|
Record |
Links |
|
Author |
Khan, S.U.; Matshitse, R.; Borah, R.; Nemakal, M.; Moiseeva, E.O.; Dubinina, T.V.; Nyokong, T.; Verbruggen, S.W.; De Wael, K. |
|
|
Title |
Coupling of phthalocyanines with plasmonic gold nanoparticles by click chemistry for an enhanced singlet oxygen based photoelectrochemical sensing |
Type |
A1 Journal article |
|
Year |
2024 |
Publication |
ChemElectroChem |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1-11 |
|
|
Keywords |
A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS) |
|
|
Abstract |
Coupling photosensitizers (PSs) with plasmonic nanoparticles increases the photocatalytic activity of PSs as the localized surface plasmon resonance (LSPR) of plasmonic nanoparticles leads to extreme concentration of light in their vicinity known as the near-field enhancement effect. To realize this in a colloidal phase, efficient conjugation of the PS molecules with the plasmonic nanoparticle surface is critical. In this work, we demonstrate the coupling of phthalocyanine (Pc) molecules with gold nanoparticles (AuNPs) in the colloidal phase via click chemistry. This conjugated Pc-AuNPs colloidal system is shown to enhance the photocatalytic singlet oxygen (1O2) production over non-conjugated Pcs and hence improve the photoelectrochemical detection of phenols. The plasmonic enhancement of the 1O2 generation by Pcs was clearly elucidated by complementary experimental and computational classical electromagnetic models. The dependence of plasmonic enhancement on the spectral position of the excitation laser wavelength and the absorbance of the Pc molecules with respect to the wavelength specific near-field enhancement is clearly demonstrated. A high similar to 8 times enhancement is obtained with green laser (532 nm) at the LSPR due to the maximum near-field enhancement at the resonance wavelength. Zinc phthalocyanine is covalently linked to plasmonic AuNPs via click chemistry to investigate the synergistic effect that boosts the overall activity toward the detection of HQ under visible light illumination. The 1O2 quantum yield of ZnPc improved significantly after conjugating with AuNPs, resulting in enhanced photoelectrochemical activity. image |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
001214481000001 |
Publication Date |
2024-05-02 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2196-0216 |
ISBN |
|
Additional Links |
UA library record; WoS full record |
|
|
Impact Factor |
4 |
Times cited |
|
Open Access |
|
|
|
Notes |
|
Approved |
Most recent IF: 4; 2024 IF: 4.136 |
|
|
Call Number |
UA @ admin @ c:irua:205962 |
Serial |
9142 |
|
Permanent link to this record |