|   | 
Details
   web
Records
Author (down) Khan, S.U.; Matshitse, R.; Borah, R.; Nemakal, M.; Moiseeva, E.O.; Dubinina, T.V.; Nyokong, T.; Verbruggen, S.W.; De Wael, K.
Title Coupling of phthalocyanines with plasmonic gold nanoparticles by click chemistry for an enhanced singlet oxygen based photoelectrochemical sensing Type A1 Journal article
Year 2024 Publication ChemElectroChem Abbreviated Journal
Volume Issue Pages 1-11
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)
Abstract Coupling photosensitizers (PSs) with plasmonic nanoparticles increases the photocatalytic activity of PSs as the localized surface plasmon resonance (LSPR) of plasmonic nanoparticles leads to extreme concentration of light in their vicinity known as the near-field enhancement effect. To realize this in a colloidal phase, efficient conjugation of the PS molecules with the plasmonic nanoparticle surface is critical. In this work, we demonstrate the coupling of phthalocyanine (Pc) molecules with gold nanoparticles (AuNPs) in the colloidal phase via click chemistry. This conjugated Pc-AuNPs colloidal system is shown to enhance the photocatalytic singlet oxygen (1O2) production over non-conjugated Pcs and hence improve the photoelectrochemical detection of phenols. The plasmonic enhancement of the 1O2 generation by Pcs was clearly elucidated by complementary experimental and computational classical electromagnetic models. The dependence of plasmonic enhancement on the spectral position of the excitation laser wavelength and the absorbance of the Pc molecules with respect to the wavelength specific near-field enhancement is clearly demonstrated. A high similar to 8 times enhancement is obtained with green laser (532 nm) at the LSPR due to the maximum near-field enhancement at the resonance wavelength. Zinc phthalocyanine is covalently linked to plasmonic AuNPs via click chemistry to investigate the synergistic effect that boosts the overall activity toward the detection of HQ under visible light illumination. The 1O2 quantum yield of ZnPc improved significantly after conjugating with AuNPs, resulting in enhanced photoelectrochemical activity. image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001214481000001 Publication Date 2024-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record
Impact Factor 4 Times cited Open Access
Notes Approved Most recent IF: 4; 2024 IF: 4.136
Call Number UA @ admin @ c:irua:205962 Serial 9142
Permanent link to this record
 

 
Author (down) Khalilov, U.; Uljayev, U.; Mehmonov, K.; Nematollahi, P.; Yusupov, M.; Neyts, E.C.; Neyts, E.C.
Title Can endohedral transition metals enhance hydrogen storage in carbon nanotubes? Type A1 Journal article
Year 2024 Publication International journal of hydrogen energy Abbreviated Journal
Volume 55 Issue Pages 640-610
Keywords A1 Journal article; Engineering sciences. Technology; Modelling and Simulation in Chemistry (MOSAIC); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The safe and efficient use of hydrogen energy, which is in high demand worldwide today, requires efficient hydrogen storage. Despite significant advances in hydrogen storage using carbon-based nanomaterials, including carbon nanotubes (CNTs), efforts to substantially increase the storage capacity remain less effective. In this work, we demonstrate the effect of endohedral transition metal atoms on the hydrogen storage capacity of CNTs using reactive molecular dynamics simulations. We find that an increase in the volume fraction of endohedral nickel atoms leads to an increase in the concentration of physisorbed hydrogen molecules around single-walled CNTs (SWNTs) by approximately 1.6 times compared to pure SWNTs. The obtained results provide insight into the underlying mechanisms of how endohedral transition metal atoms enhance the hydrogen storage ability of SWNTs under nearly ambient conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001142427400001 Publication Date 2023-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.2 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 7.2; 2024 IF: 3.582
Call Number UA @ admin @ c:irua:202315 Serial 9006
Permanent link to this record
 

 
Author (down) Kelly, S.; Mercer, E.; Gorbanev, Y.; Fedirchyk, I.; Verheyen, C.; Werner, K.; Pullumbi, P.; Cowley, A.; Bogaerts, A.
Title Plasma-based conversion of martian atmosphere into life-sustaining chemicals: The benefits of utilizing martian ambient pressure Type A1 Journal article
Year 2024 Publication Journal of CO2 utilization Abbreviated Journal Journal of CO2 Utilization
Volume 80 Issue Pages 102668
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We explored the potential of plasma-based In-Situ Resource Utilization (ISRU) for Mars through the conversion of Martian atmosphere (~96% CO2, 2% N2, and 2% Ar) into life-sustaining chemicals. As the Martian surface pressure is about 1% of the Earth’s surface pressure, it is an ideal environment for plasma-based gas conversion using microwave reactors. At 1000 W and 10 Ln/min (normal liters per minute), we produced ~76 g/h of O2 and ~3 g/h of NOx using a 2.45 GHz waveguided reactor at 25 mbar, which is ~3.5 times Mars ambient pressure. The energy cost required to produce O2 was ~0.013 kWh/g, which is very promising compared to recently concluded MOXIE experiments on the Mars surface. This marks a crucial step towards realizing the extension of human exploration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001156084300001 Publication Date 2024-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record
Impact Factor 7.7 Times cited Open Access Not_Open_Access
Notes We acknowledge financial support by a European Space Agency (ESA) Open Science Innovation Platform study (contract no. 4000137001/21/NL/GLC/ov), the European Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant no. 810182; SCOPE ERC Synergy project), the Excellence of Science FWOFNRS PLASyntH2 project (FWO grant no. G0I1822N and EOS no. 4000751) and the Methusalem project of the University of Antwerp. Approved Most recent IF: 7.7; 2024 IF: 4.292
Call Number PLASMANT @ plasmant @c:irua:202389 Serial 8986
Permanent link to this record
 

 
Author (down) Kashiwar, A.; Arseenko, M.; Simar, A.; Idrissi, H.
Title On the role of microstructural defects on precipitation, damage, and healing behavior in a novel Al-0.5Mg2Si alloy Type A1 Journal article
Year 2024 Publication Materials & design Abbreviated Journal
Volume 239 Issue Pages 112765-112769
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A recently developed healable Al-Mg2Si designed by the programmed damage and repair (PDR) strategy is studied considering the role microstructural defects play on precipitation, damage, and healing. The alloy incorporates sacrificial Mg2Si particles that precipitate after friction stir processing (FSP). They act as damage localization sites and are healable based on the solid-state diffusion of Al-matrix. A combination of different transmission electron microscopy (TEM) imaging techniques enabled the visualization and quantification of various crystallographic defects and the spatial distribution of Mg2Si precipitates. Intragrain nucleation is found to be the dominant mechanism for precipitation during FSP whereas grain boundaries and subgrain boundaries mainly lead to coarsening of the precipitates. The statistical and spatial analyses of the damaged particles have shown particle fracture as the dominant damage mechanism which is strongly dependent on the size and aspect ratio of the particles whereas the damage was not found to depend on the location of the precipitates within the matrix. The damaged particles are associated with dislocations accumulated around them. The interplay of these dislocations is directly visualized during healing based on in situ TEM heating which revealed recovery in the matrix as an operative mechanism during the diffusion healing of the PDR alloy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001194110200001 Publication Date 2024-02-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-1275; 1873-4197 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 8.4; 2024 IF: 4.364
Call Number UA @ admin @ c:irua:203298 Serial 9068
Permanent link to this record
 

 
Author (down) Joy, R.M.; Pobedinskas, P.; Bourgeois, E.; Chakraborty, T.; Goerlitz, J.; Herrmann, D.; Noel, C.; Heupel, J.; Jannis, D.; Gauquelin, N.; D'Haen, J.; Verbeeck, J.; Popov, C.; Houssiau, L.; Becher, C.; Nesladek, M.; Haenen, K.
Title Photoluminescence of germanium-vacancy centers in nanocrystalline diamond films : implications for quantum sensing applications Type A1 Journal article
Year 2024 Publication ACS applied nano materials Abbreviated Journal
Volume 7 Issue 4 Pages 3873-3884
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Point defects in diamond, promising candidates for nanoscale pressure- and temperature-sensing applications, are potentially scalable in polycrystalline diamond fabricated using the microwave plasma-enhanced chemical vapor deposition (MW PE CVD) technique. However, this approach introduces residual stress in the diamond films, leading to variations in the characteristic zero phonon line (ZPL) of the point defect in diamond. Here, we report the effect of residual stress on germanium-vacancy (GeV) centers in MW PE CVD nanocrystalline diamond (NCD) films fabricated using single crystal Ge as the substrate and solid dopant source. GeV ensemble formation indicated by the zero phonon line (ZPL) at similar to 602 nm is confirmed by room temperature (RT) photoluminescence (PL) measurements. PL mapping results show spatial nonuniformity in GeV formation along with other defects, including silicon-vacancy centers in the diamond films. The residual stress in NCD results in shifts in the PL peak positions. By estimating a stress shift coefficient of (2.9 +/- 0.9) nm/GPa, the GeV PL peak position in the NCD film is determined to be between 598.7 and 603.2 nm. A larger ground state splitting due to the strain on a GeV-incorporated NCD pillar at a low temperature (10 K) is also reported. We also report the observation of intense ZPLs at RT that in some cases could be related to low Ge concentration and the surrounding crystalline environment. In addition, we also observe thicker microcrystalline diamond (MCD) films delaminate from the Ge substrate due to film residual stress and graphitic phase at the diamond/Ge substrate interface (confirmed by electron energy loss spectroscopy). Using this approach, a free-standing color center incorporated MCD film with dimensions up to 1 x 1 cm(2) is fabricated. Qualitative analysis using time-of-flight secondary ion mass spectroscopy reveals the presence of impurities, including Ge and silicon, in the MCD film. Our experimental results will provide insights into the scalability of GeV fabrication using the MW PE CVD technique and effectively implement NCD-based nanoscale-sensing applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001164609600001 Publication Date 2024-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record
Impact Factor 5.9 Times cited Open Access
Notes Approved Most recent IF: 5.9; 2024 IF: NA
Call Number UA @ admin @ c:irua:204826 Serial 9164
Permanent link to this record
 

 
Author (down) Jorissen, B.; Covaci, L.; Partoens, B.
Title Comparative analysis of tight-binding models for transition metal dichalcogenides Type A1 Journal article
Year 2024 Publication SciPost physics core Abbreviated Journal
Volume 7 Issue 1 Pages 004-30
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We provide a comprehensive analysis of the prominent tight-binding (TB) models for transition metal dichalcogenides (TMDs) available in the literature. We inspect the construction of these TB models, discuss their parameterization used and conduct a thorough comparison of their effectiveness in capturing important electronic properties. Based on these insights, we propose a novel TB model for TMDs designed for enhanced computational efficiency. Utilizing MoS2 as a representative case, we explain why specific models offer a more accurate description. Our primary aim is to assist researchers in choosing the most appropriate TB model for their calculations on TMDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001170769300001 Publication Date 2024-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:202983 Serial 9012
Permanent link to this record
 

 
Author (down) Iungin, O.; Shydlovska, O.; Moshynets, O.; Vasylenko, V.; Sidorenko, M.; Mickevicius, S.; Potters, G.
Title Metal-based nanoparticles : an alternative treatment for biofilm infection in hard-to-heal wounds Type A1 Journal article
Year 2024 Publication Journal of wound care Abbreviated Journal
Volume 33 Issue s:[4A] Pages 99-110
Keywords A1 Journal article; Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)
Abstract Metal-based nanoparticles (MNPs) are promoted as effective compounds in the treatment of bacterial infections and as possible alternatives to antibiotics. These MNPs are known to affect a broad spectrum of microorganisms using a multitude of strategies, including the induction of reactive oxygen species and interaction with the inner structures of the bacterial cells. The aim of this review was to summarise the latest studies about the effect of metal-based nanoparticles on pathogenic bacterial biofilm formed in wounds, using the examples of Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Pseudomonas aeruginosa, as well as provide an overview of possible clinical applications. Declaration of interest: The authors have no conflicts of interest.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001208810700003 Publication Date 2024-04-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-0700 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.9 Times cited Open Access
Notes Approved Most recent IF: 1.9; 2024 IF: 1.446
Call Number UA @ admin @ c:irua:205959 Serial 9159
Permanent link to this record
 

