toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Vannier, R.-N.; Théry, O.; Kinowski, C.; Huvé, M.; Van Tendeloo, G.; Suard, E.; Abraham, F. pdf  doi
openurl 
  Title Zr substituted bismuth uranate Type A1 Journal article
  Year 1999 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 9 Issue Pages 435-443  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000078572900019 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:29714 Serial 3937  
Permanent link to this record
 

 
Author (up) Vanraes, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma physics of liquids—A focused review Type A1 Journal article
  Year 2018 Publication Applied physics reviews Abbreviated Journal Appl Phys Rev  
  Volume 5 Issue 3 Pages 031103  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The interaction of plasma with liquids has led to various established industrial implementations as well as promising applications, including high-voltage switching, chemical analysis, nanomaterial synthesis, and plasma medicine. Along with these numerous accomplishments, the physics of plasma in liquid or in contact with a liquid surface has emerged as a bipartite research field, for which we introduce here the term “plasma physics of liquids.” Despite the intensive research

investments during the recent decennia, this field is plagued by some controversies and gaps in knowledge, which might restrict further progress. The main difficulties in understanding revolve around the basic mechanisms of plasma initiation in the liquid phase and the electrical interactions at a plasma-liquid interface, which require an interdisciplinary approach. This review aims to provide the wide applied physics community with a general overview of the field, as well as the opportunities for interdisciplinary research on topics, such as nanobubbles and the floating water bridge, and involving the research domains of amorphous semiconductors, solid state physics, thermodynamics, material science, analytical chemistry, electrochemistry, and molecular dynamics simulations. In addition, we provoke awareness of experts in the field on yet underappreciated question marks. Accordingly, a strategy for future experimental and simulation work is proposed.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000446117000003 Publication Date 2018-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-9401 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.667 Times cited 33 Open Access OpenAccess  
  Notes P. Vanraes acknowledges funding by a University of Antwerp BOF grant. The authors express their gratitude to Professor Dr. Peter Bruggeman (University of Minnesota, USA) for very useful comments on a draft of Sec. III C. P. Vanraes is very grateful to Professor Dr. Lars Pettersson (Stockholm University, Sweden) for the interesting discussions on the microscopic structure of water, to Dr. Xiaolong Deng (National University of Defense Technology, China) for his help with the figures, to Dr. Anton Nikiforov (Ghent University, Belgium) for the help with retrieving the relevant chapter of Ref. 319, and to Dr. Tatiana Nikitenko (Vitebst State Masherov University, Belarus), Katja Nygard (Netherlands), Iryna Kuchakova (Ghent University, Belgium), and Mindaugas Kersys (Lithuania) for their tremendous help with the translation of the corresponding chapter. Approved Most recent IF: 13.667  
  Call Number PLASMANT @ plasmant @c:irua:152823 Serial 5001  
Permanent link to this record
 

 
Author (up) Vanraes, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Laser-induced excitation mechanisms and phase transitions in spectrochemical analysis – Review of the fundamentals Type A1 Journal article
  Year 2021 Publication Spectrochimica Acta Part B-Atomic Spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 179 Issue Pages 106091  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nowadays, lasers are commonly applied in spectrochemical analysis methods, for sampling, plasma formation or a combination of both. Despite the numerous investigations that have been performed on these applications, the underlying processes are still insufficiently understood. In order to fasten progress in the field and in honor of the lifework of professor Rick Russo, we here provide a brief overview of the fundamental mechanisms in lasermatter interaction as proposed in literature, and throw the spotlight on some aspects that have not received much attention yet. For an organized discussion, we choose laser ablation, laser desorption and the associated gaseous plasma formation as the central processes in this perspective article, based on a classification of the laserbased spectrochemical analysis techniques and the corresponding laser-matter interaction regimes. First, we put the looking glass over the excitation and thermalization mechanisms in the laser-irradiated condensed phase, for which we propose the so-called multi-plasma model. This novel model can be understood as an extension of the well-known two-temperature model, featuring multiple thermodynamic dimensions, each of which corresponds to a quasi-particle type. Next, the focus is placed on the mass transfer and ionization mechanisms, after which we shortly highlight the possible role of anisotropic and magnetic effects in the laser-excited material. We hope this perspective article motivates more fundamental research on laser-matter interaction, as a continuation of the lifework of Rick Russo.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000631868700005 Publication Date 2021-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited Open Access OpenAccess  
  Notes University of Antwerp; We acknowledge funding by a University of Antwerp BOF grant and by a University of Antwerp Methusalem grant. Approved Most recent IF: 3.241  
  Call Number PLASMANT @ plasmant @c:irua:176876 Serial 6710  
Permanent link to this record
 

 
Author (up) Vanraes, P.; Bogaerts, A. pdf  url
doi  openurl
  Title The essential role of the plasma sheath in plasma–liquid interaction and its applications—A perspective Type A1 Journal Article
  Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 129 Issue 22 Pages 220901  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Based on the current knowledge, a plasma–liquid interface looks and behaves very differently from its counterpart at a solid surface. Local processes characteristic to most liquids include a stronger evaporation, surface deformations, droplet ejection, possibly distinct mechanisms behind secondary electron emission, the formation of an electric double layer, and an ion drift-mediated liquid resistivity. All of them can strongly influence the interfacial charge distribution. Accordingly, the plasma sheath at a liquid surface is most likely unique in its own way, both with respect to its structure and behavior. However, insights into these properties are still rather scarce or uncertain, and more studies are required to further disclose them. In this Perspective, we argue why more research on the plasma sheath is not only recommended but also crucial to an accurate understanding of the plasma–liquid interaction. First, we analyze how the sheath regulates various elementary processes at the plasma–liquid interface, in terms of the electrical coupling, the bidirectional mass transport, and the chemistry between plasma and liquid phase. Next, these three regulatory functions of the sheath are illustrated for concrete applications. Regarding the electrical coupling, a great deal of attention is paid to the penetration of fields into biological systems due to their relevance for plasma medicine, plasma agriculture, and food processing. Furthermore, we illuminate the role of the sheath in nuclear fusion, nanomaterial synthesis, and chemical applications. As such, we hope to motivate the plasma community for more fundamental research on plasma sheaths at liquid surfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000681700000013 Publication Date 2021-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited Open Access OpenAccess  
  Notes P.V. thanks Dr. Angela Privat Maldonado (University of Antwerp) for the fruitful discussions on Sec. III and Professor Mark J. Kushner (University of Michigan) for the interesting discussion on Ref. 198. Approved Most recent IF: 2.068  
  Call Number PLASMANT @ plasmant @c:irua:178814 Serial 6794  
Permanent link to this record
 

