toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Beckwee, E.J.; Watson, G.; Houlleberghs, M.; Arenas Esteban, D.; Bals, S.; Van Der Voort, P.; Breynaert, E.; Martens, J.; Baron, G.V.; Denayer, J.F.M. url  doi
openurl 
  Title Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes Type A1 Journal article
  Year 2023 Publication Heliyon Abbreviated Journal  
  Volume 9 Issue 7 Pages e17662-14  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodic mesoporous organosilica (PMO) nanotubes, referred to as hollow ring PMO (HR-PMO), capable of promoting methane clathrate hydrate formation under mild working conditions (273 K, 3.5 MPa) and at high water loading (5.1 g water/g HR-PMO) is reported. Gravimetric uptake measurements reveal a steep single-stepped isotherm and a noticeably high methane storage capacity (0.55 g methane/g HR-PMO; 0.11 g methane/g water at 3.5 MPa). The large working capacity throughout consecutive pressure-induced clathrate hydrate formationdissociation cycles demonstrates the material's excellent recyclability (97% preservation of capacity). Supported by ex situ cryo-electron tomography and x-ray diffraction, HR-PMO nanotubes are hypothesized to promote clathrate hydrate nucleation and growth by distribution and confinement of water in the mesopores of their outer wall, along the central channels of the nanotubes and on the external nanotube surface. These findings showcase the potential for application of organosilica materials with hierarchical and interconnected pore systems for pressure-based storage of biomethane in confined clathrate hydrates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001056264100001 Publication Date 2023-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2405-8440 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access OpenAccess  
  Notes E.J.B., G.W. and M.H. contributed equally to this work. M.H. acknowledges FWO for an FWO-SB fellowship. All authors acknowledge VLAIO for Moonshot funding (ARCLATH, n ? HBC.2019.0110, ARCLATH2, n ? HBC.2021.0254) . J.A.M. acknowledges the Flemish Government for long-term structural funding (Methusalem) and department EWI for infrastructure investment via the Hermes Fund (AH.2016.134) . NMRCoRe acknowledges the Flemish government, department EWI for financial support as International Research Infrastructure (I001321N: Nuclear Magnetic Resonance Spectroscopy Platform for Molecular Water Research) . J.A.M. acknowledges the European Research Council (ERC) for an Advanced Research Grant under the European Union's Horizon 2020 research and innovation program under grant agreement No. 834134 (WATUSO) . S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G.0381.16N) . This project also received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO) . Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:199249 Serial 8862  
Permanent link to this record
 

 
Author (down) Batenburg, K.J.; Bals, S.; Van Aert, S.; Roelandts, T.; Sijbers, J. url  doi
openurl 
  Title Ultra-high resolution electron tomography for materials science : a roadmap Type A1 Journal article
  Year 2011 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 17 Issue S:2 Pages 934-935  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, Mass. Editor  
  Language Wos Publication Date 2011-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record  
  Impact Factor 1.891 Times cited Open Access  
  Notes Approved Most recent IF: 1.891; 2011 IF: 3.007  
  Call Number UA @ lucian @ c:irua:96554 Serial 3792  
Permanent link to this record
 

 
Author (down) Batenburg, K.J.; Bals, S.; Sijbers, J.; Van Tendeloo, G. openurl 
  Title DART explained: how to carry out a discrete tomography reconstruction Type P1 Proceeding
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages 295-296  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Berlin Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-3-540-85154-7 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:77914 Serial 606  
Permanent link to this record
 

 
Author (down) Batenburg, K.J.; Bals, S.; Sijbers, J.; Kübel, C.; Midgley, P.A.; Hernandez, J.C.; Kaiser, U.; Encina, E.R.; Coronado, E.A.; Van Tendeloo, G. pdf  doi
openurl 
  Title 3D imaging of nanomaterials by discrete tomography Type A1 Journal article
  Year 2009 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 109 Issue 6 Pages 730-740  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The field of discrete tomography focuses on the reconstruction of samples that consist of only a few different materials. Ideally, a three-dimensional (3D) reconstruction of such a sample should contain only one grey level for each of the compositions in the sample. By exploiting this property in the reconstruction algorithm, either the quality of the reconstruction can be improved significantly, or the number of required projection images can be reduced. The discrete reconstruction typically contains fewer artifacts and does not have to be segmented, as it already contains one grey level for each composition. Recently, a new algorithm, called discrete algebraic reconstruction technique (DART), has been proposed that can be used effectively on experimental electron tomography datasets. In this paper, we propose discrete tomography as a general reconstruction method for electron tomography in materials science. We describe the basic principles of DART and show that it can be applied successfully to three different types of samples, consisting of embedded ErSi2 nanocrystals, a carbon nanotube grown from a catalyst particle and a single gold nanoparticle, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000265816400005 Publication Date 2009-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 220 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 2.843; 2009 IF: 2.067  
  Call Number UA @ lucian @ c:irua:74665 c:irua:74665 Serial 12  
Permanent link to this record
 

