toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Benedet, M.; Andrea Rizzi, G.; Gasparotto, A.; Gauquelin, N.; Orekhov, A.; Verbeeck, J.; Maccato, C.; Barreca, D. pdf  url
doi  openurl
  Title Functionalization of graphitic carbon nitride systems by cobalt and cobalt-iron oxides boosts solar water oxidation performances Type A1 Journal article
  Year 2023 Publication Applied surface science Abbreviated Journal  
  Volume 618 Issue Pages 156652  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The ever-increasing energy demand from the world population has made the intensive use of fossil fuels an overarching threat to global environment and human health. An appealing alternative is offered by sunlight-assisted photoelectrochemical water splitting to yield carbon-free hydrogen fuel, but kinetic limitations associated to the oxygen evolution reaction (OER) render the development of cost-effective, eco-friendly and stable electrocatalysts an imperative issue. In the present work, OER catalysts based on graphitic carbon nitride (g-C3N4) were deposited on conducting glass substrates by a simple decantation procedure, followed by functionalization with low amounts of nanostructured CoO and CoFe2O4 by radio frequency (RF)-sputtering, and final annealing under inert atmosphere. A combination of advanced characterization tools was used to investigate the interplay between material features and electrochemical performances. The obtained results highlighted the formation of a p-n junction for the g-C3N4-CoO system, whereas a Z-scheme junction accounted for the remarkable performance enhancement yielded by g-C3N4-CoFe2O4. The intimate contact between the system components also afforded an improved electrocatalyst stability in comparison to various bare and functionalized g-C3N4-based systems. These findings emphasize the importance of tailoring g-C3N4 chemico-physical properties through the dispersion of complementary catalysts to fully exploit its applicative potential.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000950654300001 Publication Date 2023-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 11 Open Access OpenAccess  
  Notes The authors gratefully acknowledge financial support from CNR (Progetti di Ricerca @CNR – avviso 2020 – ASSIST), Padova University (P-DiSC#04BIRD2020-UNIPD EUREKA, DOR 2020–2022), AMGA Foundation (NYMPHEA project), INSTM Consortium (INSTM21PDGASPAROTTO – NANOMAT, INSTM21PDBARMAC – ATENA) and the European Union's Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3. The FWO-Hercules fund G0H4316N 'Direct electron detector for soft matter TEM' is also acknowledged. Many thanks are due to Prof. Luca Gavioli (Università Cattolica del Sacro Cuore, Brescia, Italy) and Dr. Riccardo Lorenzin (Department of Chemical Sciences, Padova University, Italy) for their invaluable technical support.; esteem3reported; esteem3TA Approved Most recent IF: 6.7; 2023 IF: 3.387  
  Call Number (down) EMAT @ emat @c:irua:196150 Serial 7376  
Permanent link to this record
 

 
Author Verdierre, G.; Gauquelin, N.; Jannis, D.; Birkhölzer, Y.A.; Mallik, S.; Verbeeck, J.; Bibes, M.; Koster, G. url  doi
openurl 
  Title Epitaxial growth of the candidate ferroelectric Rashba material SrBiO3by pulsed laser deposition Type A1 Journal article
  Year 2023 Publication APL materials Abbreviated Journal  
  Volume 11 Issue 3 Pages 031109  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Among oxides, bismuthates have been gaining much interest due to their unique features. In addition to their superconducting properties, they show potential for applications as topological insulators and as possible spin-to-charge converters. After being first investigated in their bulk form in the 1980s, bismuthates have been successfully grown as thin films. However, most efforts have focused on BaBiO<sub>3</sub>, with SrBiO<sub>3</sub>receiving only little attention. Here, we report the growth of epitaxial films of SrBiO<sub>3</sub>on both TiO<sub>2</sub>-terminated SrTiO<sub>3</sub>and NdO-terminated NdScO<sub>3</sub>substrates by pulsed laser deposition. SrBiO<sub>3</sub>has a pseudocubic lattice constant of ∼4.25 Å and grows relaxed on NdScO<sub>3</sub>. Counter-intuitively, it grows with a slight tensile strain on SrTiO<sub>3</sub>despite a large lattice mismatch, which should induce compressive strain. High-resolution transmission electron microscopy reveals that this occurs as a consequence of structural domain matching, with blocks of 10 SrBiO<sub>3</sub>unit planes matching blocks of 11 SrTiO<sub>3</sub>unit planes. This work provides a framework for the synthesis of high quality perovskite bismuthates films and for the understanding of their interface interactions with homostructural substrates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953363800004 Publication Date 2023-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532X ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.1 Times cited Open Access OpenAccess  
  Notes This work received support from the ERC Advanced grant (Grant No. 833973) “FRESCO” and funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 823717—ESTEEM3, Van Gogh travel grant, Nuffic, The Netherlands (CF No. 42582SB).; esteem3reported; esteem3TA Approved Most recent IF: 6.1; 2023 IF: 4.335  
  Call Number (down) EMAT @ emat @c:irua:196135 Serial 7377  
Permanent link to this record
 