 
Author (up) Vanraes, P.; Nikiforov, A.; Bogaerts, A.; Leys, C. url  doi
openurl 
  Title Study of an AC dielectric barrier single micro-discharge filament over a water film Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 8 Issue 1 Pages 10919  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In the last decades, AC powered atmospheric dielectric barrier discharges (DBDs) in air with a liquid electrode have been proposed as a promising plasma technology with versatile applicability in medicine agriculture and water treatment. The fundamental features of the micro-discharge filaments that make up this type of plasma have, however, not been studied yet in sufficient detail. In order to address this need, we investigated a single DBD micro-discharge filament over a water film in a sphere-to-sphere electrode configuration, by means of ICCD imaging and optical emission spectroscopy. When the water film temporarily acts as the cathode, the plasma duration is remarkably long and shows a clear similarity with a resistive barrier discharge, which we attribute to the resistive nature of the water film and the formation of a cathode fall. As another striking difference to DBD with solid electrodes, a constant glow-like plasma is observed at the water surface during the entire duration of the applied voltage cycle, indicating continuous plasma treatment of the liquid. We propose several elementary mechanisms that might underlie the observed unique behavior, based on the specific features of a water electrode.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000439101600018 Publication Date 2018-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 3 Open Access OpenAccess  
  Notes P. Vanraes acknowledges funding by a University of Antwerp BOF grant. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @c:irua:152822c:irua:152411 Serial 4999  
Permanent link to this record
 

 
Author (up) Vanraes, P.; Parayil Venugopalan, S.; Besemer, M.; Bogaerts, A. pdf  url
doi  openurl
  Title Assessing neutral transport mechanisms in aspect ratio dependent etching by means of experiments and multiscale plasma modeling Type A1 Journal Article
  Year 2023 Publication Plasma Sources Science and Technology Abbreviated Journal Plasma Sources Sci. Technol.  
  Volume 32 Issue 6 Pages 064004  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Since the onset of pattern transfer technologies for chip manufacturing, various strategies have been developed to circumvent or overcome aspect ratio dependent etching (ARDE). These methods have, however, their own limitations in terms of etch non-idealities, throughput or costs. Moreover, they have mainly been optimized for individual in-device features and die-scale patterns, while occasionally ending up with poor patterning of metrology marks, affecting the alignment and overlay in lithography. Obtaining a better understanding of the underlying mechanisms of ARDE and how to mitigate them therefore remains a relevant challenge to date, for both marks and advanced nodes. In this work, we accordingly assessed the neutral transport mechanisms in ARDE by means of experiments and multiscale modeling for SiO<sub>2</sub>etching with CHF<sub>3</sub>/Ar and CF<sub>4</sub>/Ar plasmas. The experiments revealed a local maximum in the etch rate for an aspect ratio around unity, i.e. the simultaneous occurrence of regular and inverse reactive ion etching lag for a given etch condition. We were able to reproduce this ARDE trend in the simulations without taking into account charging effects and the polymer layer thickness, suggesting shadowing and diffuse reflection of neutrals as the primary underlying mechanisms. Subsequently, we explored four methods with the simulations to regulate ARDE, by varying the incident plasma species fluxes, the amount of polymer deposition, the ion energy and angular distribution and the initial hardmask sidewall angle, for which the latter was found to be promising in particular. Although our study focusses on feature dimensions characteristic to metrology marks and back-end-of-the-line integration, the obtained insights have a broader relevance, e.g. to the patterning of advanced nodes. Additionally, this work supports the insight that physisorption may be more important in plasma etching at room temperature than originally thought, in line with other recent studies, a topic on which we recommend further research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001021250100001 Publication Date 2023-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access Not_Open_Access  
  Notes P Vanraes acknowledges funding by ASML for the project ‘Computational simulation of plasma etching of trench structures’. P Vanraes and A Bogaerts want to express their gratitude to Mark J Kushner (University of Michigan) for the sharing of the HPEM and MCFPM codes, and for the interesting exchange of views. P Vanraes wishes to thank Violeta Georgieva and Stefan Tinck for the fruitful discussions on the HPEM code, Yu-Ru Zhang for an example of the CCP reactor code and Karel Venken for his technical help with the server maintenance and use. S P Venugopalan and M Besemer wish to thank Luigi Scaccabarozzi, Sander Wuister, Coen Verschuren, Michael Kubis, Kuan-Ming Chen, Ruben Maas, Huaichen Zhang and Julien Mailfert (ASML) for the insightful discussions. Approved Most recent IF: 3.8; 2023 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:197760 Serial 8811  
Permanent link to this record
 

 
Author (up) Vanraes, P.; Parayil Venugopalan, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Multiscale modeling of plasma–surface interaction—General picture and a case study of Si and SiO2etching by fluorocarbon-based plasmas Type A1 Journal Article
  Year 2021 Publication Applied Physics Reviews Abbreviated Journal Appl Phys Rev  
  Volume 8 Issue 4 Pages 041305  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract The physics and chemistry of plasma–surface interaction is a broad domain relevant to various applications and several natural processes, including plasma etching for microelectronics fabrication, plasma deposition, surface functionalization, nanomaterial synthesis, fusion reactors, and some astrophysical and meteorological phenomena. Due to their complex nature, each of these processes is generally investigated in separate subdomains, which are considered to have their own theoretical, modeling, and experimental challenges. In this review, however, we want to emphasize the overarching nature of plasma–surface interaction physics and chemistry, by focusing on the general strategy for its computational simulation. In the first half of the review, we provide a menu card with standard and less standardized computational methods to be used for the multiscale modeling of the underlying processes. In the second half, we illustrate the benefits and potential of the multiscale modeling strategy with a case study of Si and SiO2 etching by fluorocarbon plasmas and identify the gaps in knowledge still present on this intensely investigated plasma–material combination, both on a qualitative and quantitative level. Remarkably, the dominant etching mechanisms remain the least understood. The resulting new insights are of general relevance, for all plasmas and materials, including their various applications. We therefore hope to motivate computational and experimental scientists and engineers to collaborate more intensely on filling the existing gaps in knowledge. In this way, we expect that research will overcome a bottleneck stage in the development and optimization of multiscale models, and thus the fundamental understanding of plasma–surface interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000754799700001 Publication Date 2021-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-9401 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.667 Times cited Open Access OpenAccess  
  Notes Asml; P. Vanraes acknowledges funding by ASML for the project “Computational simulation of plasma etching of trench structures.” P. Vanraes wishes to thank Violeta Georgieva and Stefan Tinck for the fruitful discussions on the HPEM code, Yu-Ru Zhang for an example of the CCP reactor code, and Karel Venken for his technical help with the server maintenance and use. P. Vanraes and A. Bogaerts want to express their gratitude to Mark J. Kushner (University of Michigan) for the sharing of the HPEM and MCFPM codes and for the interesting exchange of views. S. P. Venugopalan wishes to thank Sander Wuister, Coen Verschuren, Michael Kubis, Mohammad Kamali, Approved Most recent IF: 13.667  
  Call Number PLASMANT @ plasmant @c:irua:183287 Serial 6814  
Permanent link to this record
 