 
Author (down) Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Altantzis, T.; Sada, C.; Kaunisto, K.; Ruoko, T.-P.; Bals, S. pdf  url
doi  openurl
  Title Vapor Phase Fabrication of Nanoheterostructures Based on ZnO for Photoelectrochemical Water Splitting Type A1 Journal article
  Year 2017 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume 4 Issue 4 Pages 1700161  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanoheterostructures based on metal oxide semiconductors have emerged

as promising materials for the conversion of sunlight into chemical energy.

In the present study, ZnO-based nanocomposites have been developed by

a hybrid vapor phase route, consisting in the chemical vapor deposition

of ZnO systems on fluorine-doped tin oxide substrates, followed by the

functionalization with Fe2O3 or WO3 via radio frequency-sputtering. The

target systems are subjected to thermal treatment in air both prior and after

sputtering, and their properties, including structure, chemical composition,

morphology, and optical absorption, are investigated by a variety of characterization

methods. The obtained results evidence the formation of highly

porous ZnO nanocrystal arrays, conformally covered by an ultrathin Fe2O3

or WO3 overlayer. Photocurrent density measurements for solar-triggered

water splitting reveal in both cases a performance improvement with respect

to bare zinc oxide, that is mainly traced back to an enhanced separation of

photogenerated charge carriers thanks to the intimate contact between the

two oxides. This achievement can be regarded as a valuable result in view of

future optimization of similar nanoheterostructured photoanodes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411525700007 Publication Date 2017-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited 30 Open Access OpenAccess  
  Notes The authors kindly acknowledge the financial support under Padova University ex-60% 2013–2016, P-DiSC #SENSATIONAL BIRD2016- UNIPD projects and the post-doc fellowship ACTION. S.B. acknowledges financial support from the European Research Council (Starting Grant No. COLOURATOM 335078) and T.A. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. Many thanks are also due to Dr. Rosa Calabrese (Department of Chemistry, Padova University, Italy) for experimental assistance. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 4.279  
  Call Number EMAT @ emat @c:irua:146104UA @ admin @ c:irua:146104 Serial 4731  
Permanent link to this record
 

 
Author (down) Barhoum, A.; Van Assche, G.; Rahier, H.; Fleisch, M.; Bals, S.; Delplancked, M.-P.; Leroux, F.; Bahnemann, D. pdf  doi
openurl 
  Title Sol-gel hot injection synthesis of ZnO nanoparticles into a porous silica matrix and reaction mechanism Type A1 Journal article
  Year 2017 Publication Materials & design Abbreviated Journal Mater Design  
  Volume 119 Issue 119 Pages 270-276  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Despite the enormous interest in the properties and applications of porous silica matrix, only a few attempts have been reported to deposit metal and metal oxide nanoparticles (NPs) inside the porous silica matrix. We report a simple approach (i.e. sol-gel hot injection) for insitu synthesis of ZnO NPs inside a porous silica matrix. Control of the Zn:Si molar ratio, reaction temperature, pH value, and annealing temperature permits formation of ZnO NPs (<= 10 nm) inside a porous silica particles, without additives or organic solvents. Results revealed that a solid state reaction inside the ZnO/SiO2 nanocomposites occurs with increasing the annealing temperature. The reaction of ZnO NPs with SiO2 matrix was insignificant up to approximately 500 degrees C. However, ZnO NPs react strongly with the silica matrix when the nanocomposites are annealed at temperatures above 700 degrees C. Extensive annealing of the ZnO/SiO2 nanocomposite at 900 degrees C yields 3D structures made of 500 nm rod-like, 5-7 pm tube-like and 35 pm needle-like Zn2SiO4 crystals. A possible mechanism for forming ZnO NPs inside porous silica matrix and phase transformation of the ZnO/SiO2 nanocomposites into 3D architectures of Zn2SiO4 are carefully discussed. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397360000030 Publication Date 2017-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-1275 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.364 Times cited 43 Open Access Not_Open_Access  
  Notes ; A.B. would like to thank FWO – Research Foundation Flanders (grant no. V450315N) and the Strategic Initiative Materials in Flanders (SBO-project no. 130529 – INSITU) for financial support. TEM and TEM-EDX analyses were performed by Dr. F. Leroux (EMAT, Universiteit Antwerpen). XRD and DSC measurements were performed by T. Segato (4MAT, Universite Libre de Bruxelles). Notes: the authors declare no competing for financial interest. ; Approved Most recent IF: 4.364  
  Call Number UA @ lucian @ c:irua:142394UA @ admin @ c:irua:142394 Serial 4689  
Permanent link to this record
 