 
Author Benedoue, S.; Benedet, M.; Gasparotto, A.; Gauquelin, N.; Orekhov, A.; Verbeeck, J.; Seraglia, R.; Pagot, G.; Rizzi, G.A.; Balzano, V.; Gavioli, L.; Noto, V.D.; Barreca, D.; Maccato, C. url  doi
openurl 
  Title Insights into the Photoelectrocatalytic Behavior of gCN-Based Anode Materials Supported on Ni Foams Type A1 Journal article
  Year 2023 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 13 Issue 6 Pages 1035  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Graphitic carbon nitride (gCN) is a promising n-type semiconductor widely investigated for photo-assisted water splitting, but less studied for the (photo)electrochemical degradation of aqueous organic pollutants. In these fields, attractive perspectives for advancements are offered by a proper engineering of the material properties, e.g., by depositing gCN onto conductive and porous scaffolds, tailoring its nanoscale morphology, and functionalizing it with suitable cocatalysts. The present study reports on a simple and easily controllable synthesis of gCN flakes on Ni foam substrates by electrophoretic deposition (EPD), and on their eventual decoration with Co-based cocatalysts [CoO, CoFe2O4, cobalt phosphate (CoPi)] via radio frequency (RF)-sputtering or electrodeposition. After examining the influence of processing conditions on the material characteristics, the developed systems are comparatively investigated as (photo)anodes for water splitting and photoelectrocatalysts for the degradation of a recalcitrant water pollutant [potassium hydrogen phthalate (KHP)]. The obtained results highlight that while gCN decoration with Co-based cocatalysts boosts water splitting performances, bare gCN as such is more efficient in KHP abatement, due to the occurrence of a different reaction mechanism. The related insights, provided by a multi-technique characterization, may provide valuable guidelines for the implementation of active nanomaterials in environmental remediation and sustainable solar-to-chemical energy conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000960297000001 Publication Date 2023-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited 3 Open Access OpenAccess  
  Notes The present work was financially supported by CNR (Progetti di Ricerca @CNR—avviso 2020—ASSIST), Padova University (P-DiSC#04BIRD2020-UNIPD EUREKA, DOR 2020–2022), AMGA Foundation (NYMPHEA project), INSTM Consortium (INSTM21PDGASPAROTTO—NANOMAT, INSTM21PDBARMAC—ATENA) and the European Union’s Horizon 2020 research and innovation program under grant agreement No. 823717—ESTEEM3. The FWO-Hercules fund G0H4316N ‘Direct electron detector for soft matter TEM’ is also acknowledged. Many thanks are also due to Dr. Riccardo Lorenzin for his support to experimental activities.; esteem3reported; esteem3TA Approved Most recent IF: 5.3; 2023 IF: 3.553  
  Call Number (down) EMAT @ emat @c:irua:196115 Serial 7378  
Permanent link to this record
 

 
Author Jain, N.; Hao, Y.; Parekh, U.; Kaltenegger, M.; Pedrazo-Tardajos, A.; Lazzaroni, R.; Resel, R.; Geerts, Y.H.; Bals, S.; Van Aert, S. pdf  url
doi  openurl
  Title Exploring the effects of graphene and temperature in reducing electron beam damage: A TEM and electron diffraction-based quantitative study on Lead Phthalocyanine (PbPc) crystals Type A1 Journal article
  Year 2023 Publication Micron Abbreviated Journal  
  Volume 169 Issue Pages 103444  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract High-resolution transmission electron microscopy (TEM) of organic crystals, such as Lead Phthalocyanine (PbPc), is very challenging since these materials are prone to electron beam damage leading to the breakdown of the crystal structure during investigation. Quantification of the damage is imperative to enable high-resolution imaging of PbPc crystals with minimum structural changes. In this work, we performed a detailed electron diffraction study to quantitatively measure degradation of PbPc crystals upon electron beam irradiation. Our study is based on the quantification of the fading intensity of the spots in the electron diffraction patterns. At various incident dose rates (e/Å2/s) and acceleration voltages, we experimentally extracted the decay rate (1/s), which directly correlates with the rate of beam damage. In this manner, a value for the critical dose (e/Å2) could be determined, which can be used as a measure to quantify beam damage. Using the same methodology, we explored the influence of cryogenic temperatures, graphene TEM substrates, and graphene encapsulation in prolonging the lifetime of the PbPc crystal structure during TEM investigation. The knowledge obtained by diffraction experiments is then translated to real space high-resolution TEM imaging of PbPc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000965998800001 Publication Date 2023-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.4 Times cited 1 Open Access OpenAccess  
  Notes This work is supported by FWO and FNRS within the 2Dto3D network of the EOS (Excellence of Science) program (grant number 30489208) and ERC-CoGREALNANO-815128 (to Prof. Dr. Sara Bals). N.J. would like to thank Dr. Kunal S. Mali and Dr. Da Wang for useful and interesting discussions on sample preparation procedures. Approved Most recent IF: 2.4; 2023 IF: 1.98  
  Call Number (down) EMAT @ emat @c:irua:196069 Serial 7379  
Permanent link to this record
 

 
Author De Backer, A.; Bals, S.; Van Aert, S. pdf  url
doi  openurl
  Title A decade of atom-counting in STEM: From the first results toward reliable 3D atomic models from a single projection Type A1 Journal article
  Year 2023 Publication Ultramicroscopy Abbreviated Journal  
  Volume Issue Pages 113702  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Quantitative structure determination is needed in order to study and understand nanomaterials at the atomic scale. Materials characterisation resulting in precise structural information is a crucial point to understand the structure–property relation of materials. Counting the number of atoms and retrieving the 3D atomic structure of nanoparticles plays an important role here. In this paper, an overview will be given of the atom-counting methodology and its applications over the past decade. The procedure to count the number of atoms will be discussed in detail and it will be shown how the performance of the method can be further improved. Furthermore, advances toward mixed element nanostructures, 3D atomic modelling based on the atom-counting results, and quantifying the nanoparticle dynamics will be highlighted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953765800001 Publication Date 2023-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited 3 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S. Van Aert, Grant 815128 REALNANO to S. Bals, and Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0267.18N, G.0502.18N, G.0346.21N, and EOS 30489208) and a postdoctoral grant to A. De Backer. S. Van Aert acknowledges funding from the University of Antwerp Research fund (BOF) . The authors also thank the colleagues who have contributed to this work over the years, including T. Altantzis, E. Arslan Irmak, K.J. Batenburg, E. Bladt, A. De wael, R. Erni, C. Faes, B. Goris, L. Jones, L.M. Liz-Marzán, I. Lobato, G.T. Martinez, P.D. Nellist, M.D. Rosell, A. Rosenauer, K.H.W. van den Bos, A. Varambhia, and Z. Zhang.; esteem3reported; esteem3JRA Approved Most recent IF: 2.2; 2023 IF: 2.843  
  Call Number (down) EMAT @ emat @c:irua:195896 Serial 7236  
Permanent link to this record
 

 
Author van der Sluijs, M.M.; Salzmann, B.B.V.; Arenas Esteban, D.; Li, C.; Jannis, D.; Brafine, L.C.; Laning, T.D.; Reinders, J.W.C.; Hijmans, N.S.A.; Moes, J.R.; Verbeeck, J.; Bals, S.; Vanmaekelbergh, D. url  doi
openurl 
  Title Study of the Mechanism and Increasing Crystallinity in the Self-Templated Growth of Ultrathin PbS Nanosheets Type A1 Journal article
  Year 2023 Publication Chemistry of materials Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Colloidal 2D semiconductor nanocrystals, the analogue of solid-state quantum wells, have attracted strong interest in material science and physics. Molar quantities of suspended quantum objects with spectrally pure absorption and emission can be synthesized. For the visible region, CdSe nanoplatelets with atomically precise thickness and tailorable emission have been (almost) perfected. For the near-infrared region, PbS nanosheets (NSs) hold strong promise, but the photoluminescence quantum yield is low and many questions on the crystallinity, atomic structure, intriguing rectangular shape, and formation mechanism remain to be answered. Here, we report on a detailed investigation of the PbS NSs prepared with a lead thiocyanate single source precursor. Atomically resolved HAADF-STEM imaging reveals the presence of defects and small cubic domains in the deformed orthorhombic PbS crystal lattice. Moreover, variations in thickness are observed in the NSs, but only in steps of 2 PbS monolayers. To study the reaction mechanism, a synthesis at a lower temperature allowed for the study of reaction intermediates. Specifically, we studied the evolution of pseudo-crystalline templates towards mature, crystalline PbS NSs. We propose a self-induced templating mechanism based on an oleylamine-lead-thiocyanate (OLAM-Pb-SCN) complex with two Pb-SCN units as a building block; the interactions between the long-chain ligands regulate the crystal structure and possibly the lateral dimensions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000959572100001 Publication Date 2023-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited 2 Open Access OpenAccess  
  Notes H2020 Research Infrastructures, 731019 ; H2020 European Research Council, 692691 815128 ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 715.016.002 ; Approved Most recent IF: 8.6; 2023 IF: 9.466  
  Call Number (down) EMAT @ emat @c:irua:195894 Serial 7255  
Permanent link to this record
 

 
Author Zhang, Z.; Lobato, I.; De Backer, A.; Van Aert, S.; Nellist, P. pdf  url
doi  openurl
  Title Fast generation of calculated ADF-EDX scattering cross-sections under channelling conditions Type A1 Journal article
  Year 2023 Publication Ultramicroscopy Abbreviated Journal  
  Volume 246 Issue Pages 113671  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Advanced materials often consist of multiple elements which are arranged in a complicated structure. Quantitative scanning transmission electron microscopy is useful to determine the composition and thickness of nanostructures at the atomic scale. However, significant difficulties remain to quantify mixed columns by comparing the resulting atomic resolution images and spectroscopy data with multislice simulations where dynamic scattering needs to be taken into account. The combination of the computationally intensive nature of these simulations and the enormous amount of possible mixed column configurations for a given composition indeed severely hamper the quantification process. To overcome these challenges, we here report the development of an incoherent non-linear method for the fast prediction of ADF-EDX scattering cross-sections of mixed columns under channelling conditions. We first explain the origin of the ADF and EDX incoherence from scattering physics suggesting a linear dependence between those two signals in the case of a high-angle ADF detector. Taking EDX as a perfect incoherent reference mode, we quantitatively examine the ADF longitudinal incoherence under different microscope conditions using multislice simulations. Based on incoherent imaging, the atomic lensing model previously developed for ADF is now expanded to EDX, which yields ADF-EDX scattering cross-section predictions in good agreement with multislice simulations for mixed columns in a core–shell nanoparticle and a high entropy alloy. The fast and accurate prediction of ADF-EDX scattering cross-sections opens up new opportunities to explore the wide range of ordering possibilities of heterogeneous materials with multiple elements.  
  Address  
  Corporate Author Zezhong Zhang Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000995063900001 Publication Date 2022-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited Open Access OpenAccess  
  Notes European Research Council 770887 PICOMETRICS; Fonds Wetenschappelijk Onderzoek No.G.0502.18N; Horizon 2020, 770887 ; Horizon 2020 Framework Programme; European Research Council, 823717 ESTEEM3 ; esteem3reported; esteem3JRa Approved Most recent IF: 2.2; 2023 IF: 2.843  
  Call Number (down) EMAT @ emat @c:irua:195890 Serial 7251  
Permanent link to this record
 

 
Author Vlasov, E.; Denisov, N.; Verbeeck, J. pdf  url
doi  openurl
  Title Low-cost electron detector for scanning electron microscope Type A1 Journal article
  Year 2023 Publication HardwareX Abbreviated Journal HardwareX  
  Volume 14 Issue Pages e00413  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron microscopy is an indispensable tool for the characterization of (nano) materials. Electron microscopes are typically very expensive and their internal operation is often shielded from the user. This situation can provide fast and high quality results for researchers focusing on e.g. materials science if they have access to the relevant instruments. For researchers focusing on technique development, wishing to test novel setups, however, the high entry price can lead to risk aversion and deter researchers from innovating electron microscopy technology further. The closed attitude of commercial entities about how exactly the different parts of electron microscopes work, makes it even harder for newcomers in this field. Here we propose an affordable, easy-to-build electron detector for use in a scanning electron microscope (SEM). The aim of this project is to shed light on the functioning of such detectors as well as show that even a very modest design can lead to acceptable performance while providing high flexibility for experimentation and customization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001042486000001 Publication Date 2023-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-0672 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access OpenAccess  
  Notes The authors acknowledge the financial support of the Research Foundation Flanders (FWO, Belgium) project SBO [Grant No. S000121N]. JV acknowledges funding from the HORIZON-INFRA-2022-TECH-01-01 project IMPRESS [Grant No. 101094299]. Approved Most recent IF: NA  
  Call Number (down) EMAT @ emat @c:irua:195886 Serial 7252  
Permanent link to this record
 

 
Author de la Encarnación, C.; Jungwirth, F.; Vila-Liarte, D.; Renero-Lecuna, C.; Kavak, S.; Orue, I.; Wilhelm, C.; Bals, S.; Henriksen-Lacey, M.; Jimenez de Aberasturi, D.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Hybrid core–shell nanoparticles for cell-specific magnetic separation and photothermal heating Type A1 Journal article
  Year 2023 Publication Journal of materials chemistry B : materials for biology and medicine Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hyperthermia, as the process of heating a malignant site above 42 °C to trigger cell death, has emerged as an effective and selective cancer therapy strategy. Various modalities of hyperthermia have been proposed, among which magnetic and photothermal hyperthermia are known to benefit from the use of nanomaterials. In this context, we introduce herein a hybrid colloidal nanostructure comprising plasmonic gold nanorods (AuNRs) covered by a silica shell, onto which iron oxide nanoparticles (IONPs) are subsequently grown. The resulting hybrid nanostructures are responsive to both external magnetic fields and near-infrared irradiation. As a result, they can be applied for the targeted magnetic separation of selected cell populations – upon targeting by antibody functionalization – as well as for photothermal heating. Through this combined functionality, the therapeutic effect of photothermal heating can be enhanced. We demonstrate both the fabrication of the hybrid system and its application for targeted photothermal hyperthermia of human glioblastoma cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000968908400001 Publication Date 2023-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-750X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7 Times cited 1 Open Access OpenAccess  
  Notes Ministerio de Ciencia e Innovación, PID2019-108854RA-I00 ; H2020 European Research Council, ERC AdG 787510, 4DBIOSERS ERC CoG 815128, REALNANO ; Fonds Wetenschappelijk Onderzoek, PhD research grant 1181122N ; Approved Most recent IF: 7; 2023 IF: 4.543  
  Call Number (down) EMAT @ emat @c:irua:195879 Serial 7261  
Permanent link to this record
 

 
Author Craig, T.M.; Kadu, A.A.; Batenburg, K.J.; Bals, S. url  doi
openurl 
  Title Real-time tilt undersampling optimization during electron tomography of beam sensitive samples using golden ratio scanning and RECAST3D Type A1 Journal article
  Year 2023 Publication Nanoscale Abbreviated Journal  
  Volume 15 Issue 11 Pages 5391-5402  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Electron tomography is a widely used technique for 3D structural analysis of nanomaterials, but it can cause damage to samples due to high electron doses and long exposure times. To minimize such damage, researchers often reduce beam exposure by acquiring fewer projections through tilt undersampling. However, this approach can also introduce reconstruction artifacts due to insufficient sampling. Therefore, it is important to determine the optimal number of projections that minimizes both beam exposure and undersampling artifacts for accurate reconstructions of beam-sensitive samples. Current methods for determining this optimal number of projections involve acquiring and post-processing multiple reconstructions with different numbers of projections, which can be time-consuming and requires multiple samples due to sample damage. To improve this process, we propose a protocol that combines golden ratio scanning and quasi-3D reconstruction to estimate the optimal number of projections in real-time during a single acquisition. This protocol was validated using simulated and realistic nanoparticles, and was successfully applied to reconstruct two beam-sensitive metal–organic framework complexes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000937908900001 Publication Date 2023-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 1 Open Access OpenAccess  
  Notes H2020 European Research Council, 815128 ; H2020 Marie Skłodowska-Curie Actions, 860942 ; Approved Most recent IF: 6.7; 2023 IF: 7.367  
  Call Number (down) EMAT @ emat @c:irua:195235 Serial 7260  
Permanent link to this record
 

 
Author Daele, K.V.; Arenas‐Esteban, D.; Choukroun, D.; Hoekx, S.; Rossen, A.; Daems, N.; Pant, D.; Bals, S.; Breugelmans, T. url  doi
openurl 
  Title Enhanced Pomegranate‐Structured SnO2Electrocatalysts for the Electrochemical CO2Reduction to Formate Type A1 Journal article
  Year 2023 Publication ChemElectroChem Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Although most state-of-the-art Sn-based electrocatalysts yield promising results in terms of selectivity and catalyst activity, their stability remains insufficient to date. Here, we demonstrate the successful application of the recently developed pomegranate-structured SnO2 (Pom. SnO2) and SnO2@C (Pom. SnO2@C) nanocomposite electrocatalysts for the efficient electrochemical conversion of CO2 to formate. With an initial selectivity of 83 and 86% towards formate and an operating potential of -0.72 V and -0.64 V vs. RHE, respectively, these pomegranate SnO2 electrocatalysts are able to compete with most of the current state-of-the-art Sn-based electrocatalysts in terms of activity and selectivity. Given the importance of electrocatalyst stability, long-term experiments (24 h) were performed and a temporary loss in selectivity for the Pom. SnO2@C electrocatalyst was largely restored to its initial selectivity upon drying and exposure to air. Of all the used (24 h) electrocatalysts, the pomegranate SnO2@C had the highest selectivity over a time period of one hour, reaching an average recovered FE of 85%, while the commercial SnO2 and bare pomegranate SnO2 electrocatalysts reached an average of 79 and 80% FE towards formate, respectively. Furthermore, the pomegranate structure of Pom. SnO2@C was largely preserved due to the presence of the heterogeneous carbon shell, which acts as a protective layer, physically inhibiting particle segregation/pulverisation and agglomeration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000936694800001 Publication Date 2023-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes European Regional Development Fund, E2C 2S03-019 ; Approved Most recent IF: 4; 2023 IF: 4.136  
  Call Number (down) EMAT @ emat @c:irua:195228 Serial 7249  
Permanent link to this record
 

 
Author Marchetti, A.; Gori, A.; Ferretti, A.M.; Esteban, D.A.; Bals, S.; Pigliacelli, C.; Metrangolo, P. url  doi
openurl 
  Title Templated Out‐of‐Equilibrium Self‐Assembly of Branched Au Nanoshells Type A1 Journal article
  Year 2023 Publication Small Abbreviated Journal  
  Volume Issue Pages 2206712  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Out-of-equilibrium self-assembly of metal nanoparticles (NPs) has been devised using different types of strategies and fuels, but the achievement of finite 3D structures with a controlled morphology through this assembly mode is still rare. Here we used a spherical peptide-gold superstructure (PAuSS) as a template to control the out-of-equilibrium self-assembly of Au NPs, obtaining a transient 3D branched Au-nanoshell (BAuNS) stabilized by sodium dodecyl sulphate (SDS). The BAuNS dismantled upon concentration gradient equilibration over time in the solution, leading to NPs disassembly. Notably, BAuNS assembly and disassembly favoured temporary interparticle plasmonic coupling, leading to a remarkable oscillation of their optical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000914725800001 Publication Date 2023-01-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.3 Times cited 1 Open Access OpenAccess  
  Notes European Research Council, ERC‐2017‐PoC MINIRES 789815 ERC‐2012‐StG_20111012 FOLDHALO 307108 815128 ; Approved Most recent IF: 13.3; 2023 IF: 8.643  
  Call Number (down) EMAT @ emat @c:irua:194299 Serial 7247  
Permanent link to this record
 

 
Author Chowdhury, M.S.; Rösch, E.L.; Esteban, D.A.; Janssen, K.-J.; Wolgast, F.; Ludwig, F.; Schilling, M.; Bals, S.; Viereck, T.; Lak, A. url  doi
openurl 
  Title Decoupling the Characteristics of Magnetic Nanoparticles for Ultrahigh Sensitivity Type A1 Journal article
  Year 2023 Publication Nano letters Abbreviated Journal  
  Volume 23 Issue 1 Pages 58-65  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Immunoassays exploiting magnetization dynamics of magnetic nanoparticles are highly promising for mix-and-measure, quantitative, and point-of-care diagnostics. However, how single-core magnetic nanoparticles can be employed to reduce particle concentration and concomitantly maximize assay sensitivity is not fully understood. Here, we design monodisperse Néel and Brownian relaxing magnetic nanocubes (MNCs) of different sizes and compositions. We provide insights into how to decouple physical properties of these MNCs to achieve ultrahigh sensitivity. We find that tri-component-based Zn0.06 Co0.80Fe2.14 O4 particles, with out-of-phase to initial magnetic susceptibility χ /χ ratio of 0.47 out of 0.50 for magnetically blocked ideal particles, show the ultrahigh magnetic sensitivity by providing rich magnetic particle spectroscopy (MPS) harmonics spectrum despite bearing lower saturation magnetization than di-component Zn0.1Fe2.9O4 having high saturation magnetization. The Zn0.06Co0.80Fe2.14O4 MNCs, coated with catechol-based polyethylene glycol ligands, measured by our benchtop MPS show three orders of magnitude better particle LOD than that of commercial nanoparticles of comparable size.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000907816300001 Publication Date 2023-01-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.8 Times cited 1 Open Access OpenAccess  
  Notes Deutsche Forschungsgemeinschaft, DFG RTG 1952 ; Joachim Herz Stiftung; H2020 Research Infrastructures, 823717 ; Approved Most recent IF: 10.8; 2023 IF: 12.712  
  Call Number (down) EMAT @ emat @c:irua:193406 Serial 7248  
Permanent link to this record
 

 
Author Kourmoulakis, G.; Michail, A.; Paradisanos, I.; Marie, X.; Glazov, M.M.; Jorissen, B.; Covaci, L.; Stratakis, E.; Papagelis, K.; Parthenios, J.; Kioseoglou, G. pdf  url
doi  openurl
  Title Biaxial strain tuning of exciton energy and polarization in monolayer WS2 Type A1 Journal Article
  Year 2023 Publication Applied Physics Letters Abbreviated Journal  
  Volume 123 Issue 22 Pages  
  Keywords A1 Journal Article; Condensed Matter Theory (CMT) ;  
  Abstract We perform micro-photoluminescence and Raman experiments to examine the impact of biaxial tensile strain on the optical properties of WS2 monolayers. A strong shift on the order of −130 meV per % of strain is observed in the neutral exciton emission at room temperature. Under near-resonant excitation, we measure a monotonic decrease in the circular polarization degree under the applied strain. We experimentally separate the effect of the strain-induced energy detuning and evaluate the pure effect coming from the biaxial strain. The analysis shows that the suppression of the circular polarization degree under the biaxial strain is related to an interplay of energy and polarization relaxation channels as well as to variations in the exciton oscillator strength affecting the long-range exchange interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001124156400003 Publication Date 2023-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4 Times cited Open Access  
  Notes Hellenic Foundation for Research and Innovation, HFRI-FM17-3034 ; Approved Most recent IF: 4; 2023 IF: 3.411  
  Call Number (down) CMT @ cmt @c:irua:202178 Serial 8991  
Permanent link to this record
 

 
Author Claes, J.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title Decoupled DFT-1/2 method for defect excitation energies Type A1 Journal Article
  Year 2023 Publication Physical Review B Abbreviated Journal Phys. Rev. B  
  Volume 108 Issue 12 Pages 125306  
  Keywords A1 Journal Article; Condensed Matter Theory (CMT) ;  
  Abstract The DFT-1/2 method is a band-gap correction with GW precision at a density functional theory (DFT) computational cost. The method was also extended to correct the gap between defect levels, allowing for the calculation of optical transitions. However, this method fails when the atomic character of the occupied and unoccupied defect levels is similar as we illustrate by two examples, the tetrahedral hydrogen interstitial and the negatively charged vacancy in diamond. We solve this problem by decoupling the effect of the occupied and unoccupied defect levels and call this the decoupled DFT-1/2 method for defects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001089302800003 Publication Date 2023-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access Not_Open_Access  
  Notes This work was supported by the FWO (Research Foundation-Flanders), Project No. G0D1721N. This work was performed in part using HPC resources from the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government department EWI (Economie, Wetenschap & Innovatie). Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number (down) CMT @ cmt @c:irua:201287 Serial 8976  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: