studies on fractional vortex states, the
main focus of analysis was on specific material parameters.
However, to date, there is no consensus about the correct
coupling constants of, for instance, MgB,, by far the most
studied two-band material (see for instance Ref. 22 and
references therein). Therefore here we adopt a different
strategy and study the possible configurations of Cooper pair
densities in different regions of the parameter space defined by
the microscopic quantities Ay, ny (=1 — ny) and v,. Notice
that in our calculations v; is a constant bound to the unit
length. For a treatable analysis, we fix only the intraband
coupling constants, Aj; = 2.415 and A, = 1.211. The only
bias in such a choice is that these values lead to 7,; and
T, close to T,, which is important for the applicability of
the Ginzburg-Landau framework. However, we believe that
other values would impart no qualitative change to the main
conclusions of our investigation.

A. Effect of the partial densities of states

Here, we fix the interband coupling at A, = 0.001 and
the Fermi velocity ratio at vy /vy = 1.225 and change only
the partial densities of states, n; and n,. The main effect
of changing these quantities is the relative variation of the
critical temperatures of band activity, T.; and T,,. Although
our choice of intraband coupling constants (with A;; >~ 215,)
benefits band 1 as, in principle, the strongest band, one can
always have T, > T, if n; and n, are properly chosen. In
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FIG. 1. (Color online) Stability regions of integer and fractional
(L1, L,) configurations in the plane defined by the partial density of
states n; and reduced external magnetic field ®/®,. Integer (L,L)
states are bounded by two full lines, the left (right) one corresponding
to the smallest (highest) field value below (above), which the state
becomes unstable. The stability regions of fractional states correspond
to the closed regions delimited by full lines for L, < L, and dashed
lines for L; > L,. For comparison, we show the stability limits of
integer states as light gray lines. The heavy gray lines in the upper
panel delimits the region (shaded area in the lower panel) where both
bands are active.

fact, it is the product n;A;; which determines which of the
bands will dominate. It results from Eq. (2) that both bands
has the same T;; when njA;; = naAy. For our choice of the
coupling matrix, this reads n; = 1 —np, = 0.334. Band 1 is
the dominating band above this line only, whereas band 2
dominates below it. By moving away from the T,; = T, line,
in any direction, one of the bands will become passive. This
happens with band 1 for n; = 1 —n,; < 0.317 and with band
2forn; =1 —n, > 0.354.

Figure 1 presents the stability regions of (L;,L;) states
in the n;-® plane. The curves plotted in these diagrams
correspond to the limit of stability of each particular (L,L,)
state, as explained in the caption. For a given n;, each
stationary state was obtained after initializing the system with
a particular (L,L,) configuration at a given value of & and
checking whether it converges to a stationary solution. Once
a field value was found in which that configuration is stable,
we swept the field up and down to check the whole range
of stability. As expected, the appearance of fractional states,
i.e., states with L; # L, is only possible in the range of
n; and n, values for which both bands are active. Outside
this region, the active band forces the passive band to follow
its configuration via Josephson coupling. Surprisingly, both
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FIG. 2. (Color online) Free energy as a function of external
magnetic field (flux). Full lines correspond to states stabilized by
sweeping the field up and down starting from the Meissner state
at H = 0 as initial condition (see text). Dashed lines correspond to
the states obtained only by imposing a suitable initial condition, as
explained in the text. Top: all states found for the case n; = 0.343.
Bottom: selected fractional states [(0,1), (1,0), (0,2), and (2,0)] for
three different values of the partial density of states: n; = 0.343 (left),
0.334 (middle), and 0.325 (right).

combinations L; < Ly and L; > L, appear as stable (L,L,)
states in most part of the two-active-band region, no matter
which of the two bands has a higher T;. This is in contrast
with previous studies, where only states with L; < L, (band
1 being the strongest band) were reported.

A detailed analysis of how these states change with field
and how they are energetically compared to one another is
presented in Fig. 2. The results shown in the upper panel of
this figure were calculated for n; = 0.343, for which 7, = 1.0
and T., = 0.95. Therefore the “inverted” states are those
with L; > L,. The variety of possible configurations in a
two-band material is immediately revealed. For instance, at
afield & = 3.2d, we found as much as seven different stable
configurations. It is also clear in this figure that all fractional
states are metastable, i.e., have higher energy than the ground
state. Note that fractional states can be also found in the ground
state, but for very weak interband coupling, as discussed later
in Sec. III C. In the present case, the states with L; < L, have,
in general, lower energy, sometimes very close to the ground
states. An exception is the (0,2) state, with a remarkably high
energy. The evolution of relative energies and stability range of
a selection of fractional states as one decreases n is illustrated
in the lower panel of Fig. 2. As expected, for n; = 0.325
(T;1 = 0.95 and T,, = 1.0), the roles of states with L; > L,
and those with L; < L, are interchanged, with the former
having in general lower energy.

Another important feature distinguishing “regular” and
“inverted” (L;,L,) solutions concerns the way these states
are found. The curves in Fig. 2 represented by full lines were
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obtained after initializing the system in either the Meissner
state, at H = 0, or normal state, at H just above the sample’s
upper critical field, and then isothermally sweeping the field
up and down. Such a procedure accounts for a realistic
magnetic history and allows one to access both metastable and
ground states. Experimentally, it is similar to performing minor
isothermal magnetization-loops measurements on mesoscopic
samples.?>** In this case, finding a new vortex state involves
entry or exit of one or more vortices through the surface barrier
once a saddle point is reached.”>~>” Therefore we anticipate
that the fractional states represented by full lines in Fig. 2,
though metastable, should be easily accessed experimentally.
On the other hand, those states represented by dashed lines
could not be obtained this way. Instead, we used a particular
vortex configuration as the initial state, in anticipation of a
similar stable outcome of the calculation. We are not aware of
an experimental counterpart of this process. One could then
conclude that, although inverted fractional states do appear as
stable solutions of the Ginzburg-Landau equations, they are
unlikely to be observe experimentally.

B. Effect of the Fermi velocities

In this section, we retain the coupling constants defined
in the previously, fix n; = 1 —n; = 0.343, and analyze the
effect of Fermi velocities on the vortex states in a two-band
mesoscopic disk. As shown in the theoretical formalism, the
Fermi velocity of a band is directly proportional to the healing
length of the corresponding condensate at zero temperature. In
other words, v; is closely connected to the maximum critical
field band j can sustain in the zero coupling limit and at
T = 0. Bearing in mind that & is fixed as our unit length
(and so v remains fixed as well), by changing the ratio v; /v,
as a parameter we are actually changing &,. Therefore the
critical field above which band 2 becomes passive is expected
to increase with (v; /v2)>. Figure 3 presents the evolution of the
stability regions of fractional states as a function of the squared
Fermi velocity ratio (v;/v;)?. In addition, we plot the phase
boundary separating the active and passive states of band 2.
Above this line, both bands are active. The critical field for
band 1 activity (not shown) corresponds to the constant value
9.5®.

The role played by the Fermi velocities and the healing
lengths in determining the shape of the stability regions in
Fig. 3 can be identified as follows. As one approaches the phase
boundary for band 2 activity, &7 increases linearly and so does
the size of a vortex in that band. This is illustrated in Figs. 3(b)
and 3(c), where we plot the Cooper pair distributions of band 1
in the (1,0) state and band 2 in the (0,1) state at a fixed applied
field and different values of (v; /v2)?. As an estimate, we define
the vortex size as the contour where the absolute value of the
order parameter recovers by 50% its maximum value in the
zero coupling limit, which is given by %0 = Wt jl/ 2. Within
this criterion, one can clearly observe the expansion of the
band-2 vortex in the (0,1) state as one approaches the phase
boundary. Such an increase in the characteristic length of
density variations in band 2 induces a decrease in the energy
barriers in this band. Hence, when approaching this phase
boundary, all processes involving entry or exit of a vortex
in band 2 should take place in advance (at a lower field for
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FIG. 3. (Color online) (a) Stability regions of fractional (L;,L,)
states in the plane defined by the ratio between the Fermi velocities
(v /v2) and the applied magnetic flux ®. The gray line corresponds to
superconducting-normal phase boundary of band 2 in the absence of
interband coupling. (b) and (c) Plots of the absolute value of the order
parameter of band 1 in the (1,0) state (b) and band 2 in the (0,1) state
(c) for the point I, II, and III indicated in (a). The order parameters
are normalized by the maximum zero-coupling value of each band.
The circles indicate the size of the vortex as defined in the text.

increasing ® and higher field for decreasing ®). On the other
hand, since & is fixed, one would expect no change in the size
of avortex inband 1 [which is indeed approximately the case as
observed in Fig. 3(c)] and thereby no important change in the
energy barriers of that band. In this case, processes involving
entry or exit of vortices in band 1 are expected to take place at
field values that do not change considerably with the parameter
(v1/v2).

The scenario explained above has an immediate conse-
quence on how the supercooling, ®,., and superheating,
d,;,, fields of each fractional state changes with (v;/ v2)%. In
general, by sweeping the field up and down, both (L,L + 1)
and (L + 1,L) states will decay to (L + 1,L + 1) at the
corresponding superheating field in the upward sweep or to
(L, L) at the corresponding supercooling field in the downward
sweep. When the original stateis (L,L + 1),the (L + 1,L + 1)
state is achieved with the entry of a vortex in band 1 and
d,;, is essentially constant, while (L,L) is obtained via the
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escape of a vortex from band 2, thus pushing @, to higher
values as approaching band-2 phase boundary. Conversely,
when (L + 1,L) is the original state, ®, is pushed to lower
values, because of the advance entry of a vortex in band 2,
while ®,. keeps essentially constant, once only the energy
barrier of band 1 is probed.

C. Effect of the interband coupling

The effect of Josephson coupling on the stability of
fractional states has been studied in Ref. 13 and, in more detail,
in Ref. 14. In these works, the Josephson coupling strength I"
was treated phenomenologically, without taking into account
that the microscopic, interband coupling constant A, can also
exert an important influence on T; and T¢, specially for higher
coupling values. In this section, we investigate the stability
regions of fractional states in the X,-® plane in consonance
with the microscopic background and extend the analysis
to the cases of (L 4+ 1,L) configurations. Our main results
are featured in Fig 4. The main trends shown in this figure
are similar to those presented in Ref. 14: shrinking of the
stability regions as A1, increases and fractional states of lower
vorticity are capable of surviving to stronger coupling. Inverted
fractional states also present similar behavior. However, their
regions of stability are displaced to lower field values. This can
be understood in light of our explanation of the supercooling
and superheating processes of (L 4+ 1,L) and (L, L + 1) states
(c.f. Sec. IIIC). Here, band 2 is always the weaker band.
Therefore, ®,;, (L + 1,L) should be advanced to a lower value
because it involves vortex entry in band 2, while ®;.(L + 1,L)
should be delayed to a lower value since it involves escape of
a vortex from the stronger band 1.

Another particularity of (L + 1, L) states is that, because of
their higher energy, they are less resilient than (L, L + 1) states.
In fact, for the set of parameters considered here, (L + 1,L)
states can never be found in thermodynamic equilibrium. In
contrast, regions of thermodynamic equilibrium for (L,L + 1)

0.010

0.008 -

0.006

0.004

12

< 0002}

N\T
AN}

0.00065

0.0003 |-

0.0000

FIG. 4. (Color online) The stability regions of fractional
(Ly,L, # L) states in the plane defined by the inter band coupling
coefficient A, and the magnetic flux @ through the sample area.
In shaded regions, fractional states represent the thermodynamic
equilibrium of the studied system.
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can be observed at very low values of XA, as can be observed
in Fig. 4, where these regions are represented by shaded areas.

IV. INFLUENCE OF AN OFF-PLANE MAGNETIC DOT

In this section, we analyze the effects of an inhomogeneous
field on the vortex structures observed in the previous section.
We start with particular microscopic parameters for the su-
perconducting disk (A;; = 2.415, A = 1.211, A = 0.001,
v1/vy; = 1.225,and n; = 1 — ny = 0.343) such that fractional
states are accessible. The inhomogeneous field is provided
by a cylindrical magnetic dot, placed coaxially with the
superconducting disk and having a permanent, homogeneous
off-plane magnetization given by M=:dy /T R?. (Here,
®,, is not to be confounded with the flux generated by
the magnetic dot through the superconductor. Rather, it is
only a convenient way to express magnetization in the same
units as magnetic field.) To simplify our analysis, we chose
geometric parameters such that the stray fields generated
by the magnetic dot at the superconducting disk have a flat
distribution. This is accomplished by a magnetic cylinder of
radius Ryip = 0.5R = 5, height h = 4.8, and placed a distance
I = 0.7 above the superconducting disk (with assumed oxide
layer in between, to avoid proximity effect).

Figure 5 illustrates the evolution of the stability regions
of (L,L 4+ 1)and (L + 1,L) states (for 0 < L < 4) when the
magnetization of the disk is changed. It is promptly observed
that the stability of all fractional states can be considerably
enhanced by the presence of the magnetic dot. This happens
for moderate positive values of ®,,. Too large positive values
tend to drive the entire system to the normal state, which of
course also destroys the fractional states. On the other hand,
negative @, is deleterious to fractional states because in that
case the central region of the superconducting disk encloses
less flux, which disables it to host vortices in that area—while
disk periphery is in any case not favorable for vortices to
reside. Therefore, as the external field in this region is fully
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FIG. 5. (Color online) ®,-® diagram showing the stability
regions of fractional (L,,L, # L) states in the plane defined by the
magnetization of the magnetic dot and the external magnetic field,
both multiplied by the superconductor area.
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compensated, the Meissner state becomes predominant. Upon
further decreasing @, to even more negative values, the
system becomes susceptible to the appearance of integer and
fractional antivortex states. The first fractional states appearing
are (0, — 1) and (—1,0), followed by (—1, — 2) and (-2, — 1),
and so on. The stability regions of such fractional antivortex
states correspond to a rotation of the stability regions of their
counterparts with positive vorticity, shown in Fig. 5, by 180°
with respect to the origin. For the parameters used in our
simulations, we did not detect any states where vortices and
antivortices coexist in neither the same band nor in different
bands, though they are expected to appear for larger samples
as already demonstrated in single band superconductors.?8-39

The role of magnetic moment orientation can be better
understood by analyzing the field profiles for different &,
and @ and the corresponding vortex configurations. For such
an analysis, we focus on a particular fractional state, (2,3), and
study the evolution of the Cooper-pair density when ®,, and ®
are simultaneously changed in a way as to keep the (2,3) state
at the median of its stability field range for each magnetization
value. The results are presented in Fig. 6 where field profiles
and Cooper-pair distributions of both bands are shown for
the cases @,/ Dy = 2.25, 0, —0.75, and —1.125. In all cases
the local flux in the central region of the superconducting
disk, where the vortices sit, has approximately the same value,
~5®,, which is roughly the flux necessary to stabilize state
(2,3) for @, = 0. Therefore the energy barrier for vortex
escape is essentially the same in all cases in such a way that the
supercooling field is expected to be an approximately linearly
decreasing function of ®,,. On the other hand, for a new
vortex to come in, it has to probe the energy barrier near the
superconductor edge, where the flux profile is very sensible
to the magnetization of the dot. For positive @, screening
currents are weaker near the sample edges making it more
difficult for a new vortex to enter. Therefore the energy barrier
for vortex entrance increases (with respect to the median of the
stability range) with ®,,. Hence, superheating is prolonged to
higher field values, thereby providing the broadening of the
stability range of a given vortex configuration. Note that this
picture holds for any vortex arrangements, including integer
states.

A striking feature that can be observed in Fig. 6 is the
expansion of vortex configurations when ®,, is decreased
down to negative values. Expansion of very compact vortex
configurations with the help of ferromagnetic dots has been
anticipated to occur for single-band mesoscopic squares in
Ref. 31. In the present case, we demonstrate that this effect
can also be applied to multiband materials, thus providing
an invaluable tool for experimental visualization of fractional
vortex states. This expansion occurs because the decrease of
the magnetic flux in the central region of the disk reduces the
confining power of the screening currents and allows vortices
to repel each other further from the center of the sample.
Further reduction of ®,, will lead to the sequential expulsion
of vortices until the Meissner state is reached.

In addition to discussing the influence of the magnetic dot
on the stability regions for given interband coupling, it is also
important to analyze what happens when A, is varied. Figure 7
demonstrates that not only the range of stability of fractional
states can be considerably enhanced but the maximum value
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FIG. 6. (Color online) Absolute value of the order parameters and external field profiles (provided by the magnetic dot and homogeneous
field source) for the (2,3) state at the median of its stability region for (a) &), = 2.25and & = 2.0, (b) ), = 0and & = 5.15, (c) ), = —0.75
and ® = 6.05, and (d) ), = —1.125 and ® = 6.33. The order parameter of each band is normalized by its respective zero-coupling maximum
value and plotted in logarithmic scale for better visualization. Dashed circles represent the edge of the magnetic dot.

of Ajp in which a given fractional state is stable increases
as well. That is to say, a properly magnetized magnetic dot
placed close to a mesoscopic two-band superconductor can
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FIG. 7. (Color online) Effect of the magnetic dot magnetization
on the stability of state (0,1) in the 1;,-® plane for different values
of the reduced magnetization ®,,.

optimally stabilize fractional vortex states, allowing them to be
observed even in stronger intraband-coupling materials where
they would be otherwise forbidden in a homogeneous field. For
the (0,1) case illustrated in Fig. 7, we found that the optimum
magnetization is &, ~ 1.8, for which the maximum value of
X2 where state (0,1) can be stabilized is enhanced by ~45%
compared to @), = 0 case. We believe that these values can
be considerably improved by exploring other configuration
of the magnetic dot. However, the search of the optimum
configuration is beyond the scope of this work; we restrict
ourselves here to the proof of concept. Although we present
here only the (0, 1) case, we verified that the same conclusions
apply to other fractional states, but of course with different
optimum magnetization values.

V. CONCLUSIONS

In summary, we have analyzed the stability of fractional
vortex states in a mesoscopic superconductor with respect
to changing its microscopic material parameters and to the
magnetization state of a magnetic dot placed nearby. By
sweeping a broad range of values of the partial density of
states and of the Fermi velocities for a given coupling matrix,
we have determined the stability regions of many different
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fractional vortex states. We could identify two main groups
of such solutions: the first one comprises those states where
the dominating band, i.e., that one with the highest T;, has a
lower total winding number; the second group comprises states
where the dominating band has the highest winding number.
As expected, states of the first group have, in general, lower
energy and are easier to find because the dominating band
has a natural tendency to be more refractory to vortices. In
addition, they can be found in thermodynamic equilibrium for
the case of weak Josephson coupling, as previously reported in
the literature.'>'* However, the states in each of these groups
can exchange roles smoothly by sweeping the partial density
of states. We have also demonstrated that the healing length
of a band at zero temperature, defined as §; =hv;/ VW, is
closely connected to the size of a vortex in that band and
thereby to the ability of the surface barrier to superheat or
supercool fractional states in applied magnetic field.

We have further investigated the properties of fractional
vortex states in inhomogeneous magnetic field. In particular,
we exposed the superconducting disk to the stray field of a
magnetic dot, placed coaxially above the sample. We demon-
strated that such a configuration is capable of augmenting
the stability region of fractional states, at least when the dot
magnetization is parallel to the external homogeneous field.
Moreover, the maximum value of interband coupling for which
a given fractional state is stable can be increased considerably
and reaches an optimal value at a well defined magnetization
of the dot. This is an important result because fractional states

PHYSICAL REVIEW B 86, 024512 (2012)

are usually possible only in materials with very weak interband
coupling. In other words, the here proposed idea enables
observation of fractional vortex states in a considerably wider
range of multiband materials.

Finally, we point out that, to date, experiments determining
vortex structures in two-band superconductors have been re-
stricted to bulk single crystals. However, mesoscopic systems
present a much richer variety of vortex states, including
noncomposite fractional vortices, which represent a clear,
direct evidence of competing length scales in multiband mate-
rials. We believe our findings contribute to the construction
of a roadmap guiding further search of suitable materials
for imaging these exotic vortex structures. In this respect,
further investigation on other geometries of the mesoscopic
superconductor and the magnetic dot aiming at the stabilization
of fractional vortices in wider parameter ranges would be very
much welcome.
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