 
Author (down) Bals, S.; Verbeeck, J.; Van Tendeloo, G.; Liu, Y.-L.; Grivel, J.-C. pdf  doi
openurl 
  Title Quantitative electron microscopy of (Bi,Pb)2Sr2Ca2Cu3O10+\delta/Ag multifilament tapes during initial stages of annealing Type A1 Journal article
  Year 2005 Publication Journal of the American Ceramic Society Abbreviated Journal J Am Ceram Soc  
  Volume 88 Issue 2 Pages 431-436  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The microstructural and compositional evolution during initial annealing of a superconducting (Bi,Pb)(2)Sr2Ca2Cu3O10+delta/Ag tape is studied using quantitative transmission electron microscopy. Special attention is devoted to the occurrence of Pb-rich liquids, which are crucial for the Bi2Sr2CaCu2O8+delta to (Bi,Pb)(2)Sr2Ca2Cu3O10+delta transformation. Ca and/or Pb-rich (Bi,Pb)(2)Sr2CaCu2O8+delta grains dissolve into a liquid, which reacts with Ca-rich phases to increase the liquid's Ca-content. This leads to (Bi,Pb)(2)Sr2Ca2Cu3O10+delta formation. Apparently, a Ca/Sr ratio of around I is sufficient to keep (Bi,Pb)(2)Sr2Ca2Cu3O10+delta nucleation going. It is confirmed that Ag particles are transported from the Ag-sheath into the oxide core by the liquid and not by mechanical treatment of the tape.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Columbus, Ohio Editor  
  Language Wos 000227510200030 Publication Date 2005-02-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7820;1551-2916; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.841 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.841; 2005 IF: 1.586  
  Call Number UA @ lucian @ c:irua:54876UA @ admin @ c:irua:54876 Serial 2754  
Permanent link to this record
 

 
Author (down) Bals, S.; Van Tendeloo, G.; Salluzzo, M.; Maggio-Aprile, I. pdf  doi
openurl 
  Title Why are sputter deposited Nd1+xBa2-xCu3O7-\delta thin films flatter than NdBa2Cu3O7-\delta films? Type A1 Journal article
  Year 2001 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 79 Issue 22 Pages 3660-3662  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract High-resolution electron microscopy and scanning tunneling microscopy have been used to compare the microstructure of NdBa2Cu3O7-delta and Nd1+xBa2-xCu3O7-delta thin films. Both films contain comparable amounts of Nd2CuO4 inclusions. Antiphase boundaries are induced by unit cell high steps at the substrate or by a different interface stacking. In Nd1+xBa2-xCu3O7-delta the antiphase boundaries tend to annihilate by the insertion of extra Nd layers. Stacking faults, which can be characterized as local Nd2Ba2Cu4O9 inclusions, also absorb the excess Nd. A correlation is made between the excess Nd and the absence of growth spirals at the surface of the Nd-rich films. (C) 2001 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000172204400034 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.411; 2001 IF: 3.849  
  Call Number UA @ lucian @ c:irua:54801 Serial 3916  
Permanent link to this record
 

 
Author (down) Bals, S.; Van Tendeloo, G.; Rijnders, G.; Huijben, M.; Leca, V.; Blank, D.H.A. doi  openurl
  Title Transmission electron microscopy on interface engineered superconducting thin films Type A1 Journal article
  Year 2003 Publication IEEE transactions on applied superconductivity Abbreviated Journal Ieee T Appl Supercon  
  Volume 13 Issue 2:3 Pages 2834-2837  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Transmission electron microscopy is used to evaluate different deposition techniques, which optimize the microstructure and physical properties of superconducting thin films. High-resolution electron microscopy proves that the use of an YBa2Cu2Ox buffer layer can avoid a variable interface configuration in YBa2Cu3O7-delta thin films grown on SrTiO3. The growth can also be controlled at an atomic level by, using sub-unit cell layer epitaxy, which results in films with high quality and few structural defects. Epitaxial strain in Sr0.85La0.15CuO2 infinite layer thin films influences the critical temperature of these films, as well as the microstructure. Compressive stress is released by a modulated or a twinned microstructure, which eliminates superconductivity. On the other hand, also tensile strain seems to lower the critical temperature of the infinite layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000184242400101 Publication Date 2003-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 13 Open Access  
  Notes Iuap V-1; Fwo Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:103292 Serial 3712  
Permanent link to this record
 