 
Author (up) Vanraes, P.; Wardenier, N.; Surmont, P.; Lynen, F.; Nikiforov, A.; Van Hulle, S.W.H.; Leys, C.; Bogaerts, A. pdf  url
doi  openurl
  Title Removal of alachlor, diuron and isoproturon in water in a falling film dielectric barrier discharge (DBD) reactor combined with adsorption on activated carbon textile: Reaction mechanisms and oxidation by-products Type A1 Journal article
  Year 2018 Publication Journal of hazardous materials Abbreviated Journal J Hazard Mater  
  Volume 354 Issue Pages 180-190  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A falling film dielectric barrier discharge (DBD) plasma reactor combined with adsorption on activated carbon textile material was optimized to minimize the formation of hazardous oxidation by-products from the treatment of persistent pesticides (alachlor, diuron and isoproturon) in water. The formation of by-products and the reaction mechanism was investigated by HPLC-TOF-MS. The maximum concentration of each by-product was at least two orders of magnitude below the initial pesticide concentration, during the first 10 min of treatment. After 30 min of treatment, the individual by-product concentrations had decreased to values of at least three orders of magnitude below the initial pesticide concentration. The proposed oxidation pathways revealed five main oxidation steps: dechlorination, dealkylation, hydroxylation, addition of a double-bonded oxygen and nitrification. The latter is one of the main oxidation mechanisms of diuron and isoproturon for air plasma treatment. To our knowledge, this is the first time that the formation of nitrificated intermediates is reported for the plasma treatment of non-phenolic compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000437814600021 Publication Date 2018-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.065 Times cited 4 Open Access Not_Open_Access: Available from 04.05.2020  
  Notes This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors would like to thank Carbon Cloth Division for Zorflex® samples and personally thank Jack Taylor for fruitful discussion of active carbon water treatment processes Approved Most recent IF: 6.065  
  Call Number PLASMANT @ plasmant @c:irua:152179 Serial 4989  
Permanent link to this record
 

 
Author (up) Vanrenterghem, B.; Geboes, B.; Bals, S.; Ustarroz, J.; Hubin, A.; Breugelmans, T. pdf  url
doi  openurl
  Title Influence of the support material and the resulting particle distribution on the deposition of Ag nanoparticles for the electrocatalytic activity of benzyl bromide reduction Type A1 Journal article
  Year 2016 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 181 Issue 181 Pages 542-549  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract tSilver nanoparticles (NPs) were deposited on nickel, titanium and gold substrates using a potentiostaticdouble-pulse method. The influence of the support material on both the morphology and the electro-catalytic activity of Ag NPs for the reduction reaction of benzyl bromide was investigated and comparedwith previous research regarding silver NPs on glassy carbon. Scanning electron microscopy (SEM) dataindicated that spherical monodispersed NPs were obtained on Ni, Au and GC substrate with an averageparticle size of respectively 216 nm, 413 nm and 116 nm. On a Ti substrate dendritic NPs were obtainedwith a larger average particle density of 480 nm. The influence of the support material on the electrocat-alytic activity was tested by means of cyclic voltammetry (CV) for the reduction reaction of benzylbromide(1 mM) in acetonitrile + 0.1 M tetrabutylammonium perchlorate (Bu4NClO4). When the nucleation poten-tial (En) was applied at high cathodic overpotential, a positive shift of the reduction potential was obtained.The nucleation (tn) and growth time (tg) mostly had an influence on the current density whereas longerdeposition times lead to larger current densities. For these three parameters an optimum was present.The best electrocatalytic activity was obtained with Ag NPs deposited on Ni were a shift of the reduc-tion peak potential of 145 mV for the reaction of benzyl bromide was measured in comparance to bulksilver. The deposition on Au substrate yielded a positive shift of 114 mV. There was no indication of analtered reaction mechanism as the reaction was characterized as diffusion controlled and the transfercoefficients were in accordance with bulk silver. There was a beneficial catalitic activity measured due tothe interplay between support and NPs. This resulted in a shift of the reduction peak potential of 34 mV(Ag NPs on Au) and 65 mV (Ag NPs on Ni) compared to Ag NPs on a GC substrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000364256000052 Publication Date 2015-08-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 16 Open Access OpenAccess  
  Notes The Quanta 250 FEG microscope of the Electron Microscopy forMaterial Science group at the University of Antwerp was fundedby the Hercules foundation of the Flemish Government. Sara Balsacknowledges financial support from European Research Council(ERC Starting Grant #335078-COLOURATOMS).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446  
  Call Number c:irua:128345 Serial 4064  
Permanent link to this record
 

 
Author (up) Vanrenterghem, B.; Papaderakis, A.; Sotiropoulos, S.; Tsiplakides, D.; Balomenou, S.; Bals, S.; Breugelmans, T. pdf  url
doi  openurl
  Title The reduction of benzylbromide at Ag-Ni deposits prepared by galvanic replacement Type A1 Journal article
  Year 2016 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 196 Issue 196 Pages 756-768  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract A two-step procedure was applied to prepare bimetallic Ag-Ni glassy carbon supported catalysts (Ag-Ni/GC). First Ni layers were prepared by means of electrodeposition in an aqueous deaerated nickel chloride + nickel sulfamate + boric acid solution. Second, the partial replacement of Ni layers by Ag was achieved upon immersion of the latter in solutions containing silver nitrate. Three different pretreatment protocols were used after preparation of the Ag/Ni deposits; as prepared, cathodised in alkali and scanned in acid. After the pretreatment the surface was characterised by means of spectroscopy techniques (scanning electron microscopy and energy dispersive x-ray) and electrochemically in an alkali NaOH solution through cyclic voltammetry (CV). Afterwards the modified electrodes were tested for the reduction of benzylbromide in acetonitrile solutions by using CV and were found to show improved activity compared to bulk Ag electrode. The highest activity towards benzylbromide reduction was observed for pre-cathodised Ag-Ni electrodes. A final stage of the research focuses on the development of a practical Ag/Ni foam catalyst for the reduction of benzylbromide. Due to the high electrochemical active surface area of Ag/Ni foam, a higher conversion of benzyl bromide was obtained in comparison with bulk Ag.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372877400083 Publication Date 2016-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 21 Open Access OpenAccess  
  Notes The quanta 250 FEG microscope of the Electron Microscopy for Material Science group at the University of Antwerp was funded by the Hercules foundation of the Flemish government. Sara Bals acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 4.798  
  Call Number c:irua:132081 Serial 4065  
Permanent link to this record
 

 
Author (up) Vanrompay, H.; Béché, A.; Verbeeck, J.; Bals, S. pdf  doi
openurl 
  Title Experimental Evaluation of Undersampling Schemes for Electron Tomography of Nanoparticles Type A1 Journal article
  Year 2019 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 36 Issue 36 Pages 1900096  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract One of the emerging challenges in the field of 3D characterization of nanoparticles by electron tomography is to avoid degradation and deformation of the samples during the acquisition of a tilt series. In order to reduce the required electron dose, various undersampling approaches have been proposed. These methods include lowering the number of 2D projection images, reducing the probe current during the acquisition, and scanning a smaller number of pixels in the 2D images. A comparison is made between these approaches based on tilt series acquired for a gold nanoparticle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477679400014 Publication Date 2019-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 12 Open Access Not_Open_Access  
  Notes H.V. acknowledges financial support by the Research Foundation Flanders (FWO Grant No. 1S32617N). A.B. and J.V. acknowledge FWO project 6093417N “Compressed sensing enabling low dose imaging in STEM.” The authors thank G. González-Rubio, A. Sánchez-Iglesias, and L.M. Liz-Marzán for provision of the samples. Approved Most recent IF: 4.474  
  Call Number EMAT @ emat @UA @ admin @ c:irua:159986 Serial 5175  
Permanent link to this record
 

 
Author (up) Vanrompay, H.; Bladt, E.; Albrecht, W.; Béché, A.; Zakhozheva, M.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Bals, S. url  doi
openurl 
  Title 3D characterization of heat-induced morphological changes of Au nanostars by fast in situ electron tomography Type A1 Journal article
  Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 10 Issue 10 Pages 22792-22801  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A thorough understanding of the thermal stability and potential reshaping of anisotropic gold nanostars is required for various potential applications. Combination of a tomographic heating holder with fast tilt series acquisition has been used to monitor temperature-induced morphological changes of Au nanostars. The outcome of our 3D investigations can be used as an input for boundary element method simulations, enabling us to investigate the influence of reshaping on the nanostars’ plasmonic properties. Our work leads to a better understanding of the mechanism behind thermal reshaping. In addition, the approach presented here is generic and can hence be applied to a wide variety of nanoparticles made of different materials and with arbitrary morphology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453248100010 Publication Date 2018-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 55 Open Access OpenAccess  
  Notes H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). E.B. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020. The authors acknowledge funding from European Commission Grant (EUSMI 731019 to S.B., L.M.L.-M. and M.Z. and MUMMERING 765604 to S.B. and M.Z.). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078- COLOURATOMS).; Ecas_sara Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @c:irua:155718UA @ admin @ c:irua:155718 Serial 5071  
Permanent link to this record
 

 
Author (up) Vanrompay, H.; Buurlage, J.‐W.; Pelt, D.M.; Kumar, V.; Zhuo, X.; Liz‐Marzán, L.M.; Bals, S.; Batenburg, K.J. pdf  url
doi  openurl
  Title Real‐Time Reconstruction of Arbitrary Slices for Quantitative and In Situ 3D Characterization of Nanoparticles Type A1 Journal article
  Year 2020 Publication Particle & Particle Systems Characterization Abbreviated Journal Part Part Syst Char  
  Volume 37 Issue 37 Pages 2000073  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A detailed 3D investigation of nanoparticles at a local scale is of great importance to connect their structure and composition to their properties. Electron tomography has therefore become an important tool for the 3D characterization of nanomaterials. 3D investigations typically comprise multiple steps, including acquisition, reconstruction, and analysis/quantification. Usually, the latter two steps are performed offline, at a dedicated workstation. This sequential workflow prevents on-the-fly control of experimental parameters to improve the quality of the 3D reconstruction, to select a relevant nanoparticle for further characterization or to steer an in-situ tomography experiment. Here, we present an efficient approach to overcome these limitations, based on the real-time reconstruction of arbitrary 2D reconstructed slices through a 3D object. Implementation of this method may lead to generalized implementation of electron tomography for routine nanoparticle characterization in 3D.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000536357100001 Publication Date 2020-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited 10 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 1S32617N ; Fonds Wetenschappelijk Onderzoek, G026718N ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 639.073.506 016.Veni.192.235 ; H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G026718N). Financial support was provided by The Netherlands Organization for Scientific Research (NWO), project numbers 639.073.506 and 016.Veni.192.235. This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO). H.V. and J.-W.B contributed equally to this work.; sygma Approved Most recent IF: 2.7; 2020 IF: 4.474  
  Call Number EMAT @ emat @c:irua:169704 Serial 6371  
Permanent link to this record
 

 
Author (up) Vanrompay, H.; Skorikov, A.; Bladt, E.; Béché, A.; Freitag, B.; Verbeeck, J.; Bals, S. url  doi
openurl 
  Title Fast versus conventional HAADF-STEM tomography of nanoparticles: advantages and challenges Type A1 Journal article
  Year 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 221 Issue Pages 113191  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract HAADF-STEM tomography is a widely used experimental technique for analyzing nanometer-scale crystalline structures of a large variety of materials in three dimensions. Unfortunately, the acquisition of conventional HAADF-STEM tilt series can easily take up one hour or more, depending on the complexity of the experiment. It is therefore far from straightforward to investigate samples that do not withstand long acquisition or to acquire large amounts of tilt series during a single TEM experiment. The latter would lead to the ability to obtain statistically meaningful 3D data, or to perform in situ 3D characterizations with a much shorter time resolution. Various HAADF-STEM acquisition strategies have been proposed to accelerate the tomographic acquisition and reduce the required electron dose. These methods include tilting the holder continuously while acquiring a projection “movie” and a hybrid, incremental, methodology which combines the benefits of the conventional and continuous technique. However, until now an experimental evaluation has been lacking. In this paper, the different acquisition strategies will be experimentally compared in terms of speed, resolution and electron dose. This evaluation will be performed based on experimental tilt series acquired for various metallic nanoparticles with different shapes and sizes. We discuss the data processing involved with the fast HAADF-STEM tilt series and provide a general guideline when which acquisition strategy should be preferentially used.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612539600003 Publication Date 2020-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 15 Open Access OpenAccess  
  Notes We acknowledge Prof. Luis M. Liz-Marzán and co-workers of the Bionanoplasmonics Laboratory, CIC biomaGUNE, Spain for providing the Au@Ag nanoparticles, Prof. Sara. E. Skrabalak and co-workers of Indiana University, United States for the provision of the Au octopods and Prof. Teri W. Odom of Northwestern University, United States for the provision of the Au nanostars. H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G.0381.16N). This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO). The authors acknowledge the entire EMAT technical staff for their support.; sygma Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:174551 Serial 6660  
Permanent link to this record
 

 
Author (up) Vansant, P.; Smondyrev, M.A.; Peeters, F.M.; Devreese, J.T. url  doi
openurl 
  Title One-dimensional bipolaron in the strong coupling limit Type A1 Journal article
  Year 1994 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 50 Issue 17 Pages 12524-12532  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1994PR26100027 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 15 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:9277 Serial 2461  
Permanent link to this record
 

 
Author (up) Vansant, P.; Smondyrev, M.A.; Peeters, F.M.; Devreese, J.T. doi  openurl
  Title Strong-coupling limit for one-dimensional polarons in a finite box Type A1 Journal article
  Year 1996 Publication Zeitschrift für Physik: B: condensed matter and quanta Abbreviated Journal  
  Volume 99 Issue Pages 345-351  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos A1996TW44800007 Publication Date 2002-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0722-3277;1431-584X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:15035 Serial 3180  
Permanent link to this record
 

 
Author (up) Vanschoenwinkel, J.; Lizin, S.; Swinnen, G.; Azadi, H.; Van Passel, S. doi  openurl
  Title Solar cooking in Senegalese villages : an application of best-worst scaling Type A1 Journal article
  Year 2014 Publication Energy Policy Abbreviated Journal Energ Policy  
  Volume 67 Issue Pages 447-458  
  Keywords A1 Journal article; Sociology; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Dissemination programs of nontraditional cookstoves often fail. Nontraditional cookstoves aim to solve problems associated with biomass fuel usage in developing countries. Recent studies do not explain what drives user's cookstove choice. This study therefore builds a holistic framework that centralizes product-specific preferences or needs. The case study identifies product-specific factors that influence rural Senegalese inhabitants to switch to solar cooking, using best worst scaling. Looking at the preferences, the case study classified 126 respondents, in three distinct market segments with different solar cooking expectations. The paper identifies socio-demographic characteristics that explain these differences in the respondents' preferences. Finally, the respondent sample is divided in two groups: solar cooker owners and non-owners. When studied with regard to the same issue, solar cooker owners appear to value benefits of the solar cooker lower than non-owners. This is due to program factors (such as formations, after-sales network) and miscommunication (such as a wrong image of the solar cooker) that highly influenced the respondents' cookstove choice. As a conclusion, solar cookers and solar cooking programs are not always adapted to the needs and requirements of the end-users. Needs-oriented and end-user adopted strategies are necessary in order to successfully implement nontraditional cookstoves programs. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332815300043 Publication Date 2014-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4215; 1873-6777 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.14 Times cited 10 Open Access  
  Notes ; The authors thank the VLIR-UOS for their financial support and the Sol Suffit Program for their co-operation during the research. ; Approved Most recent IF: 4.14; 2014 IF: 2.575  
  Call Number UA @ admin @ c:irua:127544 Serial 6251  
Permanent link to this record
 

 
Author (up) Vanschoenwinkel, J.; Mendelsohn, R.; Van Passel, S. pdf  url
doi  openurl
  Title Do Western and Eastern Europe have the same agricultural climate response? Taking adaptive capacity into account Type A1 Journal article
  Year 2016 Publication Global Environmental Change-Human And Policy Dimensions Abbreviated Journal Global Environ Chang  
  Volume 41 Issue Pages 74-87  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract Current cross-sectional methodologies measuring climate change impacts assume that regions at the same latitude face a similar climate response and therefore have the same adaptive capacity. This paper proves that assumption to be erroneous in the European Union. It does so by ameliorating the Ricardian methodology by restricting which farmers (and therefore which adaptation options) are allowed in the dataset. In doing so, a comparative Ricardian methodology is suggested that makes it possible to examine, for the first time, how the climate responsiveness of a region changes if adaptive capacity changes. The paper combines climate, soil, geographic, socio-economic, and farm-level data in a linear mixed-effect model and examines whether Eastern and Western Europe have the same climate responses and how these responses change if regional adaptive capacity increases. The paper concludes that both regions currently have a significantly different climate response, but that if Eastern Europe were to implement the same adaptation options as Western Europe, it could avoid a large decrease in land value and even benefit from climate change depending on the climate scenario.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000389732700007 Publication Date 2016-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780; 1872-9495 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 6.327 Times cited 8 Open Access  
  Notes ; Steven Van Passel would kindly want to express his gratitude towards DG AGRI for access to the Farm Accountancy Data Network (FADN). The authors also thank the reviewers of this journal for their improvements to the final manuscript and they are grateful for the comments and suggestions they received at the conferences where this paper has been presented (IAMO forum 2015, EAAE PhD workshop 2015, Belgian PhD symposium 2015, EAERE conference 2016). Janka Vanschoenwinkel also wants to thank FWO and the Doctoral Schools of Hasselt University for giving a mobility grant to go to the EAAE PhD workshop in Rome. ; Approved Most recent IF: 6.327  
  Call Number UA @ admin @ c:irua:139026 Serial 6185  
Permanent link to this record
 

 
Author (up) Vanschoenwinkel, J.; Moretti, M.; Van Passel, S. url  doi
openurl 
  Title The effect of policy leveraging climate change adaptive capacity in agriculture Type A1 Journal Article
  Year 2020 Publication European Review Of Agricultural Economics Abbreviated Journal Eur Rev Agric Econ  
  Volume Issue Pages  
  Keywords A1 Journal Article; Engineering Management (ENM)  
  Abstract Agricultural adaptation to climate change is indispensable. However, the degree of adaptation depends on adaptive capacity levels and it only takes place if the appropriate resources are present. Cross-sectional climate response models ignore this requirement. This paper adapts the Ricardian method to control for a generic territorial adaptive capacity index. The results for a sample of over 60.000 European farms show a significant non-linear positive relationship between adaptive capacity and climate responsiveness and that some regions in Europe can increase their climate responsiveness significantly. This confirms that improvement of adaptive capacity is an important policy tool to enhance adaptation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000558982300007 Publication Date 2019-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-1587 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access  
  Notes This paper was supported by the Horizon 2020 project SUFISA (Grant Agreement No. 635577). Approved Most recent IF: 3.4; 2020 IF: 1.6  
  Call Number ENM @ enm @c:irua:167258 Serial 6350  
Permanent link to this record
 

 
Author (up) Vanschoenwinkel, J.; Van Passel, S. url  doi
openurl 
  Title Climate response of rainfed versus irrigated farms: the bias of farm heterogeneity in irrigation Type A1 Journal article
  Year 2018 Publication Climatic Change Abbreviated Journal Climatic Change  
  Volume 147 Issue 1-2 Pages 225-234  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract Researchers who do not take into account farm heterogeneity in implementing specific climate change adaptation options might significantly bias their findings. To prove this point, this paper focusses on irrigation as an adaptation option to climate change and highlights the fact that there is no such thing as “irrigation.” Instead, different farms consider water management options across a spectrum that ranges from purely rainfed farms to purely irrigated farms with in between the extreme practices such as supplemental irrigation, water conservation practices, and different irrigation techniques. Accounting for such differences is necessary, yet difficult due to a lack of farm-specific data on water management and irrigation. This paper uses unique Farm Accountancy Data Network data of Western European farmers on the proportion of farmland that each farm irrigates. Unlike previous work, this allows taking into account some within-irrigation heterogeneity instead of simply categorizing farms as being “irrigated.” We estimate and compare climate response models based on the Ricardian cross-sectional method for a large range of irrigation categories. The results give insights into how the farm irrigation climate response can be significantly different depending on how irrigation is defined. This proves that ignoring within-adaptation differences when comparing non-adaptation with adaptation (in this case, rainfed versus irrigated agriculture) might lead to biased conclusions with regard to effectiveness of adaptation strategies. We therefore argue that it might be more relevant to understand at which point and under which circumstances irrigated agriculture is more or less beneficial than rainfed agriculture.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000425959700017 Publication Date 2018-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 3.496 Times cited 1 Open Access  
  Notes ; This paper was supported by the Horizon 2020 project SUFISA (Grant Agreement No. 635577). ; Approved Most recent IF: 3.496  
  Call Number UA @ admin @ c:irua:149895 Serial 6166  
Permanent link to this record
 

 
Author (up) Vanschoenwinkel, J.; Vancauteren, M.; Van Passel, S. doi  openurl
  Title How do western European farms behave and respond to climate change? A simultaneous irrigation-crop decision model Type A1 Journal article
  Year 2022 Publication Climate change economics Abbreviated Journal  
  Volume 13 Issue 4 Pages 2250009-2250038  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract Most farm adaptations are reactive actions that run the risk of locking farm systems into suboptimal long-term trajectories. This is especially the case with regard to water management as water scarcity will be aggravated by climate change. This paper looks into farm irrigation choices in combination with crop choices because a proper crop choice has the potential to reduce water requirements. It proposes an extended Ricardian model to capture multiple adaptation decisions explicitly. The new simultaneous irrigation-crop farm decision model uses spatially detailed farm-level data of over 18,000 European farms on irrigation and seven different crop choices. The analysis shows that larger farmers and farmers in less water-scarce regions that use irrigation are more sensitive to temperature increases than rain-fed agriculture. This might be explained by the fact that these farmers do not experience the real cost of water scarcity because of which they take less efficient decisions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000791485900001 Publication Date 2022-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2010-0086 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:188680 Serial 7359  
Permanent link to this record
 

 
Author (up) Vansweevelt, R.; Mortet, V.; D' Haen, J.; Ruttens, bart; van Haesendonck, C.; Partoens, B.; Peeters, F.M.; Wagner, P. doi  openurl
  Title Study on the giant positive magnetoresistance and Hall effect in ultrathin graphite flakes Type A1 Journal article
  Year 2011 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 208 Issue 6 Pages 1252-1258  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper, we report on the electronic transport properties of mesoscopic, ultrathin graphite flakes with a thickness corresponding to a stack of 150 graphene layers. The graphite flakes show an unexpectedly strong positive magnetoresistance (PMR) already at room temperature, which scales in good approximation with the square of the magnetic field. Furthermore, we show that the resistivity is unaffected by magnetic fields oriented in plane with the graphene layers. Hall effect measurements indicate that the charge carriers are p-type and their concentration increases with increasing temperature while the mobility is decreasing. The Hall voltage is non-linear in higher magnetic fields. Possible origins of the observed effects are discussed. Ball and stick model of the two topmost carbon layers of the hexagonal graphite structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000292945800008 Publication Date 2011-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 8 Open Access  
  Notes ; The authors gratefully acknowledge the support by FWO – Research Foundation Flanders (project G.0159.07 “Structural and electronic properties of biologically modified, graphene-based layers”), by the Federal Belgian Interuniversity Attraction Poles Programme BELSPO (project TAP VI P6/42 “Quantum effects in clusters and nanowires”) and by the Methusalem network “NANO – Antwerp-Hasselt,” funded by the Flemish Community. Technical assistance by Stoffel D. Janssens (magnet calibration and software development), Dr. Hong Yin (AFM-based thickness studies), Dr. Ronald Thoelen (data analysis), and Prof. Hans-Gerd Boyen (XPS spectroscopy) is greatly appreciated. ; Approved Most recent IF: 1.775; 2011 IF: 1.463  
  Call Number UA @ lucian @ c:irua:91941 Serial 3343  
Permanent link to this record
 

 
Author (up) Vantomme, A.; Wu, M.F.; Hogg, S.; van Landuyt, J.; et al. pdf  openurl
  Title Comparative study of structural properties and photoluminescence in InGaN layers with a high In content Type A1 Journal article
  Year 2000 Publication Internet journal of nitride semiconductor research T2 – Symposium on GaN and Related Alloys Held at the MRS Fall Meeting, NOV 29-DEC 03, 1999, BOSTON, MASSACHUSETTS Abbreviated Journal Mrs Internet J N S R  
  Volume 5 Issue s:[1] Pages art. no.-W11.38  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Rutherford backscattering and channeling spectrometry (RBS), photoluminescence (PL) spectroscopy and transmission electron microscopy (TEM) have been used to investigate macroscopic and microscopic segregation in MOCVD grown InGaN layers. The PL peak energy and In content (measured by RES) were mapped at a large number of distinct points on the samples. An indium concentration of 40%, the highest measured in this work, corresponds to a PL peak of 710 nn strongly suggesting that the light-emitting regions of the sample me very indium-rich compared to the average measured by RES. Cross-sectional TEM observations show distinctive layering of the InGaN films. The TEM study further reveals that these layers consist of amorphous pyramidal contrast features with sizes of order 10 nm The composition of these specific contrast features is shown to be In-rich compared to the nitride matrix.  
  Address  
  Corporate Author Thesis  
  Publisher Materials research society Place of Publication Warrendale Editor  
  Language Wos 000090103600097 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1092-5783 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:103471 Serial 423  
Permanent link to this record
 

 
Author (up) Varambhia, A.M.; Jones, L.; De Backer, A.; Fauske, V.T.; Van Aert, S.; Ozkaya, D.; Nellist, P.D. pdf  url
doi  openurl
  Title Quantifying a Heterogeneous Ru Catalyst on Carbon Black Using ADF STEM Type A1 Journal article
  Year 2016 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 33 Issue 33 Pages 438-444  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Ru catalysts are part of a set of late transition metal nanocatalysts that have garnered much interest for catalytic applications such as ammonia synthesis and fuel cell production. Their performance varies greatly depending on their morphology and size, these catalysts are widely studied using electron microscopy. Using recent developments in Annular Dark Field (ADF) Scanning Transmission Electron Microscopy (STEM) quantification techniques, a rapid atom counting procedure was utilized to document the evolution of a heterogeneous Ru catalyst supported on carbon black. Areas of the catalyst were imaged for approximately 15 minutes using ADF STEM. When the Ru clusters were exposed to the electron beam, the clusters changed phase from amorphous to crystalline. To quantify the thickness of the crystalline clusters, two techniques were applied (simulation and statistical decomposition) and compared. These techniques show that stable face centredcubic crystal structures in the form of rafts, between 2 and 8 atoms thick, were formed after the initial wetting of the carbon support.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000379970000012 Publication Date 2016-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 4 Open Access  
  Notes The authors would like to thank the EPSRC and Johnson Matthey for funding this work as part of a CASE-Award studentship. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative–I3). We would like to thank Brian Theobald and Jonathan Sharman from JMTC for provision of the samples The authors gratefully acknowledge the Research Foundation Flanders (FWO, Belgium) for funding and for a postdoctoral grant to ADB. The microscope used was funded by the INFRASTRUKTUR Grant 197405 (NORTEM) program of the Research Council of Norway.; esteem2_jra2 Approved Most recent IF: 4.474  
  Call Number c:irua:134036 c:irua:134036 Serial 4086  
Permanent link to this record
 

 
Author (up) Vargas Paredes, A.A.; Shanenko, A.A.; Vagov, A.; Milošević, M.V.; Perali, A. url  doi
openurl 
  Title Crossband versus intraband pairing in superconductors: signatures and consequences of the interplay Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 9 Pages 094516-94517  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We analyze the paradigmatic competition between intraband and crossband Cooper-pair formation in twoband superconductors, neglected in most works to date. We derive the phase-sensitive gap equations and describe the crossover between the intraband-dominated and the crossband-dominated regimes, delimited by a “gapless” state. Experimental signatures of crosspairing comprise notable gap splitting in the excitation spectrum, non-BCS behavior of gaps versus temperature, as well as changes in the pairing symmetry as a function of temperature. The consequences of these findings are illustrated on the examples of MgB2 and Ba0.6K0.4Fe2As2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000522074900002 Publication Date 2020-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 14 Open Access  
  Notes ; This collaborative work was fostered within the international Multi Super network on Multi-condensate Superconductivity and Superfluidity [70]. The authors thank Andrea Guidini for his help during the initial stage of this work and Laura Fanfarillo for useful discussions. This work was partially supported by the Italian MIUR through the PRIN 2015 program (Contract No. 2015C5SEJJ001) and the Research Foundation -Flanders (FWO). A.A.V.-P. acknowledges support by the joint doctoral program and by the Erasmus+ exchange between the University of Antwerp and the University of Camerino. M.V.M. gratefully acknowledges support from a Visiting Professorship at the University of Camerino. A.S. and A.V. acknowledge support from the CAPES/Print Grant, Process No. 88887.333666/ 2019-00 (Brazil) and the Russian Science Foundation Project No. 18-12-00429, respectively. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:168605 Serial 6479  
Permanent link to this record
 

 
Author (up) Varjovi, M.J.; Yagmurcukardes, M.; Peeters, F.M.; Durgun, E. doi  openurl
  Title Janus two-dimensional transition metal dichalcogenide oxides: First-principles investigation of WXO monolayers with X = S, Se, and Te Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 19 Pages 195438  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Structural symmetry breaking in two-dimensional materials can lead to superior physical properties and introduce an additional degree of piezoelectricity. In the present paper, we propose three structural phases (1H, 1T, and 1T') of Janus WXO (X = S, Se, and Te) monolayers and investigate their vibrational, thermal, elastic, piezoelectric, and electronic properties by using first-principles methods. Phonon spectra analysis reveals that while the 1H phase is dynamically stable, the 1T phase exhibits imaginary frequencies and transforms to the distorted 1T' phase. Ab initio molecular dynamics simulations confirm that 1H- and 1T'-WXO monolayers are thermally stable even at high temperatures without any significant structural deformations. Different from binary systems, additional Raman active modes appear upon the formation of Janus monolayers. Although the mechanical properties of 1H-WXO are found to be isotropic, they are orientation dependent for 1T'-WXO. It is also shown that 1H-WXO monolayers are indirect band-gap semiconductors and the band gap narrows down the chalcogen group. Except 1T'-WSO, 1T'-WXO monolayers have a narrow band gap correlated with the Peierls distortion. The effect of spin-orbit coupling on the band structure is also examined for both phases and the alteration in the band gap is estimated. The versatile mechanical and electronic properties of Janus WXO monolayers together with their large piezoelectric response imply that these systems are interesting for several nanoelectronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000655902600004 Publication Date 2021-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 78 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:179050 Serial 7000  
Permanent link to this record
 

 
Author (up) Varley, J.B.; Peelaers, H.; Janotti, A.; van de Walle, C.G. pdf  doi
openurl 
  Title Hydrogenated cation vacancies in semiconducting oxides Type A1 Journal article
  Year 2011 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 23 Issue 33 Pages 334212,1-334212,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations we have studied the electronic and structural properties of cation vacancies and their complexes with hydrogen impurities in SnO2, In2O3 and β-Ga2O3. We find that cation vacancies have high formation energies in SnO2 and In2O3 even in the most favorable conditions. Their formation energies are significantly lower in β-Ga2O3. Cation vacancies, which are compensating acceptors, strongly interact with H impurities resulting in complexes with low formation energies and large binding energies, stable up to temperatures over 730 °C. Our results indicate that hydrogen has beneficial effects on the conductivity of transparent conducting oxides: it increases the carrier concentration by acting as a donor in the form of isolated interstitials, and by passivating compensating acceptors such as cation vacancies; in addition, it potentially enhances carrier mobility by reducing the charge of negatively charged scattering centers. We have also computed vibrational frequencies associated with the isolated and complexed hydrogen, to aid in the microscopic identification of centers observed by vibrational spectroscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000294060600014 Publication Date 2011-08-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 125 Open Access  
  Notes ; We gratefully acknowledge useful discussions with M D Mc-Cluskey, O Bierwagen and J Speck. The work was supported by the NSF MRSEC Program (DMR05-20415), the Flemish Science Foundation (FWO-VI), the Belgian American Educational Foundation, and by Saint-Gobain Research, and made use of computing facilities at CNSI (NSF grant No. CHE-0321368), TeraGrid and TACC (NSF grant No. DMR070072N), and NERSC (DOE Office of Science Contract No. DE-AC02-05CH11231). ; Approved Most recent IF: 2.649; 2011 IF: 2.546  
  Call Number UA @ lucian @ c:irua:92415 Serial 1534  
Permanent link to this record
 

 
Author (up) Varykhalov, A.; Marchenko, D.; Sanchez-Barriga, J.; Scholz, M.R.; Verberck, B.; Trauzettel, B.; Wehling, T.O.; Carbone, C.; Rader, O. url  doi
openurl 
  Title Intact dirac cones at broken sublattice symmetry : photoemission study of graphene on Ni and Co Type A1 Journal article
  Year 2012 Publication Physical review X Abbreviated Journal Phys Rev X  
  Volume 2 Issue 4 Pages 041017-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The appearance of massless Dirac fermions in graphene requires two equivalent carbon sublattices of trigonal shape. While the generation of an effective mass and a band gap at the Dirac point remains an unresolved problem for freestanding extended graphene, it is well established by breaking translational symmetry by confinement and by breaking sublattice symmetry by interaction with a substrate. One of the strongest sublattice-symmetry-breaking interactions with predicted and measured band gaps ranging from 400 meV to more than 3 eV has been attributed to the interfaces of graphene with Ni and Co, which are also promising spin-filter interfaces. Here, we apply angle-resolved photoemission to epitaxial graphene on Ni (111) and Co(0001) to show the presence of intact Dirac cones 2.8 eV below the Fermi level. Our results challenge the common belief that the breaking of sublattice symmetry by a substrate and the opening of the band gap at the Dirac energy are in a straightforward relation. A simple effective model of a biased bilayer structure composed of graphene and a sublattice-symmetry-broken layer, corroborated by density-functional-theory calculations, demonstrates the general validity of our conclusions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication College Park, Md Editor  
  Language Wos 000312703200001 Publication Date 2012-12-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2160-3308; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.789 Times cited 86 Open Access  
  Notes ; A. V. acknowledges helpful discussions with N. Sandler. This work was supported by SPP 1459 of the Deutsche Forschungsgemeinschaft. B. V. acknowledges support from the Research Foundation Flanders (FWO-Vlaanderen). B. T. and T. O. W. would like to thank the KITP at Santa Barbara for hospitality during the completion of this work. ; Approved Most recent IF: 12.789; 2012 IF: 6.711  
  Call Number UA @ lucian @ c:irua:105964 Serial 1677  
Permanent link to this record
 

 
Author (up) Vasilakou, K.; Billen, P.; Van Passel, S.; Nimmegeers, P. pdf  doi
openurl 
  Title A Pareto aggregation approach for environmental-economic multi-objective optimization applied on a second-generation bioethanol production model Type A1 Journal article
  Year 2024 Publication Energy conversion and management Abbreviated Journal  
  Volume 303 Issue Pages 118184-11  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Multi-objective optimization is an important decision-making tool for energy processes, as multiple targets need to be achieved. These objectives are usually conflicting since a single solution cannot be optimal for all objectives, resulting in a set of Pareto-optimal solutions. Multiple indicators might be available to describe a sustainability objective, such as the environmental impact which is commonly evaluated by performing a life cycle assessment. In this study, Pareto aggregation is proposed as a method which employs a novel multi-objective optimization-based approach as an alternative to the classically used aggregation in life cycle assessment. This method identifies conflicting environmental indicators and performs an aggregation among those that require a trade-off. An environmental-economic optimization of a second-generation bioethanol plant is used to illustrate and evaluate the proposed method. Process parameters from a biochemical conversion pathway flowsheet simulation model are chosen as optimization variables. To reduce the computational time, surrogate models, based on artificial neural networks, are used. Out of the eighteen ReCiPe Midpoint environmental indicators, five were identified as conflicting, resulting in an aggregated environmental objective, which was then traded off with the economic objective function, chosen as the levelized cost of ethanol. Comparison with the widely used single-score EcoIndicator99 showed that the Pareto aggregation method can reduce most of the environmental indicators by up to 6.5%. This research provides an insight on non-redundant objective functions, aiming at reducing the dimensionality of multi-objective optimization problems, while taking into consideration decision-makers’ preferences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001185718400001 Publication Date 2024-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0196-8904; 1879-2227 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 10.4 Times cited Open Access  
  Notes Approved Most recent IF: 10.4; 2024 IF: 5.589  
  Call Number UA @ admin @ c:irua:203046 Serial 9216  
Permanent link to this record
 

 
Author (up) Vasilakou, K.; Nimmegeers, P.; Billen, P.; Van Passel, S. pdf  doi
openurl 
  Title Geospatial environmental techno-economic assessment of pretreatment technologies for bioethanol production Type A1 Journal article
  Year 2023 Publication Renewable and sustainable energy reviews Abbreviated Journal  
  Volume 187 Issue Pages 113743-16  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Second-generation biofuels, starting from lignocellulosic biomass, are considered as a renewable alternative for fossil fuels with lower environmental impact and potentially higher supply and energy security. The economic and environmental performance of second-generation bioethanol production from corn stover in the European Union (EU) is studied, starting in Belgium as base case. A comparative environmental techno-economic assessment has been conducted, with process simulations in Aspen Plus and corn stover availability data in thirteen EU countries to calculate minimum ethanol selling prices (MESP) and Greenhouse gas emissions (GHGe). In this analysis, the emphasis is on the comparison of different pretreatment technologies, namely (i) dilute acid, (ii) alkaline, (iii) steam explosion and (iv) liquid hot water. Dilute acid showed the best economic and environmental performance for the base case scenario. Within the EU, Hungary and Romania presented the lowest MESP for the steam explosion model at 0.39 and 0.43 EUR/L respectively. Poland showed the lowest GHGe, at 0.46 kg CO2eq/L for the alkaline model, mainly due to the avoided product allocation on electricity and its high carbon intensity in the electricity generation sector. The second lowest GHGe were obtained in France for the dilute acid model and are attributed to its low agricultural emissions intensity. This study identifies a location-dependence of the economic and environmental performance of pretreatment technologies, which can be extrapolated from the EU to other large regions around the world and should be taken into consideration by decision-makers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001082526000001 Publication Date 2023-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 15.9 Times cited Open Access  
  Notes Approved Most recent IF: 15.9; 2023 IF: 8.05  
  Call Number UA @ admin @ c:irua:198804 Serial 9205  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: