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Abstract

Quantitative structure determination is needed in order to study and understand nanomaterials at the atomic scale. Materials char-
acterisation resulting in precise structural information is a crucial point to understand the structure-property relation of materials.
Counting the number of atoms and retrieving the 3D atomic structure of nanoparticles plays an important role here. In this pa-
per, an overview will be given of the atom-counting methodology and its applications over the past decade. The procedure to
count the number of atoms will be discussed in detail and it will be shown how the performance of the method can be further
improved. Furthermore, advances toward mixed element nanostructures, 3D atomic modelling based on the atom-counting results,
and quantifying the nanoparticle dynamics will be highlighted.

1. Introduction

During his rich career, John Spence has spent a major part
striving to image atoms for solving materials science questions.
Witness to this is the publication of his book ’High resolution
electron microscopy’ that is read by many young scientists and
microscopists. The first direct observation of individual atoms
was with a scanning transmission electron microscopy (STEM)
set-up in the early seventies [1]. After this observation, many
efforts have been made to reach ultra high resolution in TEM.
However, Spence also foresaw that the STEM set-up, although
unforeseeably in the nineties of the previous century, would be
promising because of the Z-contrast [2]. In our research field,
this prognosis is more than fulfilled as we are nowadays ex-
tensively exploiting the Z- and thickness-contrast of the atomic
resolution annular dark field (ADF) STEM images for quan-
titative analyses. Unlike qualitative methods which are based
on a visual interpretation of the acquired images, quantitative
methods enable to determine the chemical composition at a lo-
cal scale [3–5] and to measure the atom positions down to pi-
cometer precision [6–9]. For this purpose, electron microscopy
images are treated as datasets from which unknown structure
parameters can be measured. To reach this goal, statistical pa-
rameter estimation theory is introduced in the field of atomic
resolution electron microscopy [10–12]. This approach enables
us to quantify atomic column positions and the total intensity of
scattered electrons for each atomic column, from atomic reso-
lution ADF STEM images. The latter is the so-called scattering
cross-section which is robust to defocus, source size, magnifi-
cation, and small sample mis-tilt [3, 13–15]. Furthermore these
scattering cross-sections increase monotonically with thickness
and the atomic number Z. When further analysing the distribu-
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tion of the scattering cross-sections with advanced quantifica-
tion procedures, the number and/or type of atoms can be mea-
sured [16–18]. In tribute to John Spence, we give an overview
of a decade of atom-counting from ADF STEM images. In sec-
tion 2, we introduce our statistics based atom-counting method
which was introduced back in 2011 for the first time. In ad-
dition, we propose a modified model for the description of the
distribution of the scattering cross-section values, which will
improve the accuracy of the obtained atom-counting results.
Section 3 discusses the possibilities to unscramble the number
of atoms in mixed element nanostructures. Next in section 4, it
is shown how the atom-counting results can be used to retrieve
the atomic structure in three dimensions (3D). An overview is
given from the first initial results up to more advanced recon-
struction methods, allowing to retrieve reliable atomic models
based on atom-counting results from a single viewing direction.
Finally, in section 5, the opportunities to study nanoparticle dy-
namics are considered.

2. Nanoparticle atom-counting

As mentioned in the introduction, atomic resolution HAADF
STEM images are both sensitive to the composition and
thickness of each atomic column. The latter enables us to count
the number of atoms in each atomic column for homogeneous
nanoparticles. Different methods have been introduced over the
past years [16–23]. Here, our statistics-based atom-counting
method will be illustrated for a Au nanorod [17]. Fig. 1(a)
shows an aberration-corrected high angle (HA)ADF STEM
image of the Au nanorod viewed along the [100] zone-axis.
Using statistical parameter estimation theory, the experimental
observations are considered as a data plane from which the
unknown structure parameters are estimated. For an atomic
resolution ADF STEM image, the unknown structure pa-
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rameters are the atomic column positions and the scattering
cross-section values for each atomic column. The key to the
successful application of this approach is the availability of
a parametric model which describes the pixel values in the
ADF STEM image. Since the intensity is often sharply peaked
at the atomic column positions, atomic resolution (S)TEM
images are modelled as a superposition of Gaussian peaks
[10–12]. The locations of the Gaussian peaks correspond to the
atomic column positions and the volume under the Gaussian
peaks equals the scattering cross-section, which is sensitive to
the number of atoms. The parametric model consisting of a
superposition of Gaussian peaks is fitted to the experimental
ADF STEM image using the uniformly weighted least squares
criterion. This criterion quantifies the similarity between the
experimental data and the model. An efficient implementation
of this algorithm is available in the StatSTEM software package
[12]. The refined parametrised model is shown in Fig. 1(b),
showing a close match with the experimental data.
Based on the estimated parameters, the scattering cross-
sections are determined for each atomic column and these are
shown in the histogram in Fig. 1(e). Ideally, the histogram of
scattering cross-sections for all atomic columns in this image
would consist of isolated components where each component
corresponds to a set of atomic columns having the same
number of atoms in it. In practice, however, the components
are smeared out due to a combination of experimental detection
noise and the environment. Therefore these results cannot
be interpreted directly in terms of the number of atoms in a
column. In order to retrieve then the number of components
and their locations, a combination of a so-called Gaussian
mixture model and an order selection criterion is used [18, 24].
An additional advantage is that the result only depends on the
values of the estimated scattering cross-sections and is inde-
pendent of the subjective choice of bins in the histogram. The
order selection criterion indicates the number of statistically
significant components in the underlying scattering cross-
sections measures. The number of components corresponds
to a minimum in the evaluation of this criterion as a function
of the number of components as illustrated in Fig. 1(d). Often
this corresponds to a local minimum. For this Au nanorod, 47
components are present, suggesting that the number of atoms
varies from 1 up to 47 atoms. The Gaussian mixture model
analysis defines the positions, the width, and the proportion
of each Gaussian component. The scattering cross-section of
each atomic column can then be assigned to the component
having the largest probability for this scattering cross-section,
leading to a map reflecting the number of atoms for each
atomic column as shown in Fig. 1(c).
Since many local minima are present in the order selection
criterion shown in Fig. 1(d), a validation step is often required.
This is possible through a comparison with image simulations.
For this purpose, the intensities in the ADF STEM image
have been normalised with respect to the incident beam
[25–27] allowing one to directly compare the experimental and
simulated scattering cross-section values. Fig. 1(f) shows the
experimental mean scattering cross-sections - corresponding to
the component locations in Fig. 1(e) - together with the scatter-

ing cross-sections estimated from frozen phonon calculations
performed under the same experimental conditions [28]. The
excellent match of the experimental and simulated intensities
within the expected 5%–10% error range validates the accuracy
of the obtained atom counts [4, 19].

Up to now, the components of the Gaussian mixture model
shown in Fig. 1(e) are modelled as homoscedastic components,
i.e. components with a common width. Ultimately, the images
from which the scattering cross-sections are estimated, contain
only Poisson noise. In this dose-limited case, the variance of the
components cannot be considered as homoscedastic any more.
The variance of the scattering cross-sections then depends on
the dose and the scattering cross-section value [29]. A ho-
moscedastic model will then fail to correctly describe the dis-
tribution of the scattering cross-section values. In order to im-
prove the accuracy of the atom-counting results at low doses for
which the dose dependent behaviour is most dominant, we pro-
pose to include the dose-dependent width from Van Aert et al.
[29] in the Gaussian mixture model next to a dose-independent
width. The effective width of the normal components is then
given by:

σeff =
√
σdi + σd =

√

σdi +
µg

d
. (1)

The parameters σdi and σd denote the dose-independent and
dose-dependent contributions to the width; µg is the location
of the gth component and d is the incoming electron dose. It
is important to note that the dose-dependent width, i.e. µg/d

increases with increasing thickness. The mixture model with G

components is then described by:

fmix(S CS n;ΨG) =
G

∑

g=1

πg√
2πσeff

exp
(

−
(S CS n − µg)2

2σeff

)

(2)

where S CS n represents the stochastic variable for the nthe scat-
tering cross-section. The symbol ΨG represents the unknown
parameters in the mixture model with G components:

ΨG = (π1, . . . , πG−1, µ1, . . . , µG, σdi)T (3)

where parameter πg denotes the mixing proportion of the gth
component. The parameters given by Eq.(3), are estimated
using the expectation maximisation algorithm, described in
[18, 30].
In order to evaluate the improvement for the atom-counting
analysis, 1000 noise realisations of 240 scattering cross-section
values coming from a mixture model with 12 components and
with equal proportions have been generated at different doses,
ranging from 103 e−/Å2 to 105 e−/Å2. The locations of the
12 components correspond to the ADF STEM scattering cross-
sections that can be expected for 1 up 12 Au atoms imaged with
an aberration corrected ADF STEM set-up at an acceleration
voltage of 300 kV, a probe convergence of 20 mrad and a annu-
lar detector ranging over 45-180 mrad. The dose-independent
width σdi equals either 0 or 0.0042. The latter value mimics the
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Figure 1: (a) Experimental HAADF STEM image of an Au nanorod. (b) Refined parametrised model. (c) The number of Au atoms per column. (d) ICL criterion
evaluated as a function of the number of Gaussians in a mixture model. (e) Histogram of scattering cross-sections of the Au columns, together with the estimated
mixture and its individual components. (f) Comparison of experimental and simulated scattering cross-sections. Adapted figure with permission from [17] Copyright
(2013) by the American Physical Society.

contributions from scan noise distortions. Two types of Gaus-
sian mixture models are estimated for each simulated dataset: a
homoscedastic model and the mixture model of Eq. (2) contain-
ing the effective width introduced in Eq. (1). The performance
of both approaches is evaluated in terms of the correctly identi-
fied number of components by assessing the ICL criterion. The
results are shown in Fig. 2(a). It is clear that the fraction of
correctly identified number of components is significantly in-
creased for the new model including the dose-dependent width
(blue curves). The improved performance is most pronounced
for the underlying distribution with σdi = 0. In the presence
of a dose-independent contribution and at higher doses, the
original homoscedastic model also shows a good performance.
Nowadays, with the availability of more stable instruments and
software to correct for e.g. scan noise distortions [31], we are
closer to the dose-limited regime and the accuracy of the atom-

counting results will benefit of the improved model. The reason
for the misidentification of the number of components is further
illustrated in Fig. 2(b-d) for one simulated distribution. The
same trend will be observed for other noise realisations as well.
Fig. 2(b) shows an example of the ICL criteria for a simulated
distribution with an incoming electron dose of 3 · 103 e−/Å2

and σdi = 0. The ICL evaluation of the dose dependent mod-
els correctly identified 12 components, however, the evaluation
for the homoscedastic models indicates more components, i.e.
in this case 14 components. From the mixture models, it is
clear that the homoscedastic model includes extra components
to model the increased variety in the scattering cross-section
values for the components corresponding to higher number of
atoms (Fig. 2(c)). Indeed, from a detailed comparison of the
models in Figs. 2(c) and (d), it can be seen that the last three
components in Fig. 2(d) are split into five components in the ho-
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Figure 2: Comparison of the performance of the Gaussian mixture models with the same width and dose-dependent width. (a) Fraction of correctly identified
number of components as a function of the incident electron dose based on the estimated models with the same width and dose-dependent width for underlying
simulated distributions with σdi = 0.0042 and σdi = 0. (b) Example of an ICL criterion for the homoscedastic and dose-dependent models for an incoming electron
dose of 3 · 103 e−/Å2 with σdi = 0. (c) Estimated homoscedastic Gaussian mixture model for 14 components corresponding to the minimum in (b). (d) Estimated
dose-dependent Gaussian mixture model for 12 components corresponding to the minimum in (b).

moscedastic model in Fig. 2(d). The homoscedastic model will
systematically overestimate the number of components result-
ing in the a lower performance shown in Fig. 2(a). The novel
model retrieves the correct number of components and models
more accurately the underlying distribution of scattering cross-
section values (Fig. 2(d)).

3. From homogeneous to heterogeneous

In the previous section, atom-counting was discussed for
nanoparticles consisting of a single type of element. However,
many relevant materials often consist of more than one chemi-
cal element because of their unique electronic, optical, or cat-
alytic properties . For mixed element columns, all types of ele-
ments will contribute differently to the scattering cross-section

thus significantly complicating atom-counting as compared to
monotype nanostructures. Therefore, image simulations play
an important role to access the number and type of atoms in
each atomic column. Since small changes in the atom order-
ing in the column can modify the scattering cross-sections, the
amount of required simulations makes it almost an impossible
task in terms of computing time. Indeed, already more than
2×106 simulations would be needed for a 20 atoms thick binary
alloy having all possible ratios between both elements. There-
fore, a non-linear model, capable of predicting scattering cross-
sections in terms of the 3D atomic arrangement was developed
by taking dynamical electron diffraction into account [32, 33].
In this so-called atomic lensing model, the lensing effect of
scattering cross-sections is modelled as a superposition of indi-
vidual atoms focusing the incoming electrons as schematically
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Figure 3: (a) Illustration of the atomic lensing model: the lensing effect of the
scattering cross-sections is modelled as a superposition of individual atoms fo-
cusing the incoming electrons. (b) The number of Ag atoms in an experimental
HAADF STEM image of a Ag-coated Au nanorod (c) The number of Au atoms
counted from the same experimental HAADF STEM image. Adapted with per-
mission from [32] Copyright (2016) by the American Physical Society.

illustrated in Fig. 3(a). This model enables predicting scatter-
ing cross-sections of any mixed column of atoms based on the
scattering cross-sections of the pure atoms. In this manner, the
number of required simulations is drastically reduced to only
2 for a binary column. The availability of this atomic lens-
ing model in combination with some prior knowledge about
the shape of the nanostructure enables one to retrieve the num-
ber of atoms in heterogeneous systems. This is illustrated here
for an experimental ADF STEM image of a Au@Ag core-shell
nanorod. For this structure, prior knowledge on the total thick-
ness of the mixed atomic columns is required. In this manner,
the number of variables that has to be predicted is limited. For
this purpose, the total thickness in the mixed atomic columns
was estimated by fitting a thickness profile based on the atom-
counting results in the pure Ag shell regions. Next, by further
exploiting the core-shell nature of the mixed columns, the num-
ber of Ag and Au atoms can be computed from the direct com-
parison between the measured experimental scattering cross-
sections and predicted values. The atom-counting results for
both types of atoms are shown in Fig. 3(b-c).

In order to avoid prior knowledge about the overall shape
and thickness of the nanorod, yet another approach is needed.
Moreover, when the difference between the atomic numbers of
elements decreases, the detection of compositional differences
in ADF STEM becomes increasingly more challenging or even
impossible. For this purpose, HAADF STEM imaging can be
combined with energy dispersive X-ray spectroscopy [34, 35].
Next to the HAADF STEM image, at each probe position the
resultant X-ray emission spectrum is recorded. These spectra
can then be used to construct elemental maps from which EDX
scattering cross-sections can be estimated. Recently presented a
new methodology to count the number of atoms in multimetal-
lic nanocrystals by combining the HAADF STEM image and
the elemental maps [34]. Due to the low SNR in the individ-
ual EDX elemental maps, the scattering cross-sections in the
EDX images are measured using Voronoi cells. With this ap-

Figure 4: Simulated HAADF STEM image and EDX elemental maps of an
Au@Pt core–shell nanorod, together with the ground truth atom counts, the
estimated atom-counts, and the difference maps for the total number of atoms
and both the number of Pt and Au atoms in an atomic column. Adapted figure
with permission from [34] Copyright (2022) John Wiley and Sons.

proach, each pixel is assigned to the nearest atomic column,
with the positions of the atomic columns being determined from
the simultaneously recorded HAADF STEM images. A simple
linear scaling between the STEM and EDX scattering cross-
sections can be assumed, which has been confirmed theoreti-
cally and experimentally [34, 36]. The monotonic increase of
both EDX and HAADF STEM scattering cross-section values
can be used to count the number of atoms. For this purpose, the
measured scattering cross-sections are matched to simulated li-
brary values. The library values for the HAADF STEM scatter-
ing cross-sections of the mixed atomic columns are generated
using frozen lattice image simulations of the pure element crys-
tals [37, 38] in combination with the atomic lensing model [33].
As demonstrated by Zhang et al. [36], the atomic lensing model
can also be used to predict EDX scattering cross-sections. The
main challenge is to estimate the two scaling parameters for
the EDX cross-sections of the two types of elements. It is as-
sumed that the experimental HAADF scattering cross-section
requires no scaling with respect to simulation [17, 25, 26]. For
a single atomic column, because of the unknown EDX scal-
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ing parameters, there is an ambiguity between sample thickness
and composition. It is, however, possible to determine an up-
per and lower bound to the thickness from the HAADF scatter-
ing cross-section by assuming the column is either entirely the
lighter or heavier species respectively. For each possible thick-
ness, only one column composition can then match the HAADF
scattering cross-section, allowing the EDX scaling parameters
to be determined for that composition. By repeating this for
all possible thicknesses compatible with the HAADF scatter-
ing cross-section, it becomes clear that a finite range of possi-
ble EDX scaling parameters for that single column is possible.
For a sample with variations in thickness and composition, dif-
ferent columns will lead to different possible ranges of scaling
parameters. With sufficient atomic columns in an experiment,
the scaling parameters that are most compatible with all of the
columns can be determined.
To explore the possibilities, simulated HAADF STEM images
and EDX maps of a Au@Pt core-shell nanorod were analysed.
For the EDX signals, the ionisation potential of the 2p orbitals
of Pt and Au was used in the multislice simulations to create
the elemental maps. The infinite dose simulations are shown
in Fig. 4(a). The ground truth number of atoms (Fig. 4(b)),
estimated number of atoms (Fig. 4(c)), and difference maps
(ground truth - estimated) Fig. 4(d)) are also presented in Fig. 4.
The observed differences in the atom-counting results are di-
rectly related to the unavoidable small mismatch between the
simulated library of scattering cross-sections assuming the bulk
unit cell and the measured scattering cross-sections from the re-
laxed Pt-Au nanorod. Next, the simulation set-up is made simi-
lar to an experimental set-up corresponding to EDX mapping of
60 min where the results are stored every 5 min followed by the
acquisition of a HAADF STEM image. For this purpose a time
series of 12 images is generated. After that, Poisson noise (50
noise realizations) is included in the simulated HAADF STEM
image and the EDX elemental maps in order to evaluate the ef-
fect of a limited incident electron dose on the obtained counting
results. For the HAADF STEM image an incident electron dose
of 5 × 104 e−Å−2 per frame is used and for the EDX elemental
maps 5× 106 e−Å−2. An example of such a simulated dataset is
shown in Fig. 4(e) for a collection efficiency of 5%. The angular
efficiency of our SuperX system is 0.7S r/(4π), which is about
5%. The RMSE per atomic column for 5% efficiency is shown
in Fig. 4(f). From this figure, it can be observed that the RMSE
reaches values up to 3 for the number of Pt and Au atoms in
the mixed atomic columns, but is less on average. The intro-
duction of new instruments with an angular efficiency toward
4S r/(4π) ≈ 30% [67,70] will greatly benefit quantification at
the atomic level. This new type of detector will also bring new
capabilities to study more beam-sensitive nanostructures, such
as light element structures, for which limiting the incident elec-
tron dose during imaging is essential.

4. From 2D to 3D

In a next step, one of the objectives is to use the atom-counts
to retrieve the atomic structure in three dimensions. Back in
2011, this has been done for the first time to determine the 3D

atomic structure of a Ag particle embedded in an Al matrix as il-
lustrated in Fig. 5 [16]. To achieve this result, two ADF STEM
images were acquired under two different viewing directions.
From these images, the number of Ag atoms in each column
was counted. By combining the atom-counting results of the
same particle from the two viewing directions, the 3D structure
could be retrieved using discrete tomography.
When studying extremely beam sensitive nanostructures or
changes over time, acquiring STEM images from different
viewing directions to obtain the 3D structure is far from
straightforward. Therefore, another alternative was developed,
which circumvents these issues by reconstructing 3D atomic
models from a single projection [21, 39, 41–43]. For this pur-
pose, the atom-counting results are used to create an initial
3D atomic model. Next, an energy minimisation procedure
can be applied to obtain a relaxed 3D reconstruction of the
nanoparticle. In order to validate this method, this single pro-
jection reconstruction approach is compared with tomography
[39]. For this purpose, three projection ADF STEM images
of a Au nanorod were acquired along different major zone axes.
These three projection images were used as an input for a 3D re-
construction using a compressive sensing based reconstruction
technique [44]. For the atom-counting/energy-minimisation ap-
proach only one of those projection images is used to count the
number of atoms. Based on the atom-counting results, an ini-
tial 3D configuration can be obtained by positioning the atoms
in each atomic column, parallel to the beam direction, sym-
metrically around a central plane. The atoms are separated by
a fixed distance a for the [100] orientation (or a/

√
2 for the

[110] orientation) - where a = 4.078 Å is the lattice parameter
of gold. In addition, prior knowledge about the [100] (or [110])
specimen orientation can be included. For example, for the
[110] orientation the atomic position at even planes are shifted
along the beam direction by a/(2

√
2) with respect to the odd

planes. The relative heights of the atomic columns are then
relaxed using a Monte Carlo approach using a Lennard-Jones
potential [21]. Fig. 6 shows the comparison between the two
atomic resolution reconstruction methods. Fig. 6(a,b) show the
compressive sensing based reconstruction visualized along the
[001] and [110] directions respectively, and similarly Fig. 6(c,d)
show the reconstruction based on the atom-counting/energy-
minimization approach. Both reconstructions are overlapped
in Fig. 6(e,f) and an excellent visual match of the overall mor-
phology of the nanorod has been found. The same excellent
agreement between 3D reconstructions obtained using conven-
tional high resolution electron tomography and the methodol-
ogy based on atom counting and relaxation was also obtained
for Pt nanoparticle of 10 nm [45]. The comparison between the
atom-counting/energy-minimization approach and state-of-the-
art electron tomography validates that a trustworthy 3D recon-
struction can be obtained from a single image, where we can
make reasonable assumptions that we are viewing a roughly
symmetrical particle with no voids.

More recently, a lot of effort has been put in order to im-
prove this atom-counting/energy minimisation method to over-
come the limitations of the different possible approaches that
are available for an energy minimisation. Mainly two strate-
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Figure 5: Atomic imaging of crystalline nanoparticles in three dimensions. (a) Experimental HAADF STEM images of nanosized Ag clusters embedded in an
Al matrix in [101̄] zone-axis orientation and [100] zone-axis orientation. (b) Refined models of the images in (a). (c) Number of Ag atoms per column. (d) The
computed 3D reconstruction of the Ag nanocluster viewed along three different directions. Reproduced from [16] with permission from Nature Publishing Group.

Figure 6: Comparison of the reconstructions based on atom counting with en-
ergy minimization and those obtained by atomic resolution tomography. (a, b)
Compressive sensing based reconstruction of a Au nanorod viewed along [001]
and [110] direction. (c, d) Reconstruction based on atom counting and energy
minimization using a single projection image viewed along [001] and [110] ori-
entation (the colouring of the Au atoms indicates the nearest-neighbour coordi-
nation, from 1 in red to 12 in dark blue). (e, f ) Overlap of the reconstructions
shown in (a, c) and (b, d). Adapted from [39] with permission from The Royal
Society of Chemistry.

gies can be distinguished here. Using the first approach, which
was also applied for the Au nanorod of Fig. 6, the energy is
minimized by shifting the atomic columns up and down while

keeping the number of atoms in a column fixed to the outcome
of the atom-counting procedure [21, 39, 42, 43]. The second
approach consists of a full molecular dynamics simulation to
relax the particle’s structure [39, 45, 47]. The first method is
potentially too restrictive by ignoring the finite atom-counting
precision, especially at lower doses. On the other hand, the
second method runs the risk of ending up in a global energy
minimum and violating the physical constraints of the experi-
mental observation.
In order to avoid that purely computational energy minimisa-
tion approaches result in a close local minimum where the re-
constructed structure may deviate from the experimental obser-
vation, the energy landscape can exhaustively be explored to
find the local minimum corresponding to the experimentally
observed structure. For this purpose, an iterative local min-
ima search algorithm [48] was proposed which is followed by
a molecular dynamics structural relaxation of candidate struc-
tures associated with each local minimum [40]. In this manner,
it becomes possible to investigate the 3D atomic structure of
supported nanoparticles, which may deviate from their ground
state configuration. This new method was applied to experi-
mental images of supported Au nanoparticles at high temper-
ature and validated on a simulated system. The method is il-
lustrated for the simulated system in Fig. 7. In the first step,
Fig. 7(a), a starting model is build based on the atom-counting
results obtained from the simulated ADF STEM image of the
supported Au nanoparticle. Next the iterative local minima
search algorithm to reconstruct the final 3D structure from the
starting input model is applied. In this manner, a broad sam-
pling of the energy landscape is provided, which is shown by
the grey line in Fig. 7(b). From this landscape, local minima
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Figure 7: Main steps of the iterative local minima search algorithm demonstrated for a simulated Au nanoparticle. a) Starting 3D model created based on the
atom-counting results. b) Neighbourhood energy landscape obtained by the iterative local minima search algorithm. c) The components of the defined fitness
function. d) Reconstructed final Au nanoparticle on the support. Au atoms are presented in different colours according to their coordination numbers (see Figure
1a). e) Difference in number of atoms in each projected atomic column between the original input and reconstructed model. f) Comparison of the surface structure
of the reconstructed nanoparticle and the original nanoparticle. The histogram is obtained from the coordination numbers of the atoms. Reprinted with permission
from [40] Copyright (2021) John Wiley and Sons.

Figure 8: (a) Probability matrix showing the probability that the nth scattering cross-section has g atoms. (b) Neighbour-mass probability matrix showing the
average mass of the neighbouring columns on the x-axis and the column mas on the y-axis. (c) Fraction of the correctly reconstructed surface atoms as a function of
the incident electron dose. The inset shows the ground truth reconstruction of the Pt nanoparticle where the colouring of the Pt atoms indicates the nearest-neighbour
coordination. Reproduced figure from [46] (Creative Commons CC BY license).

have been selected. They are indicated by the black dots in
Fig. 7(b) and correspond to points that have the lowest value
in regions where at least ten previous points showed a contin-
uous decreasing trend. Next each candidate structure associ-
ated with a local minimum was relaxed by molecular dynamics
simulations in a canonical ensemble at the experimental tem-
perature. After this relaxation, the most plausible 3D struc-
ture is determined based on a fitness function which does take
into account the difference with the experimental observations
as well. Therefore, the fitness function consists of different con-
tributions, i.e. (1) the average shift in the projected atomic col-

umn positions of each candidate model compared to the atomic
column positions observed in the simulated ADF STEM im-
age (2) the average difference between the number of atoms
in each projected atomic column of the candidate solution and
the estimated atom-counting results from the simulated ADF
STEM image, and (3) the average potential energy per atom.
The different contributions of the fitness function, and the over-
all fitness function are displayed for the different local minima
in Fig. 7(c). The minimum value in the fitness graph (indicated
with a red circle in Fig. 7(c)) provides the final 3D structure,
which is shown in Fig. 7(d). The reconstructed model is quanti-
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tatively evaluated by comparing it with the ground truth model.
Fig. 7(e) shows the difference in the number of atoms in each
projected atomic column between the reconstructed nanoparti-
cle and original input model. The maximum difference equals
±2 atoms and is far less on average. Next to comparing the
number of atoms in each atomic column, also the surface struc-
ture was quantitatively evaluated. The comparison of the sur-
face structure of the reconstructed nanoparticle and the original
3D model is shown in Fig. 7(f). According to the results, it can
be concluded that the surface structure of the reconstructed Au
nanoparticle has been identified with an accuracy of more than
95% where the maximum difference of 2.22% was observed
in the percentage of 111 facets as indicated in Fig. 7(f). This
validates that supported Au nanoparticle at high temperatures
can be accurately reconstructed with this method. Moreover,
in this work [40], the new methodology is compared with pre-
viously reported approaches from which it could be concluded
that the local search minima algorithm outperforms the previ-
ous approaches.

In parallel, another improved 3D atom-counting/energy min-
imisation reconstruction algorithm was developed [46]. This
algorithm focuses on incorporating the finite atom-counting
precision via a Bayesian inference scheme to improve the 3D
atomic models for small nanostructures. Bayesian methods are
powerful tools in which a priori information is rationally com-
bined with the observed data and have been successful in other
fields of science. Next to the finite atom-counting precision, the
incorporation of additional prior knowledge from neighbour-
mass relations is beneficial when reconstructing atomic mod-
els from extremely low dose ADF STEM images. This prior
knowledge is fused into a genetic algorithm which uses atom-
counting results as an input for reconstructing the 3D atomic
structure. Genetic algorithms are typically used as efficient
tools for solving large optimization problems where finding a
direct solution is not possible [49, 50]. As an input for the
reconstruction algorithm we need the probability that the nth
atomic column contains a specific number of atoms p(g|S CS n).
This can be defined as:

p(g|S CS n) =
p(g)p(S CS n|g)

∑

g p(g)p(S CS n|g)
(4)

where p(S CS n|g) is the normal distribution describing the prob-
ability that component g generates the nth scattering cross-
sections, given by the gth normal component of Eq.(2), and p(g)
the probability of having g atoms in a column, for which equal
probabilities are assumed. The probability p(g|S CS n) can be
visualised in a matrix. An example of such a probability matrix
is shown in Fig. 8(a). This probability can also be used to repre-
sent the uncertainty of the atom-counting results [51]. For im-
proving the quality of the reconstructions further at lower doses,
a neighbour-mass matrix is constructed which helps to predict
the column mass based on the average mass of the neighbour-
ing columns. For small, convex nanoparticles, abrupt discon-
tinuities are indeed highly non-physical. This matrix p(g|NBn)
is chosen to be diagonal and is visualised in Fig. 8(b). Both

probability matrices can be combined as

p (g|SCSn ∩ NBn) =
p(g|SCSn)p(g|NBn)

∑

g p(g|SCSn)p(g|NBn)
(5)

where NBn indeicates the average neighbour-mass of the nth
column. This prior knowledge is inserted in the cost function
of the genetic algorithm which evaluates the different candidate
solutions. The cost-function χ is given by:

χ =

∑

Ea
∑

n gn

·



















1 + n

√

∏

n

p(gn|prior knowledge)



















, (6)

where
∑

Ea is the sum of the energies per atom given by the
EAM potential [52, 53] and

∑

n gn is the total particle mass.
This cost-function consists of two factors where the first rep-
resents the average energy per atom which we wish to mini-
mize. The second factor allows to penalize the energy per atom
with the probability of the candidate solution based on the prior
knowledge (Eq.(4) or Eq.(5)), hence the name Bayesian genetic
algorithm. In an extensive simulation study, the quality of the
obtained reconstructions is quantitatively evaluated in terms of
the surface atoms, which are of general interest for catalysis.
Fig. 8(c) shows the fraction of correctly reconstructed surface
atoms of a simulated Pt nanoparticle. As a reference, the re-
sults for the reconstructions without prior knowledge are also
included. A significant, targeted improvement for the recon-
structed surface atoms is observed for the lower incident elec-
tron doses when including the finite atom-counting precision
and the neighbour-mass relations.

Figure 9: Structural evolution of Pt nanoparticles under different environmen-
tal conditions. Morphology of a Pt nanoparticle in vacuum (a) and in different
gaseous environments, that is, (b,d) in 5% H2 in Ar; (c,e) in O2, all at 300 °C.
The atoms are presented in different colours, according to the type of surface
facet: blue = 100, pink = 110, purple = 111, gray = higher index. (f) Occur-
rence of different surface facets as a function of the gas flow in time. Note that a
smaller, but constant presence of 110 facets was found for the different gaseous
environments (not shown in this graph). Reproduced figure from [45].

5. Nanoparticle dynamics

The methodology of retrieving the 3D atomic reconstruc-
tion based on the atom-counting results opens new prospects
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Figure 10: (a) The hidden Markov model for atom-counting models the number of atoms in each atomic column of the nanoparticle as the hidden states (top row)
and the scattering cross-sections obtained from the ADF STEM images as the observations (bottom row). Reprinted figure with permission from [54] Copyright
(2020) by the American Physical Society. (b) Analysis of an experimental ADf STEM time series of a catalyst Pt nanoparticle. (c) Corresponding reconstructed
3D atomic models for the time sequence viewed along the beam direction. (d) Rotated models to show the dominant surface facets. The colouring of the atoms
corresponds to the nearest-neighbour coordination, from 1 in red to 12 in dark blue. Reproduced figure from [46] (Creative Commons CC BY license).

for the characterisation of beam-sensitive materials or where
the acquisition of a tilt series is impossible, such as dynami-
cal processes. One of the applications is the quantification of
the refaceting of Pt nanoparticles with atomic resolution dur-
ing various oxidation-reduction cycles [45]. Fig. 9(a) shows
the reconstructed 3D structure of a Pt nanoparticle in vacuum.
Fig. 9(b-e) shows the behaviour of a similar particle in differ-
ent gas environments. The in situ experiment was performed
at 300◦C and the gas flow was varied from vacuum to 1 bar of
5% H2 in Ar flow (Fig. 9(b)), and subsequently to a 1 bar O2

environment (Fig. 9(c)), corresponding to conditions which are
similar to those typically used during reduction and oxidation
reactions. To investigate the behaviour of the nanoparticle dur-
ing continuous reducing-oxidizing environments, we switched
once more the gas flow to 5% H2 in Ar (Fig. 9(d)) and subse-
quently to O2 (Fig. 9(e)). In vacuum, the particle shape corre-
sponds to a truncated cube, whereas in H2, the shape resembles
a truncated octahedron(Fig. 9(b,d)). The morphology is found
to become more rounded in an O2 environment (Fig. 9(c,e)).
Such information is critical to reveal the behaviour of the cata-
lyst particle in a real working environment. Moreover, the num-
ber of 7-, 8-, and 9-coordinated surface atoms were quantified
based on the reconstructed 3D atomic models. On the basis of
these values, we can extract the occurrence of different types of
surface facets, which is illustrated by the colour codes in Fig-
ure 9(f). The more faceted appearance of the particle in H2 is
reflected by the obvious presence of 100 and 111 planes. In
O2, we observe a decrease of the percentage of these facets and
a significant increase of higher order facets, corresponding to a
more rounded morphology. This methodology clearly enables a
direct quantification of the real 3D morphological changes at an
atomic scale in gaseous environments. However, in this exam-
ple we obtained the 3D atomic structure models by analysing
the underlying images frame by frame. One of the challenges
now is to investigate if we can enhance the reliability in the re-

sults obtained by modelling the dynamics between successive
frames.

In order to model this, a so-called hidden Markov model was
introduced, which is schematically illustrated in Fig. 10(a) [54–
57]. The hidden Markov model depends on a set of parameters
including initial probabilities which define the probabilities for
a column to have a specific number of atoms in a column. In
the simplified example of Fig. 10(a), the probability to have 1
atom is twice as large as the probability to have 2 or 3 atoms in
a column. Whereas the probability to have more than 3 atoms
is equal to zero. The number of atoms in a column are the so-
called hidden states which we can not measure directly. We ob-
serve them indirectly through the scattering cross sections ob-
tained from the ADF STEM images. The emission probability
defines the probability of the scattering cross sections. Given a
certain number of atoms in a column, this is described by a nor-
mal distribution function. From this, we see that for one time
step, the hidden Markov model is in fact equal to the Gaussian
mixture model introduced in the statistics-based atom counting
procedure. Instead of analysing a time series of images frame
by frame, we will also estimate transition probabilities which
in a sense model the dynamics of the nanoparticle. It defines
probabilities for a given column of atoms to, for example, lose
or gain an atom. Assumptions of the hidden Markov model
are that the transition probabilities do not change over time and
that the next state only depends on the previous state but not on
the states before that. Using a maximum likelihood estimation
algorithm, the goal is then to estimate the initial probabilities,
emission probabilities and transition probabilities. Once the pa-
rameters of the model are estimated, the so-called Viterbi algo-
rithm is used to indicate the most likely state sequence [54, 57–
59].
This hidden Markov model approach has been applied to 25
frames of an experimental time series of a catalyst Pt nanopar-
ticle (Fig. 10(b)) [46]. The atom-counting results from each
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single frame were used as an in put for the Bayesian genetic
algorithm introduced in the previous section. In this manner,
prior knowledge about the finite atom-counting precision and
the neighbour-mass relations was incorporated for the recon-
struction of the 3D atomic models. The reconstructed models
are schematically represented in Fig. 10(c) and (d).

6. Conclusions and outlook

The methodologies and examples discussed in this overview
article demonstrate that atom-counting and 3D atomic mod-
elling has successfully been applied to a variety of nanopar-
ticles over the past decade. For some of the presented meth-
ods here, a substantial incident electron dose is needed or prior
knowledge is required about the specimen under study. In or-
der to go beyond these limitations, multimode atomic resolution
ADF STEM might be a solution during which STEM images
are acquired from different detector regions [60–64]. For this
purpose, a great flexibility is provided by pixelated detectors
[63, 65–68]. From a recorded 4D dataset, where for each probe
position the 2D convergent beam electron diffraction pattern is
acquired, multiple conventional STEM images can be recon-
structed for different detector regimes corresponding to differ-
ent inner and outer angles. Although the impact of inelastic,
plasmon excitations at low scattering angles is still under inves-
tigation [60, 69, 70], we investigated the benefit of using mul-
tiple detector regimes to unscramble mixed element nanostruc-
tures in a preliminary study [71]. For this purpose, the optimal
experiment design has been determined using the principles of
detection theory [72–75]. If the signals from multiple detec-
tor regions need to be analysed collectively, an extension of the
current one-dimensional Gaussian mixture model to a multi-
variate Gaussian mixture model would be logical. This exten-
sion would not only be helpful when analysing scattering cross-
section data from different detector regimes, but also for com-
bining spectroscopic signals such as EDX and EELS scatter-
ing cross-sections [36], with the ADF STEM scattering cross-
sections within one framework. Furthermore, machine learning
methods based on artificial neural networks [76] are becoming
increasingly important for the electron microscopy community
[77–80]. Such novel approaches hold great potential for quan-
titative analyses resulting in a precise characterisation of com-
plex nanostructures over time and under realistic conditions in
heating, liquid or gas flow experiments. These results are essen-
tial to obtain a deeper understanding in the structure-property
relationship of materials. In other words, these developments
will assist the design of materials with interesting properties
which are predictable and producible.
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