 
Author (down) Bals, S.; Van Tendeloo, G.; Rijnders, G.; Blank, D.H.A.; Leca, V.; Salluzzo, M. doi  openurl
  Title Optimisation of superconducting thin films by TEM Type A1 Journal article
  Year 2002 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 372/376 Issue part 2 Pages 711-714  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract High-resolution electron microscopy is used to study the initial growth of different REBa2CU3O7-5 thin films. In DyBa2CU3O7-5 ultra-thin films, deposited on TiO2 terminated SrTiO3, two different types of interface arrangements occur: bulk-SrO-TiO2-BaO-CuO-BaO-CuO2-Dy-CuO2-BaO-bulk and bulk-SrO-TiO2-BaO-CuO2-Dy-CuO2-BaO-CuO-BaO-bulk. This variable growth sequence is the origin of the presence of antiphase boundaries. In Nd1+xBa2-xCu3O7-5 thin films, antiphase boundaries tend to annihilate by the insertion of extra Nd-layers. This annihilation is correlated with the flat morphology of the film and the absence of growth spirals at the surface of the Nd-rich films. (C) 2002 Elsevier Science B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000178018800033 Publication Date 2002-08-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 6 Open Access  
  Notes Approved Most recent IF: 1.404; 2002 IF: 0.912  
  Call Number UA @ lucian @ c:irua:54796 Serial 2485  
Permanent link to this record
 

 
Author (down) Bals, S.; Van Tendeloo, G.; Kisielowski, C. pdf  doi
openurl 
  Title A new approach for electron tomography: annular dark-field transmission electron microscopy Type A1 Journal article
  Year 2006 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 18 Issue 7 Pages 892-895  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Annular dark-field transmission electron microscopy uses an annular objective aperture that blocks the central beam and all electrons scattered up to a certain serniangle. A contrast suitable for electron tomography is generated and 3D reconstructions of CdTe tetrapods and C nanotubes (see figure) are successfully obtained. With short exposure times and high contrast, the technique could be useful not only for materials science, but also for biological applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000236950500013 Publication Date 2006-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 53 Open Access  
  Notes Fwo Approved Most recent IF: 19.791; 2006 IF: NA  
  Call Number UA @ lucian @ c:irua:58258 Serial 2306  
Permanent link to this record
 

 
Author (down) Bals, S.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Structural, chemical and electronic characterization of ceramic materials using quantitative (scanning) transmission electron microscopy Type A1 Journal article
  Year 2007 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 13 Issue S:3 Pages 332-333  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, Mass. Editor  
  Language Wos Publication Date 2008-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record  
  Impact Factor 1.891 Times cited Open Access  
  Notes Approved Most recent IF: 1.891; 2007 IF: 1.941  
  Call Number UA @ lucian @ c:irua:96553 Serial 3224  
Permanent link to this record
 

 
Author (down) Bals, S.; Van Aert, S.; Van Tendeloo, G.; van Dyck, D.; Avila-Brande, D. pdf  openurl
  Title Statistical estimation of oxygen atomic positions eith sub Ångstrom precision from exit wave reconstruction Type A3 Journal article
  Year 2005 Publication Microscopy and microanalysis Abbreviated Journal  
  Volume 11 Issue S Pages 556-557  
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:54881 Serial 3155  
Permanent link to this record
 

 
Author (down) Bals, S.; Van Aert, S.; Van Tendeloo, G.; Avila-Brande, D. url  doi
openurl 
  Title Statistical estimation of atomic positions from exit wave reconstruction with a precision in the picometer range Type A1 Journal article
  Year 2006 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 96 Issue 9 Pages 096106,1-4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The local structure of Bi4W2/3Mn1/3O8Cl is determined using quantitative transmission electron microscopy. The electron exit wave, which is closely related to the projected crystal potential, is reconstructed and used as a starting point for statistical parameter estimation. This method allows us to refine all atomic positions on a local scale, including those of the light atoms, with a precision in the picometer range. Using this method one is no longer restricted to the information limit of the electron microscope. Our results are in good agreement with x-ray powder diffraction data demonstrating the reliability of the method. Moreover, it will be shown that local effects can be interpreted using this approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000235905700042 Publication Date 2006-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 69 Open Access  
  Notes Fwo; Iap V Approved Most recent IF: 8.462; 2006 IF: 7.072  
  Call Number UA @ lucian @ c:irua:56977 Serial 3154  
Permanent link to this record
 

 
Author (down) Bals, S.; Van Aert, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title High resolution electron tomography Type A1 Journal article
  Year 2013 Publication Current opinion in solid state and materials science Abbreviated Journal Curr Opin Solid St M  
  Volume 17 Issue 3 Pages 107-114  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Reaching atomic resolution in 3D has been the ultimate goal in the field of electron tomography for many years. Significant progress, both on the theoretical as well as the experimental side has recently resulted in several exciting examples demonstrating the ability to visualise atoms in 3D. In this paper, we will review the different steps that have pushed the resolution in 3D to the atomic level. A broad range of methodologies and practical examples together with their impact on materials science will be discussed. Finally, we will provide an outlook and will describe future challenges in the field of high resolution electron tomography.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000323869800003 Publication Date 2013-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-0286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.938 Times cited 24 Open Access  
  Notes Fwo; 312483 Esteem; Countatoms; Approved Most recent IF: 6.938; 2013 IF: 7.167  
  Call Number UA @ lucian @ c:irua:109454 Serial 1457  
Permanent link to this record
 

 
Author (down) Bals, S.; Van Aert, S.; Romero, C.P.; Lauwaet, K.; Van Bael, M.J.; Schoeters, B.; Partoens, B.; Yuecelen, E.; Lievens, P.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Atomic scale dynamics of ultrasmall germanium clusters Type A1 Journal article
  Year 2012 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 3 Issue 897 Pages 897  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Starting from the gas phase, small clusters can be produced and deposited with huge flexibility with regard to composition, materials choice and cluster size. Despite many advances in experimental characterization, a detailed morphology of such clusters is still lacking. Here we present an atomic scale observation as well as the dynamical behaviour of ultrasmall germanium clusters. Using quantitative scanning transmission electron microscopy in combination with ab initio calculations, we are able to characterize the transition between different equilibrium geometries of a germanium cluster consisting of less than 25 atoms. Seven-membered rings, trigonal prisms and some smaller subunits are identified as possible building blocks that stabilize the structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000306099900024 Publication Date 2012-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 90 Open Access  
  Notes Fwo; Iap; Iwt Approved Most recent IF: 12.124; 2012 IF: 10.015  
  Call Number UA @ lucian @ c:irua:100340 Serial 183  
Permanent link to this record
 

 
Author (down) Bals, S.; Tirry, W.; Geurts, R.; Yang, Z.; Schryvers, D. doi  openurl
  Title High-quality sample preparation by low kV FIB thinning for analytical TEM measurements Type A1 Journal article
  Year 2007 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 13 Issue 2 Pages 80-86  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Focused ion beam specimen preparation has been used for NiTi samples and SrTiO(3)/SrRuO(3) multilayers with prevention of surface amorphization and Ga implantation by a 2-kV cleaning procedure. Transmission electron microscopy techniques show that the samples are of high quality with a controlled thickness over large scales. Furthermore, preferential thinning effects in multicompounds are avoided, which is important when analytical transmission electron microscopy measurements need to be interpreted in a quantitative manner. The results are compared to similar measurements acquired for samples obtained using conventional preparation techniques such as electropolishing for alloys and ion milling for oxides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, Mass. Editor  
  Language Wos 000245662200002 Publication Date 2007-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.891 Times cited 82 Open Access  
  Notes Fwo; Goa Approved Most recent IF: 1.891; 2007 IF: 1.941  
  Call Number UA @ lucian @ c:irua:65850 Serial 1441  
Permanent link to this record
 

 
Author (down) Bals, S.; Stes, A.; Celis, V. isbn  openurl
  Title Klassieke toetsing in de praktijk Type H2 Book chapter
  Year 2009 Publication Abbreviated Journal  
  Volume Issue Pages 211-225  
  Keywords H2 Book chapter; Educational sciences; EduBROn; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher LannooCampus Place of Publication Leuven Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978 90 209 8819 2 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:79658 Serial 1762  
Permanent link to this record
 

 
Author (down) Bals, S.; Rijnders, G.; Blank, D.H.A.; Van Tendeloo, G. doi  openurl
  Title TEM of ultra-thin DyBa2Cu3O7-x films deposited on TiO2 terminated SrTiO3 Type A1 Journal article
  Year 2001 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 355 Issue 3/4 Pages 225-230  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Using pulsed laser deposition ultra-thin DyBa2Cu3O7-x films were deposited on a single terminated (0 0 1) SrTiOr(3) substrate. The initial growth was studied by high-resolution electron microscopy. Two different types of interface arrangements occur and were determined as: bulk-SrO-TiO2-BaO-CuO-BaO-CuO2-Dy-CuO2-BaO bulk and bulk-SrO-TiO2-BaO-CuO2-Dy-CuO2-BaO-CuO-BaO-bulk This variable growth sequence causes structural shifts, resulting in antiphase boundaries with displacement vector R = [0 0 1/3]. as well as local chemical variations. (C) 2001 Elsevier Science B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000169479500006 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 26 Open Access  
  Notes Approved Most recent IF: 1.404; 2001 IF: 0.806  
  Call Number UA @ lucian @ c:irua:54793 Serial 3484  
Permanent link to this record
 

 
Author (down) Bals, S.; Radmilovic, V.; Kisielowski, C. doi  openurl
  Title TEM annular objective apertures fabricated by FIB Type A1 Journal article
  Year 2004 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 10 Issue S:2 Pages 1148-1149  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, Mass. Editor  
  Language Wos Publication Date 2008-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record  
  Impact Factor 1.891 Times cited Open Access  
  Notes Approved Most recent IF: 1.891; 2004 IF: 2.389  
  Call Number UA @ lucian @ c:irua:87603 Serial 3475  
Permanent link to this record
 

 
Author (down) Bals, S.; Kisielowski, C.; Croitoru, M.; Van Tendeloo, G. openurl 
  Title Tomography using annular dark field imaging in TEM Type A3 Journal article
  Year 2005 Publication Microscopy and microanalysis Abbreviated Journal  
  Volume 11 Issue S Pages 2118-2119  
  Keywords A3 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:54880 Serial 3672  
Permanent link to this record
 

 
Author (down) Bals, S.; Kilaas, R.; Kisielowski, C. pdf  doi
openurl 
  Title Nonlinear imaging using annular dark field TEM Type A1 Journal article
  Year 2005 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 104 Issue 3/4 Pages 281-289  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Annular dark field TEM images exhibit a dominant mass-thickness contrast that can be quantified to extract single atom scattering cross sections. On top of this incoherent background, additional lattice fringes appear with a nonlinear information limit of 1.2 angstrom at 150 kV. The formation of these fringes is described by coherent nonlinear imaging theory and good agreement is found between experimental and simulated images. Calculations furthermore predict that the use of aberration corrected microscopes will improve the image quality dramatically. (c) 2005 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000231297100012 Publication Date 2005-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 15 Open Access  
  Notes Approved Most recent IF: 2.843; 2005 IF: 2.490  
  Call Number UA @ lucian @ c:irua:64685 Serial 2352  
Permanent link to this record
 

 
Author (down) Bals, S.; Kabius, B.; Haider, M.; Radmilovic, V.; Kisielowski, C. pdf  doi
openurl 
  Title Annular dark field imaging in a TEM Type A1 Journal article
  Year 2004 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 130 Issue 10 Pages 675-680  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Annular objective apertures are fabricated for a CM300 transmission electron microscope using a focused ion beam system. A central beam stop in the back focal plane of the objective lens of the microscope blocks all electrons scattered up to a semi-angle of approximately 20 mrad. In this manner, contributions to the image from Bragg scattering are largely reduced and the image contrast is sensitive to the atomic number Z. Experimentally, we find that single atom scattering cross sections measured with this technique are close to Rutherford scattering values. A comparison between this new method and STEM-HAADF shows that both techniques result in qualitatively similar images although the resolution of ADF-TEM is limited by contrast delocalization caused by the spherical aberration of the objective lens. This problem can be overcome by using an aberration corrected microscope.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000221489300007 Publication Date 2004-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 43 Open Access  
  Notes Approved Most recent IF: 1.554; 2004 IF: 1.523  
  Call Number UA @ lucian @ c:irua:87584 Serial 132  
Permanent link to this record
 

 
Author (down) Bals, S.; Goris, B.; Liz-Marzan, L.M.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Three-dimensional characterization of noble-metal nanoparticles and their assemblies by electron tomography Type A1 Journal article
  Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 53 Issue 40 Pages 10600-10610  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract New developments in the field of nanomaterials drive the need for quantitative characterization techniques that yield information down to the atomic scale. In this Review, we focus on the three-dimensional investigations of metal nanoparticles and their assemblies by electron tomography. This technique has become a versatile tool to understand the connection between the properties and structure or composition of nanomaterials. The different steps of an electron tomography experiment are discussed and we show how quantitative three-dimensional information can be obtained even at the atomic scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000342761500006 Publication Date 2014-08-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 58 Open Access OpenAccess  
  Notes 267867 Plasmaquo; 246791 Countatoms; 335078 Colouratom; 262348 Esmi; Fwo; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261  
  Call Number UA @ lucian @ c:irua:121093 Serial 3646  
Permanent link to this record
 

 
Author (down) Bals, S.; Goris, B.; de Backer, A.; Van Aert, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Atomic resolution electron tomography Type A1 Journal article
  Year 2016 Publication MRS bulletin Abbreviated Journal Mrs Bull  
  Volume 41 Issue 41 Pages 525-530  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Over the last two decades, three-dimensional (3D) imaging by transmission electron microscopy or “electron tomography” has evolved into a powerful tool to investigate a variety of nanomaterials in different fields, such as life sciences, chemistry, solid-state physics, and materials science. Most of these results were obtained with nanometer-scale resolution, but different approaches have recently pushed the resolution to the atomic level. Such information is a prerequisite to understand the specific relationship between the atomic structure and the physicochemical properties of (nano) materials. We provide an overview of the latest progress in the field of atomic-resolution electron tomography. Different imaging and reconstruction approaches are presented, and state-of-the-art results are discussed. This article demonstrates the power and importance of electron tomography with atomic-scale resolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Pittsburgh, Pa Editor  
  Language Wos 000382508100012 Publication Date 2016-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-7694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.199 Times cited 19 Open Access OpenAccess  
  Notes ; The authors gratefully acknowledge funding from the Research Foundation Flanders (G.0381.16N, G.036915, G.0374.13, and funding of postdoctoral grants to B.G. and A.D.B.). S.B. acknowledges the European Research Council, ERC Grant Number 335078-Colouratom. The research leading to these results received funding from the European Union Seventh Framework Program under Grant Agreements 312483 (ESTEEM2). The authors would like to thank the colleagues who have contributed to this work, including K.J. Batenburg, J. De Beenhouwer, R. Erni, M.D. Rossell, W. Van den Broek, L. Liz-Marzan, E. Carbo-Argibay, S. Gomez-Grana, P. Lievens, M. Van Bael, B. Partoens, B. Schoeters, and J. Sijbers. ; ecas_sara Approved Most recent IF: 5.199  
  Call Number UA @ lucian @ c:irua:135690 Serial 4299  
Permanent link to this record
 

 
Author (down) Bals, S.; Goris, B.; Altantzis, T.; Heidari, H.; Van Aert, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Seeing and measuring in 3D with electrons Type A1 Journal article
  Year 2014 Publication Comptes rendus : physique Abbreviated Journal Cr Phys  
  Volume 15 Issue 2-3 Pages 140-150  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Modern TEM enables the investigation of nanostructures at the atomic scale. However, TEM images are only two-dimensional (2D) projections of a three-dimensional (3D) object. Electron tomography can overcome this limitation. The technique is increasingly focused towards quantitative measurements and reaching atomic resolution in 3D has been the ultimate goal for many years. Therefore, one needs to optimize the acquisition of the data, the 3D reconstruction techniques as well as the quantification methods. Here, we will review a broad range of methodologies and examples. Finally, we will provide an outlook and will describe future challenges in the field of electron tomography.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000334013600005 Publication Date 2014-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1631-0705; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.048 Times cited 15 Open Access OpenAccess  
  Notes (FWO;Belgium); European Research Council under the 7th Framework Program (FP7); ERC grant No.246791 – COUNTATOMS; ERC grant No.335078 – COLOURATOMS; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.048; 2014 IF: 2.035  
  Call Number UA @ lucian @ c:irua:113855 Serial 2960  
Permanent link to this record
 

 
Author (down) Bals, S.; Casavola, M.; van Huis, M.A.; Van Aert, S.; Batenburg, K.J.; Van Tendeloo, G.; Vanmaekelbergh, D. pdf  url
doi  openurl
  Title Three-dimensional atomic imaging of colloidal core-shell nanocrystals Type A1 Journal article
  Year 2011 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 11 Issue 8 Pages 3420-3424  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Colloidal coreshell semiconductor nanocrystals form an important class of optoelectronic materials, in which the exciton wave functions can be tailored by the atomic configuration of the core, the interfacial layers, and the shell. Here, we provide a trustful 3D characterization at the atomic scale of a free-standing PbSe(core)CdSe(shell) nanocrystal by combining electron microscopy and discrete tomography. Our results yield unique insights for understanding the process of cation exchange, which is widely employed in the synthesis of coreshell nanocrystals. The study that we present is generally applicable to the broad range of colloidal heteronanocrystals that currently emerge as a new class of materials with technological importance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000293665600062 Publication Date 2011-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 121 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 12.712; 2011 IF: 13.198  
  Call Number UA @ lucian @ c:irua:91263 Serial 3643  
Permanent link to this record
 

 
Author (down) Bals, S.; Batenburg, K.J.; Liang, D.; Lebedev, O.; Van Tendeloo, G.; Aerts, A.; Martens, J.A.; Kirschhock, C.E. pdf  doi
openurl 
  Title Quantitative three-dimensional modeling of zeotile through discrete electron tomography Type A1 Journal article
  Year 2009 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 131 Issue 13 Pages 4769-4773  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Discrete electron tomography is a new approach for three-dimensional reconstruction of nanoscale objects. The technique exploits prior knowledge of the object to be reconstructed, which results in an improvement of the quality of the reconstructions. Through the combination of conventional transmission electron microscopy and discrete electron tomography with a model-based approach, quantitative structure determination becomes possible. In the present work, this approach is used to unravel the building scheme of Zeotile-4, a silica material with two levels of structural order. The layer sequence of slab-shaped building units could be identified. Successive layers were found to be related by a rotation of 120°, resulting in a hexagonal space group. The Zeotile-4 material is a demonstration of the concept of successive structuring of silica at two levels. At the first level, the colloid chemical properties of Silicalite-1 precursors are exploited to create building units with a slablike geometry. At the second level, the slablike units are tiled using a triblock copolymer to serve as a mesoscale structuring agent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000264806300050 Publication Date 2009-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 58 Open Access  
  Notes Fwo; Iap; Esteem 026019 Approved Most recent IF: 13.858; 2009 IF: 8.580  
  Call Number UA @ lucian @ c:irua:76393 Serial 2767  
Permanent link to this record
 

 
Author (down) Bals, S.; Batenburg, J.; Verbeeck, J.; Sijbers, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Quantitative three-dimensional reconstruction of catalyst particles for bamboo-like carbon nanotubes Type A1 Journal article
  Year 2007 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 7 Issue 12 Pages 3669-3674  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The three-dimensional (3D) structure and chemical composition of bamboo-like carbon nanotubes including the catalyst particles that are. used during their growth are studied by discrete electron tomography in combination with energy-filtered transmission electron microscopy. It is found that cavities are present in the catalyst particles. Furthermore, only a small percentage of the catalyst particles consist of pure Cu, since a large volume fraction of the particles is oxidized to CU(2)0. These volume fractions are determined quantitatively from 3D reconstructions obtained by discrete tomography.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000251581600022 Publication Date 2007-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 78 Open Access  
  Notes Fwo; Esteem Approved Most recent IF: 12.712; 2007 IF: 9.627  
  Call Number UA @ lucian @ c:irua:66762UA @ admin @ c:irua:66762 Serial 2768  
Permanent link to this record
 

 
Author (down) Bai, J.; Wang, J.T.-W.; Rubio, N.; Protti, A.; Heidari, H.; Elgogary, R.; Southern, P.; Al-Jamal, W.' T.; Sosabowski, J.; Shah, A.M.; Bals, S.; Pankhurst, Q.A.; Al-Jamal, K.T. pdf  url
doi  openurl
  Title Triple-Modal Imaging of Magnetically-Targeted Nanocapsules in Solid TumoursIn Vivo Type A1 Journal article
  Year 2016 Publication Theranostics Abbreviated Journal Theranostics  
  Volume 6 Issue 6 Pages 342-356  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Triple-modal imaging magnetic nanocapsules, encapsulating hydrophobic superparamagnetic iron oxide nanoparticles, are formulated and used to magnetically target solid tumours after intravenous administration in tumour-bearing mice. The engineered magnetic polymeric nanocapsules m-NCs are ~200 nm in size with negative Zeta potential and shown to be spherical in shape. The loading efficiency of superparamagnetic iron oxide nanoparticles in the m-NC was ~100%. Up to ~3- and ~2.2-fold increase in tumour uptake at 1 and 24 h was achieved, when a static magnetic field was applied to the tumour for 1 hour. m-NCs, with multiple imaging probes (e.g. indocyanine green, superparamagnetic iron oxide nanoparticles and indium-111), were capable of triple-modal imaging (fluorescence/magnetic resonance/nuclear imaging) in vivo. Using triple-modal imaging is to overcome the intrinsic limitations of single modality imaging and provides complementary information on the spatial distribution of the nanocarrier within the tumour. The significant findings of this study could open up new research perspectives in using novel magnetically-responsive nanomaterials in magnetic-drug targeting combined with multi-modal imaging.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000377797200005 Publication Date 2015-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1838-7640 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.712 Times cited 54 Open Access OpenAccess  
  Notes The authors would like to thank Prof Robert Hider (King's College London) for useful discussion on the chemical functionalization of the polymers, Mr William Luckhurst (King's College London) on the technical help of AFM measurements and Mr Andrew Cakebread (King's College London) on his technical help of ICP-MS measurements. J.B. acknowledges funding from King's-China Scholarship Council (CSC). J.W. and N.R. acknowledge funding from Biotechnology and Biological Sciences Research Council (BB/J008656/1) and Associated International Cancer Research (12-1054). K.T.AJ. acknowledges funding from EU FP7-ITN Marie-Curie Network programme RADDEL (290023). S.B. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 335078 COLOURATOMS, and the Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure, ESMI.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 8.712  
  Call Number c:irua:130058 Serial 3995  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: