|
Record |
Links |
|
Author |
Chowdhury, M.S.; Rösch, E.L.; Esteban, D.A.; Janssen, K.-J.; Wolgast, F.; Ludwig, F.; Schilling, M.; Bals, S.; Viereck, T.; Lak, A. |
|
|
Title |
Decoupling the Characteristics of Magnetic Nanoparticles for Ultrahigh Sensitivity |
Type |
A1 Journal article |
|
Year |
2023 |
Publication |
Nano letters |
Abbreviated Journal |
|
|
|
Volume |
23 |
Issue |
1 |
Pages |
58-65 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Immunoassays exploiting magnetization dynamics of magnetic nanoparticles are highly promising for mix-and-measure, quantitative, and point-of-care diagnostics. However, how single-core magnetic nanoparticles can be employed to reduce particle concentration and concomitantly maximize assay sensitivity is not fully understood. Here, we design monodisperse Néel and Brownian relaxing magnetic nanocubes (MNCs) of different sizes and compositions. We provide insights into how to decouple physical properties of these MNCs to achieve ultrahigh sensitivity. We find that tri-component-based Zn0.06 Co0.80Fe2.14 O4 particles, with out-of-phase to initial magnetic susceptibility χ /χ ratio of 0.47 out of 0.50 for magnetically blocked ideal particles, show the ultrahigh magnetic sensitivity by providing rich magnetic particle spectroscopy (MPS) harmonics spectrum despite bearing lower saturation magnetization than di-component Zn0.1Fe2.9O4 having high saturation magnetization. The Zn0.06Co0.80Fe2.14O4 MNCs, coated with catechol-based polyethylene glycol ligands, measured by our benchtop MPS show three orders of magnitude better particle LOD than that of commercial nanoparticles of comparable size. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000907816300001 |
Publication Date |
2023-01-11 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1530-6984 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
10.8 |
Times cited |
1 |
Open Access |
OpenAccess |
|
|
Notes |
Deutsche Forschungsgemeinschaft, DFG RTG 1952 ; Joachim Herz Stiftung; H2020 Research Infrastructures, 823717 ; |
Approved |
Most recent IF: 10.8; 2023 IF: 12.712 |
|
|
Call Number |
EMAT @ emat @c:irua:193406 |
Serial |
7248 |
|
Permanent link to this record |