 
Author (down) Ignatova, K.; Vlasov, E.; Seddon, S.D.; Gauquelin, N.; Verbeeck, J.; Wermeille, D.; Bals, S.; Hase, T.P.A.; Arnalds, U.B.
Title Phase coexistence induced surface roughness in V2O3/Ni magnetic heterostructures Type A1 Journal Article
Year 2024 Publication APL Materials Abbreviated Journal
Volume 12 Issue 4 Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract We present an investigation of the microstructure changes in V2O3 as it goes through its inherent structural phase transition. Using V2O3 films with a well-defined crystal structure deposited by reactive magnetron sputtering on r-plane Al2O3 substrates, we study the phase coexistence region and its impact on the surface roughness of the films and the magnetic properties of overlying Ni magnetic layers in V2O3/Ni hybrid magnetic heterostructures. The simultaneous presence of two phases in V2O3 during its structural phase transition was identified with high resolution x-ray diffraction and led to an increase in surface roughness observed using x-ray reflectivity. The roughness reaches its maximum at the midpoint of the transition. In V2O3/Ni hybrid heterostructures, we find a concomitant increase in the coercivity of the magnetic layer correlated with the increased roughness of the V2O3 surface. The chemical homogeneity of the V2O3 is confirmed through transmission electron microscopy analysis. High-angle annular dark field imaging and electron energy loss spectroscopy reveal an atomically flat interface between Al2O3 and V2O3, as well as a sharp interface between V2O3 and Ni.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001202661800003 Publication Date 2024-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532X ISBN Additional Links UA library record; WoS full record
Impact Factor 6.1 Times cited Open Access
Notes This work was supported by the funding from the University of Iceland Research Fund, the Icelandic Research Fund Grant No. 207111. Instrumentation funding from the Icelandic Infrastructure Fund is acknowledged. This work was based on experiments per- formed at the BM28 (XMaS) beamline at the European Synchrotron Radiation Facility, Grenoble, France. XMaS is a National Research Facility funded by the UK EPSRC and managed by the Universi- ties of Liverpool and Warwick. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 823717—ESTEEM3. Approved Most recent IF: 6.1; 2024 IF: 4.335
Call Number EMAT @ emat @c:irua:205569 Serial 9120
Permanent link to this record
 

 
Author (down) Hofer, C.; Gao, C.; Chennit, T.; Yuan, B.; Pennycook, T.J.
Title Phase offset method of ptychographic contrast reversal correction Type A1 Journal article
Year 2024 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume Issue Pages 113922
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001164447000001 Publication Date 2024-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.2 Times cited Open Access Not_Open_Access
Notes FWO, G013122N ; Horizon 2020 Framework Programme; European Research Council, 802123-HDEM ; European Research Council; Approved Most recent IF: 2.2; 2024 IF: 2.843
Call Number EMAT @ emat @c:irua:202379 Serial 8988
Permanent link to this record
 

 
Author (down) Heirman, P.; Verloy, R.; Baroen, J.; Privat-Maldonado, A.; Smits, E.; Bogaerts, A.
Title Liquid treatment with a plasma jet surrounded by a gas shield: effect of the treated substrate and gas shield geometry on the plasma effluent conditions Type A1 Journal article
Year 2024 Publication Journal of physics: D: applied physics Abbreviated Journal J. Phys. D: Appl. Phys.
Volume 57 Issue 11 Pages 115204
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract The treatment of a well plate by an atmospheric pressure plasma jet is common for<italic>in vitro</italic>plasma medicine research. Here, reactive species are largely produced through the mixing of the jet effluent with the surrounding atmosphere. This mixing can be influenced not only by the ambient conditions, but also by the geometry of the treated well. To limit this influence and control the atmosphere, a shielding gas is sometimes applied. However, the interplay between the gas shield and the well geometry has not been investigated. In this work, we developed a 2D-axisymmetric computational fluid dynamics model of the kINPen plasma jet, to study the mixing of the jet effluent with the surrounding atmosphere, with and without gas shield. Our computational and experimental results show that the choice of well type can have a significant influence on the effluent conditions, as well as on the effectiveness of the gas shield. Furthermore, the geometry of the shielding gas device can substantially influence the mixing as well. Our results provide a deeper understanding of how the choice of setup geometry can influence the plasma treatment, even when all other operating parameters are unchanged.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001127372200001 Publication Date 2024-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.4 Times cited Open Access Not_Open_Access
Notes Fund for Scientific Research Flanders, 1100421N ; Approved Most recent IF: 3.4; 2024 IF: 2.588
Call Number PLASMANT @ plasmant @c:irua:201999 Serial 8977
Permanent link to this record
 

 
Author (down) Hassani, N.; Yagmurcukardes, M.; Peeters, F.M.; Neek-Amal, M.
Title Chlorinated phosphorene for energy application Type A1 Journal article
Year 2024 Publication Computational materials science Abbreviated Journal
Volume 231 Issue Pages 112625-112628
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The influence of decoration with impurities and the composition dependent band gap in 2D materials has been the subject of debate for a long time. Here, by using Density Functional Theory (DFT) calculations, we systematically disclose physical properties of chlorinated phosphorene having the stoichiometry of PmCln. By analyzing the adsorption energy, charge density, migration energy barrier, structural, vibrational, and electronic properties of chlorinated phosphorene, we found that (I) the Cl-P bonds are strong with binding energy Eb =-1.61 eV, decreases with increasing n. (II) Cl atoms on phosphorene have anionic feature, (III) the migration path of Cl on phosphorene is anisotropic with an energy barrier of 0.38 eV, (IV) the phonon band dispersion reveal that chlorinated phosphorenes are stable when r <= 0.25 where r = m/n, (V) chlorinated phosphorenes is found to be a photonic crystal in the frequency range of 280 cm-1 to 325 cm-1, (VI) electronic band structure of chlorinated phosphorenes exhibits quasi-flat bands emerging around the Fermi level with widths in the range of 22 meV to 580 meV, and (VII) Cl adsorption causes a semiconducting to metallic/semi-metallic transition which makes it suitable for application as an electroactive material. To elucidate this application, we investigated the change in binding energy (Eb), specific capacity, and open-circuit voltage as a function of the density of adsorbed Cl. The theoretical storage capacity of the chlorinated phosphorene is found to be 168.19 mA h g-1with a large average voltage (similar to 2.08 V) which is ideal number as a cathode in chloride-ion batteries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001110003400001 Publication Date 2023-11-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited 2 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.3; 2024 IF: 2.292
Call Number UA @ admin @ c:irua:202125 Serial 9008
Permanent link to this record
 

 
Author (down) Hassani, N.; Movafegh-Ghadirli, A.; Mahdavifar, Z.; Peeters, F.M.; Neek-Amal, M.
Title Two new members of the covalent organic frameworks family : crystalline 2D-oxocarbon and 3D-borocarbon structures Type A1 Journal article
Year 2024 Publication Computational materials science Abbreviated Journal
Volume 241 Issue Pages 1-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Oxocarbons, known for over two centuries, have recently revealed a long-awaited facet: two-dimensional crystalline structures. Employing an intelligent global optimization algorithm (IGOA) alongside densityfunctional calculations, we unearthed a quasi -flat oxocarbon (C 6 0 6 ), featuring an oxygen -decorated hole, and a novel 3D-borocarbon. Comparative analyses with recently synthesized isostructures, such as 2D -porous carbon nitride (C 6 N 6 ) and 2D -porous boroxine (B 6 0 6 ), highlight the unique attributes of these compounds. All structures share a common stoichiometry of X 6 Y 6 (which we call COF-66), where X = B, C, and Y = B, N, O (with X not equal Y), exhibiting a 2D -crystalline structure, except for borocarbon C 6 B 6 , which forms a 3D crystal. In our comprehensive study, we conducted a detailed exploration of the electronic structure of X 6 Y 6 compounds, scrutinizing their thermodynamic properties and systematically evaluating phonon stability criteria. With expansive surface areas, diverse pore sizes, biocompatibility, pi-conjugation, and distinctive photoelectric properties, these structures, belonging to the covalent organic framework (COF) family, present enticing prospects for fundamental research and hold potential for biosensing applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001215960700001 Publication Date 2024-04-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.3 Times cited Open Access
Notes Approved Most recent IF: 3.3; 2024 IF: 2.292
Call Number UA @ admin @ c:irua:206005 Serial 9179
Permanent link to this record
 

 
Author (down) Guerrero, R.M.; Lemir, I.D.; Carrasco, S.; Fernández-Ruiz, C.; Kavak, S.; Pizarro, P.; Serrano, D.P.; Bals, S.; Horcajada, P.; Pérez, Y.
Title Scaling-Up Microwave-Assisted Synthesis of Highly Defective Pd@UiO-66-NH2Catalysts for Selective Olefin Hydrogenation under Ambient Conditions Type A1 Journal Article
Year 2024 Publication ACS Applied Materials & Interfaces Abbreviated Journal ACS Appl. Mater. Interfaces
Volume Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract The need to develop green and cost-effective industrial catalytic processes has led to growing interest in preparing more robust, efficient, and selective heterogeneous catalysts at a large scale. In this regard, microwave-assisted synthesis is a fast method for fabricating heterogeneous catalysts (including metal oxides, zeolites, metal–organic frameworks, and supported metal nanoparticles) with enhanced catalytic properties, enabling synthesis scale-up. Herein, the synthesis of nanosized UiO-66-NH2 was optimized via a microwave-assisted hydrothermal method to obtain defective matrices essential for the stabilization of metal nanoparticles, promoting catalytically active sites for hydrogenation reactions (760 kg·m–3·day–1 space time yield, STY). Then, this protocol was scaled up in a multimodal microwave reactor, reaching 86% yield (ca. 1 g, 1450 kg·m–3·day–1 STY) in only 30 min. Afterward, Pd nanoparticles were formed in situ decorating the nanoMOF by an effective and fast microwave-assisted hydrothermal method, resulting in the formation of Pd@UiO-66-NH2 composites. Both the localization and oxidation states of Pd nanoparticles (NPs) in the MOF were achieved using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray photoelectron spectroscopy (XPS), respectively. The optimal composite, loaded with 1.7 wt % Pd, exhibited an extraordinary catalytic activity (>95% yield, 100% selectivity) under mild conditions (1 bar H2, 25 °C, 1 h reaction time), not only in the selective hydrogenation of a variety of single alkenes (1-hexene, 1-octene, 1-tridecene, cyclohexene, and tetraphenyl ethylene) but also in the conversion of a complex mixture of alkenes (i.e., 1-hexene, 1-tridecene, and anethole). The results showed a powerful interaction and synergy between the active phase (Pd NPs) and the catalytic porous scaffold (UiO-66-NH2), which are essential for the selectivity and recyclability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links
Impact Factor 9.5 Times cited Open Access
Notes The authors gratefully acknowledge financial support from “Comunidad de Madrid” and European Regional Development Fund-FEDER through the project HUB MADRID+CIRCULAR; the State Research Agency (MCIN/AEI /10.13039/501100011033) through the grant with reference number CEX2019-000931-M received in the 2019 call for “Severo Ochoa Centres of Excellence” and “María de Maeztu Units of Excellence” of the State Programme for Knowledge Generation and Scientific and Technological Strengthening of the R&D&I System; and MICIU through the project “NAPOLION” (PID2022-139956OB-I00). S.K. acknowledges the Flemish Fund for Scientific Research (FWO Vlaanderen) through a PhD research grant (1181124N). Approved Most recent IF: 9.5; 2024 IF: 7.504
Call Number EMAT @ emat @ Serial 9126
Permanent link to this record
 

 
Author (down) Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J.
Title In Situ Plasma Studies Using a Direct Current Microplasma in a Scanning Electron Microscope Type A1 Journal Article
Year 2024 Publication Advanced Materials Technologies Abbreviated Journal Adv Materials Technologies
Volume Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Microplasmas can be used for a wide range of technological applications and to improve the understanding of fundamental physics. Scanning electron microscopy, on the other hand, provides insights into the sample morphology and chemistry of materials from the mm‐ down to the nm‐scale. Combining both would provide direct insight into plasma‐sample interactions in real‐time and at high spatial resolution. Up till now, very few attempts in this direction have been made, and significant challenges remain. This work presents a stable direct current glow discharge microplasma setup built inside a scanning electron microscope. The experimental setup is capable of real‐time in situ imaging of the sample evolution during plasma operation and it demonstrates localized sputtering and sample oxidation. Further, the experimental parameters such as varying gas mixtures, electrode polarity, and field strength are explored and experimental<italic>V</italic>–<italic>I</italic>curves under various conditions are provided. These results demonstrate the capabilities of this setup in potential investigations of plasma physics, plasma‐surface interactions, and materials science and its practical applications. The presented setup shows the potential to have several technological applications, for example, to locally modify the sample surface (e.g., local oxidation and ion implantation for nanotechnology applications) on the µm‐scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001168639900001 Publication Date 2024-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2365-709X ISBN Additional Links UA library record; WoS full record
Impact Factor 6.8 Times cited Open Access OpenAccess
Notes L.G., S.B., and J.V. acknowledge support from the iBOF-21-085 PERsist research fund. D.C., S.V.A., and J.V. acknowledge funding from a TOPBOF project of the University of Antwerp (FFB 170366). R.D.M., A.B., and J.V. acknowledge funding from the Methusalem project of the University of Antwerp (FFB 15001A, FFB 15001C). A.O. and J.V. acknowledge funding from the Research Foundation Flanders (FWO, Belgium) project SBO S000121N. Approved Most recent IF: 6.8; 2024 IF: NA
Call Number EMAT @ emat @c:irua:204363 Serial 8995
Permanent link to this record
 

 
Author (down) Gorbanev, Y.; Fedirchyk, I.; Bogaerts, A.
Title Plasma catalysis in ammonia production and decomposition: Use it, or lose it? Type A1 Journal Article
Year 2024 Publication Current Opinion in Green and Sustainable Chemistry Abbreviated Journal Current Opinion in Green and Sustainable Chemistry
Volume 47 Issue Pages 100916
Keywords A1 Journal Article; Plasma Nitrogen fixation Ammonia Plasma catalysis Production and decomposition; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract The combination of plasma with catalysis for the synthesis and decomposition of NH3 is an attractive route to the production of carbon-neutral fertiliser and energy carriers and its conversion into H2. Recent years have seen fast developments in the field of plasma-catalytic NH3 life cycle. This work summarises the most recent advances in plasma-catalytic and related NH3-focussed processes, identifies some of the most important discoveries, and addresses plausible strategies for future developments in plasma-based NH3 technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2452-2236 ISBN Additional Links
Impact Factor 9.3 Times cited Open Access
Notes The work was supported by the Fund for Scientific Research (FWO) Flanders Bioeconomy project (grant G0G2322N) funded by the European Union-NextGe- nerationEU, the HyPACT project funded by the Belgian Energy Transition Fund, and the MSCA4Ukraine project 1233629 funded by the European Union. Approved Most recent IF: 9.3; 2024 IF: NA
Call Number PLASMANT @ plasmant @ Serial 9117
Permanent link to this record
 

 
Author (down) Gogoi, A.; Neyts, E.C.; Peeters, F.M.
Title Reduction-enhanced water flux through layered graphene oxide (GO) membranes stabilized with H3O+ and OH- ions Type A1 Journal article
Year 2024 Publication Physical chemistry, chemical physics Abbreviated Journal
Volume 26 Issue 13 Pages 10265-10272
Keywords A1 Journal article; Condensed Matter Theory (CMT); Modelling and Simulation in Chemistry (MOSAIC)
Abstract Graphene oxide (GO) is one of the most promising candidates for next generation of atomically thin membranes. Nevertheless, one of the major issues for real world application of GO membranes is their undesirable swelling in an aqueous environment. Recently, we demonstrated that generation of H3O+ and OH- ions (e.g., with an external electric field) in the interlayer gallery could impart aqueous stability to the layered GO membranes (A. Gogoi, ACS Appl. Mater. Interfaces, 2022, 14, 34946). This, however, compromises the water flux through the membrane. In this study, we report on reducing the GO nanosheets as a solution to this issue. With the reduction of the GO nanosheets, the water flux through the layered GO membrane initially increases and then decreases again beyond a certain degree of reduction. Here, two key factors are at play. Firstly, the instability of the H-bond network between water molecules and the GO nanosheets, which increases the water flux. Secondly, the pore size reduction in the interlayer gallery of the membranes, which decreases the water flux. We also observe a significant improvement in the salt rejection of the membranes, due to the dissociation of water molecules in the interlayer gallery. In particular, for the case of 10% water dissociation, the water flux through the membranes can be enhanced without altering its selectivity. This is an encouraging observation as it breaks the traditional tradeoff between water flux and salt rejection of a membrane.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001186465400001 Publication Date 2024-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.3 Times cited Open Access
Notes Approved Most recent IF: 3.3; 2024 IF: 4.123
Call Number UA @ admin @ c:irua:204792 Serial 9168
Permanent link to this record
 

 
Author (down) Gios, E.; Verbruggen, E.; Audet, J.; Burns, R.; Butterbach-Bahl, K.; Espenberg, M.; Fritz, C.; Glatzel, S.; Jurasinski, G.; Larmola, T.; Mander, U.; Nielsen, C.; Rodriguez, A.F.; Scheer, C.; Zak, D.; Silvennoinen, H.M.
Title Unraveling microbial processes involved in carbon and nitrogen cycling and greenhouse gas emissions in rewetted peatlands by molecular biology Type A1 Journal article
Year 2024 Publication Biogeochemistry Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Restoration of drained peatlands through rewetting has recently emerged as a prevailing strategy to mitigate excessive greenhouse gas emissions and re-establish the vital carbon sequestration capacity of peatlands. Rewetting can help to restore vegetation communities and biodiversity, while still allowing for extensive agricultural management such as paludiculture. Belowground processes governing carbon fluxes and greenhouse gas dynamics are mediated by a complex network of microbial communities and processes. Our understanding of this complexity and its multi-factorial controls in rewetted peatlands is limited. Here, we summarize the research regarding the role of soil microbial communities and functions in driving carbon and nutrient cycling in rewetted peatlands including the use of molecular biology techniques in understanding biogeochemical processes linked to greenhouse gas fluxes. We emphasize that rapidly advancing molecular biology approaches, such as high-throughput sequencing, are powerful tools helping to elucidate the dynamics of key biogeochemical processes when combined with isotope tracing and greenhouse gas measuring techniques. Insights gained from the gathered studies can help inform efficient monitoring practices for rewetted peatlands and the development of climate-smart restoration and management strategies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001185747700001 Publication Date 2024-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-2563; 1573-515x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4 Times cited Open Access
Notes Approved Most recent IF: 4; 2024 IF: 3.428
Call Number UA @ admin @ c:irua:204875 Serial 9239
Permanent link to this record
 

 
Author (down) Gerrits, N.; Jackson, B.; Bogaerts, A.
Title Accurate Reaction Probabilities for Translational Energies on Both Sides of the Barrier of Dissociative Chemisorption on Metal Surfaces Type A1 Journal Article
Year 2024 Publication The Journal of Physical Chemistry Letters Abbreviated Journal J. Phys. Chem. Lett.
Volume 15 Issue 9 Pages 2566-2572
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Molecular dynamics simulations are essential for a better understanding of dissociative chemisorption on metal surfaces, which is often the rate-controlling step in heterogeneous and plasma catalysis. The workhorse quasi-classical trajectory approach ubiquitous in molecular dynamics is able to accurately predict reactivity only for high translational and low vibrational energies. In contrast, catalytically relevant conditions generally involve low translational and elevated vibrational energies. Existing quantum dynamics approaches are intractable or approximate as a result of the large number of degrees of freedom present in molecule−metal surface reactions. Here, we extend a ring polymer molecular dynamics approach to fully include, for the first time, the degrees of freedom of a moving metal surface. With this approach, experimental sticking probabilities for the dissociative chemisorption of methane on Pt(111) are reproduced for a large range of translational and vibrational energies by including nuclear quantum effects and employing full-dimensional simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001177959900001 Publication Date 2024-03-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record
Impact Factor 5.7 Times cited Open Access
Notes Nick Gerrits has been financially supported through a Dutch Research Council (NWO) Rubicon grant (019.202EN.012). The computational resources and services used in this work were provided by the high performance computing (HPC) core facility CalcUA of the Universiteit Antwerpen and the Flemish Supercomputer Center (VSC) funded by the Research Foundation−Flanders (FWO) and the Flemish Government. The authors thank Mark Somers for useful discussions. Approved Most recent IF: 5.7; 2024 IF: 9.353
Call Number PLASMANT @ plasmant @c:irua:204818 Serial 9114
Permanent link to this record
 

 
Author (down) Gebremariam, Y.A.; Dessein, J.; Wondimagegnhu, B.A.; Breusers, M.; Lenaerts, L.; Adgo, E.; Van Passel, S.; Minale, A.S.; Frankl, A.
Title Listen to the radio and go on field trips : a study on farmers' attributes to opt for extension methods in Northwest Ethiopia Type A1 Journal article
Year 2024 Publication AIMS Agriculture and Food Abbreviated Journal
Volume 9 Issue 1 Pages 3-29
Keywords A1 Journal article; Pharmacology. Therapy; Engineering Management (ENM)
Abstract Extension professionals are expected to help disseminate agricultural technologies, information, knowledge and skills to farmers. In order to develop valuable and long-lasting extension services, it is essential to understand the methods of extension that farmers find most beneficial. This understanding helps adopt improved practices, overcome barriers, provide targeted interventions and continuously improve agricultural extension programs. Thus, assessing factors affecting farmers' choice of agricultural extension methods is essential for developing extension methods that comply with farmers' needs and socio-economic conditions. Therefore, we analyzed the factors affecting farmers' preferences in extension methods, using cross-sectional data collected from 300 households in two sample districts and 16 Kebelles in Ethiopia between September 2019 and March 2020. Four extension methods, including training, demonstration, office visits and phone calls were considered as outcome variables. We fitted a multivariate probit model to estimate the factors that influence farmers' choice of extension methods. The results of the study showed that the number of dependents in the household head, formal education and membership of Idir (an informal insurance program a community or group runs to meet emergencies) were negatively associated with farmers' choices to participate in different extension methods compared to no extension. On the other hand, the sex of the household head, farm experience, participation in non-farm activities, monetary loan access, owning a mobile phone, radio access and membership of cooperatives were found to have a statistically significant positive impact on farmers' choices of extension methods. Based on these findings, the government and the concerned stakeholders should take farmers' socio-economic and institutional traits into account when selecting and commissioning agricultural extension methods. This could help to develop contextually relevant extension strategies that are more likely to be chosen and appreciated by farmers. Furthermore, such strategies can aid policymakers in designing extension programs that cater to farmers' needs and concerns. In conclusion, farmers' socio-economic and institutional affiliation should be taken into consideration when selecting agricultural extension methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001124466300001 Publication Date 2023-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2471-2086 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.8 Times cited Open Access
Notes Approved Most recent IF: 1.8; 2024 IF: NA
Call Number UA @ admin @ c:irua:202154 Serial 9209
Permanent link to this record
 

 
Author (down) Gao, Y.-J.; Jin, H.; Esteban, D.A.; Weng, B.; Saha, R.A.; Yang, M.-Q.; Bals, S.; Steele, J.A.; Huang, H.; Roeffaers, M.B.J.
Title 3D-cavity-confined CsPbBr₃ quantum dots for visible-light-driven photocatalytic C(sp³)-H bond activation Type A1 Journal article
Year 2024 Publication Carbon Energy Abbreviated Journal
Volume Issue Pages e559
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Metal halide perovskite (MHP) quantum dots (QDs) offer immense potential for several areas of photonics research due to their easy and low-cost fabrication and excellent optoelectronic properties. However, practical applications of MHP QDs are limited by their poor stability and, in particular, their tendency to aggregate. Here, we develop a two-step double-solvent strategy to grow and confine CsPbBr3 QDs within the three-dimensional (3D) cavities of a mesoporous SBA-16 silica scaffold (CsPbBr3@SBA-16). Strong confinement and separation of the MHP QDs lead to a relatively uniform size distribution, narrow luminescence, and good ambient stability over 2 months. In addition, the CsPbBr3@SBA-16 presents a high activity and stability for visible-light-driven photocatalytic toluene C(sp(3))-H bond activation to produce benzaldehyde with similar to 730 mu mol g(-1) h(-1) yield rate and near-unity selectivity. Similarly, the structural stability of CsPbBr3@SBA-16 QDs is superior to that of both pure CsPbBr3 QDs and those confined in MCM-41 with 1D channels.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001223583600001 Publication Date 2024-05-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2637-9368 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:206000 Serial 9133
Permanent link to this record
 

 
Author (down) Gao, C.; Hofer, C.; Pennycook, T.J.
Title On central focusing for contrast optimization in direct electron ptychography of thick samples Type A1 Journal article
Year 2024 Publication Ultramicroscopy Abbreviated Journal
Volume 256 Issue Pages 113879-7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Ptychography provides high dose efficiency images that can reveal light elements next to heavy atoms. However, despite ptychography having an otherwise single signed contrast transfer function, contrast reversals can occur when the projected potential becomes strong for both direct and iterative inversion ptychography methods. It has recently been shown that these reversals can often be counteracted in direct ptychography methods by adapting the focus. Here we provide an explanation of why the best contrast is often found with the probe focused to the middle of the sample. The phase contribution due to defocus at each sample slice above and below the central plane in this configuration effectively cancels out, which can prevent contrast reversals when dynamical scattering effects are not overly strong. In addition we show that the convergence angle can be an important consideration for removal of contrast reversals in relatively thin samples.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001112166400001 Publication Date 2023-11-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.2 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.2; 2024 IF: 2.843
Call Number UA @ admin @ c:irua:202029 Serial 9066
Permanent link to this record
 

 
Author (down) Finizola e Silva, M.; Van Schoubroeck, S.; Cools, J.; Aboge, D.O.; Ouma, M.; Olweny, C.; Van Passel, S.
Title Local actors' perspectives on sustainable food value chains : evidence from a Q-methodology study in Kenya Type Administrative Services
Year 2024 Publication Journal of Environmental Studies and Sciences Abbreviated Journal
Volume 14 Issue 1 Pages 36-51
Keywords Administrative Services; A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Governments and international organizations are increasingly determined to create more sustainable food value chains (SFVCs). However, only little empirical evidence is available on how SFVCs are understood. Enquiring African food value chain actors allows gathering valuable insights into their perception of sustainability, which characteristics of sustainable food value chains they prioritize, and which obstacles to a sustainable transformation they identify. By means of a Q-methodology involving interviews with 33 Kenyan respondents, four perspectives were distinguished. The first perspective, “economic productivity and growth,” prioritizes economic growth and has only limited attention to the social dimension of sustainability. The second perspective, “food security and food availability,” believes that ensuring food security should be the key goal of SFVCs. The third perspective, “environment first,” is dedicated to the environmental dimension of sustainability; the perspective implies that protecting natural resources is the primary way to sustain this level of production. The fourth perspective, “transformative knowledge,” entails that by innovating and sharing knowledge, food value chains can become more sustainable in different areas. Overall, this study provides reliable insights into how Kenyan food value chain actors perceive sustainability in their sector and which elements they believe should be prioritized when rethinking food systems. The study results are valuable for policy-making to further define an SFVC in Kenya and to pave the way for a sustainable transformation of the food sector in developing countries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001063371200001 Publication Date 2023-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-6483 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:199200 Serial 9210
Permanent link to this record
 

 
Author (down) Finizola e Silva, M.; Cools, J.; Cools, J.; Van Passel, S.
Title A systematic review identifying the drivers and barriers to the adoption of climate-smart agriculture by smallholder farmers in Africa Type Administrative Services
Year 2024 Publication Frontiers in environmental economics Abbreviated Journal
Volume 3 Issue Pages 1356335-14
Keywords Administrative Services; A3 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Climate change impact, food security concerns, and greenhouse gas emissions are pressuring agricultural production systems in developing countries. There is a need for a shift toward sustainable food systems. One of the concepts introduced to drive this shift is climate-smart agriculture (CSA), endorsed by international organizations to address multifaceted challenges. Despite widespread attention and support, the adoption of CSA among African farmers remains low. This systematic literature review aims to shed light on the factors influencing CSA adoption amongst African farmers. Within the articles identified as relevant, over 50 CSA practices and more than 40 factors influencing CSA adoption were distinguished. These influencing factors can be categorized as personal, farm- related, financial, environmental, and informational. The focus of this review is to identify and explain the overall impact (positive, negative, or mixed) of these factors on CSA adoption. Overall, many factors result in mixed effects, only some factors have an unambiguous positive or negative effect on CSA adoption. For instance, educational level emerges as a key personal factor, positively impacting CSA adoption, along with positive influences from farmers’ experience and farm size among farm-related factors. Financial factors reveal distinct patterns, with income from farming and access to credit positively influencing adoption, while off-farm income exhibits a negative effect. Environmental factors, though less researched, indicate positive impacts related to changes in rainfall patterns, temperature, and droughts. Lastly, informational factors consistently exhibit a positive effect on CSA adoption, with training, access to extension, group memberships, climate information, and CSA awareness playing crucial roles. These findings provide valuable insights for policymakers seeking to enhance CSA adoption in Africa, offering a nuanced understanding of the multifaceted dynamics at play.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:205017 Serial 9233
Permanent link to this record
 

 
Author (down) Faust, V.; Vlaeminck, S.E.; Ganigué, R.; Udert, K.M.
Title Influence of pH on urine nitrification : community shifts of ammonia-oxidizing bacteria and inhibition of nitrite-oxidizing bacteria Type A1 Journal article
Year 2024 Publication ACS ES&T engineering Abbreviated Journal
Volume 4 Issue 2 Pages 342-353
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Urine nitrification is pH-sensitive due to limited alkalinity and high residual ammonium concentrations. This study aimed to investigate how the pH affects nitrogen conversion and the microbial community of urine nitrification with a pH-based feeding strategy. First, kinetic parameters for NH3, HNO2, and NO2– limitation and inhibition were determined for nitrifiers from a urine nitrification reactor. The turning point for ammonia-oxidizing bacteria (AOB), i.e., the substrate concentration at which a further increase would lead to a decrease in activity due to inhibitory effects, was at an NH3 concentration of 12 mg-N L–1, which was reached only at pH values above 7. The total nitrite turning point for nitrite-oxidizing bacteria (NOB) was pH-dependent, e.g., 18 mg-N L–1 at pH 6.3. Second, four years of data from two 120 L reactors were analyzed, showing that stable nitrification with low nitrite was most likely between pH 5.8 and 6.7. And third, six 12 L urine nitrification reactors were operated at total nitrogen concentrations of 1300 and 3600 mg-N L–1 and pH values between 2.5 and 8.5. At pH 6, the AOB Nitrosomonas europaea was found, and the NOB belonged to the genus Nitrobacter. At pH 7, nitrite accumulated, and Nitrosomonas halophila was the dominant AOB. NOB were inhibited by HNO2 accumulation. At pH 8.5, the AOB Nitrosomonas stercoris became dominant, and NH3 inhibited NOB. Without influent, the pH dropped to 2.5 due to the growth of the acid-tolerant AOB “Candidatus Nitrosacidococcus urinae”. In conclusion, pH is a decisive process control parameter for urine nitrification by influencing the selection and kinetics of nitrifiers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-11-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203306 Serial 9048
Permanent link to this record
 

 
Author (down) Faraji, F.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M.
Title Comment on “Misinterpretation of the Shuttleworth equation” Type A1 Journal Article
Year 2024 Publication Scripta Materialia Abbreviated Journal Scripta Materialia
Volume 250 Issue Pages 116186
Keywords A1 Journal Article; CMT
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462 ISBN Additional Links
Impact Factor 6 Times cited Open Access
Notes Research Foundation Flanders; Approved Most recent IF: 6; 2024 IF: 3.747
Call Number UA @ lucian @ CMT Serial 9116
Permanent link to this record
 

 
Author (down) Faraji, F.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M.
Title Capillary Condensation of Water in Graphene Nanocapillaries Type A1 Journal Article
Year 2024 Publication Nano Letters Abbreviated Journal Nano Lett.
Volume 24 Issue 18 Pages 5625-5630
Keywords A1 Journal Article; CMT
Abstract Recent experiments have revealed that the macroscopic Kelvin equation remains surprisingly accurate even for nanoscale capillaries. This phenomenon was so far explained by the oscillatory behavior of the solid−liquid interfacial free energy. We here demonstrate thermodynamic and capillarity inconsistencies with this explanation. After revising the Kelvin equation, we ascribe its validity at nanoscale confinement to the effect of disjoining pressure.

To substantiate our hypothesis, we employed molecular dynamics simulations to evaluate interfacial heat transfer and wetting properties. Our assessments unveil a breakdown in a previously established proportionality between the work of adhesion and the Kapitza conductance at capillary heights below 1.3 nm, where the dominance of the work of adhesion shifts primarily from energy to entropy. Alternatively, the peak density of the initial water layer can effectively probe the work of adhesion. Unlike under bulk conditions, high confinement renders the work of adhesion entropically unfavorable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links
Impact Factor 10.8 Times cited Open Access
Notes This work was supported by Research Foundation-Flanders (FWO, project No. G099219N). The computational resources used in this work were provided by the HPC core facility CalcUA of the University of Antwerp, and the Flemish Supercomputer Center (VSC), funded by FWO and the Flemish Government. Approved Most recent IF: 10.8; 2024 IF: 12.712
Call Number UA @ lucian @ Serial 9123
Permanent link to this record
 

 
Author (down) Fang, W.; Wang, X.; Li, S.; Hao, Y.; Yang, Y.; Zhao, W.; Liu, R.; Li, D.; Li, C.; Gao, X.; Wang, L.; Guo, H.; Yi, Y.
Title Plasma-catalytic one-step steam reforming of CH₄ to CH₃OH and H₂ promoted by oligomerized [Cu-O-Cu] species on zeolites Type A1 Journal article
Year 2024 Publication Green chemistry : cutting-edge research for a greener sustainable future Abbreviated Journal
Volume 26 Issue 9 Pages 5150-5154
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Oligomerized [Cu-O-Cu] species are reported to be efficient in promoting plasma catalytic one-step steam reforming of methane to methanol and hydrogen, achieving 6.8% CH4 conversion and 73.1% CH3OH selectivity without CO2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001195192800001 Publication Date 2024-04-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record
Impact Factor 9.8 Times cited Open Access
Notes Approved Most recent IF: 9.8; 2024 IF: 9.125
Call Number UA @ admin @ c:irua:205514 Serial 9165
Permanent link to this record
 

 
Author (down) Esteban, D.A.; Chamocho, E.G.; Carretero González, J.; Urones Garrote, E.; Otero Díaz, L.C.; Brande, D.Á.
Title Enhancing Electrochemical Properties of Walnut Shell Activated Carbon with Embedded MnO Clusters for Supercapacitor Applications Type A1 Journal Article
Year 2024 Publication Batteries & Supercaps Abbreviated Journal Batteries &amp; Supercaps
Volume Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Activated carbon (AC) materials from renewable sources are widely used in electrochemical applications due to their well‐known high surface area. However, their application as electrode material in double‐layer electrochemical devices may be limited due to their relatively low electrical conductivity and lightweight. To overcome these limitations, the incorporation of pseudocapacitance metal oxide nanoparticles is an optimum approach. These nanoparticles can provide a second energy storage mechanism to the composite, mitigating the loss of surface area associated with their incorporation. As a result, the composite material is endowed with increased conductivity and higher density, making it more suitable for practical implementation in real devices. In this study, we have incorporated a fine dispersion of 1 % of MnO clusters into a highly porous activated carbon synthesized from walnut shells (WAC). The high‐resolution electron microscopy studies, combined with their related analytical techniques, allow us to determine the presence of the cluster within the matrix carbon precisely. The resulting MnO@WAC composite demonstrated significantly improved capacitive behavior compared with the WAC material, with increased volumetric capacitance and higher charge retention at higher current densities. The composite‘s electrochemical performance suggests its potential as a promising electrode material for supercapacitors, addressing drawbacks associated with traditional AC materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001198179300001 Publication Date 2024-04-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2566-6223 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Grants PID2020-112848RB-C21 funded by MCIN/AEI/ 10.13039/501100011033 and by the European Union PRTR funding through projects are acknowledged. Access to the ICTS- CNME for TEM is also acknowledged. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:205463 Serial 9119
Permanent link to this record
 

 
Author (down) Dong, H.M.; Liang, H.P.; Tao, Z.H.; Duan, Y.F.; Milošević, M.V.; Chang, K.
Title Interface thermal conductivities induced by van der Waals interactions Type A1 Journal article
Year 2024 Publication Physical chemistry, chemical physics Abbreviated Journal
Volume 26 Issue 5 Pages 4047-4051
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The interface heat transfer of two layers induced by van der Waals (vdW) contacts is theoretically investigated, based on first-principles calculations at low temperatures. The results suggest that out-of-plane acoustic phonons with low frequencies dominate the interface thermal transport due to the vdW interaction. The interface thermal conductivity is proportional to the cubic of temperature at very low temperatures, but becomes linearly proportional to temperature as temperature increases. We show that manipulating the strain alters vdW coupling, leading to increased interfacial thermal conductivity at the interface. Our findings provide valuable insights into the interface heat transport in vdW heterostructures and support further design and optimization of electronic and optoelectronic nanodevices based on vdW contacts. The heat transfer induced by van der Waals contacts is dominated by ZA phonons. The interface thermal conductivity is proportional to the cubic of temperature, but becomes linearly proportional to temperature as temperature increases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001142323400001 Publication Date 2024-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.3 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3.3; 2024 IF: 4.123
Call Number UA @ admin @ c:irua:202795 Serial 9050
Permanent link to this record
 

 
Author (down) Ding, L.; Zhao, M.; Ehlers, F.J.H.; Jia, Z.; Zhang, Z.; Weng, Y.; Schryvers, D.; Liu, Q.; Idrissi, H.
Title “Branched” structural transformation of the L12-Al3Zr phase manipulated by Cu substitution/segregation in the Al-Cu-Zr alloy system Type A1 Journal article
Year 2024 Publication Journal of materials science & technology Abbreviated Journal Journal of Materials Science & Technology
Volume 185 Issue Pages 186-206
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The effect of Cu on the evolution of the Al3Zr phase in an Al-Cu-Zr cast alloy during solution treatment at 500 °C has been thoroughly studied by combining atomic resolution high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy and first-principles cal- culations. The heat treatment initially produces a pure L12-Al3Zr microstructure, allowing for about 13 % Cu to be incorporated in the dispersoid. Cu incorporation increases the energy barrier for anti-phase boundary (APB) activation, thus stabilizing the L12 structure. Additional heating leads to a Cu-induced “branched”path for the L12 structural transformation, with the latter process accelerated once the first APB has been created. Cu atoms may either (i) be repelled by the APBs, promoting the transformation to a Cu-poor D023 phase, or (ii) they may segregate at one Al-Zr layer adjacent to the APB, promoting a transformation to a new thermodynamically favored phase, Al4CuZr, formed when these segregation layers are periodically arranged. Theoretical studies suggest that the branching of the L12 transformation path is linked to the speed at which an APB is created, with Cu attraction triggered by a comparatively slow process. This unexpected transformation behavior of the L12-Al3Zr phase opens a new path to understanding, and potentially regulating the Al3Zr dispersoid evolution for high temperature applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001154261100001 Publication Date 2023-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1005-0302 ISBN Additional Links UA library record; WoS full record
Impact Factor 10.9 Times cited Open Access Not_Open_Access
Notes This work was supported by the National Key Research and Development Program (No. 2020YFA0405900), the National Natural Science Foundation of China (Grant No. 52371111 and U2141215 ), the Natural Science Foundation of Jiangsu Province (No. BE2022159 ). We are grateful to the High Performance Computing Center of Nanjing Tech University for supporting the computational resources. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR- FNRS). Approved Most recent IF: 10.9; 2024 IF: 2.764
Call Number EMAT @ emat @c:irua:202392 Serial 8981
Permanent link to this record