|   | 
Details
   web
Records
Author (up) Van Laer, K.; Bogaerts, A.
Title How bead size and dielectric constant affect the plasma behaviour in a packed bed plasma reactor: a modelling study Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 26 Pages 085007
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Packed bed plasma reactors (PBPRs) are gaining increasing interest for use in environmental applications, such as greenhouse gas conversion into value-added chemicals or renewable fuels and volatile pollutant removal (e.g. NOx, VOC, K), as they enhance the conversion and energy efficiency of the process compared to a non-packed reactor. However, the plasma behaviour in a PBPR is not well understood. In this paper we demonstrate, by means of a fluid model, that the discharge behaviour changes considerably when changing the size of the packing beads and their dielectric constant, while keeping the interelectrode spacing constant. At low dielectric constant, the plasma is spread out over the full discharge gap, showing significant density in the voids as well as in the connecting void channels. The electric current profile shows a strong peak during each half cycle. When the dielectric constant increases, the plasma becomes localised in the voids, with a current profile consisting of many smaller peaks during each half cycle. For large bead sizes, the shift from full gap discharge to localised discharges takes place at a higher dielectric constant than for smaller beads. Furthermore, smaller beads or beads with a lower dielectric constant require a higher breakdown voltage to cause plasma formation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000406503600003 Publication Date 2017-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 22 Open Access OpenAccess
Notes K Van Laer is indebted to the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders) for financial support. This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions – Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb.ac.be/), and supported by the Belgian Science Policy Office (BELSPO). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:144796 Serial 4635
Permanent link to this record
 

 
Author (up) Van Laer, K.; Tinck, S.; Samara, V.; de Marneffe, J.F.; Bogaerts, A.
Title Etching of low-k materials for microelectronics applications by means of a N2/H2 plasma : modeling and experimental investigation Type A1 Journal article
Year 2013 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 22 Issue 2 Pages 025011-25019
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, we investigate the etch process of so-called low-k organic material by means of a N2/H2 capacitively coupled plasma, as applied in the micro-electronics industry for the manufacturing of computer chips. In recent years, such an organic material has emerged as a possible alternative for replacing bulk SiO2 as a dielectric material in the back-end-of-line, because of the smaller parasitic capacity between adjacent conducting lines, and thus a faster propagation of the electrical signals throughout the chip. Numerical simulations with a hybrid plasma model, using an extensive plasma and surface chemistry set, as well as experiments are performed, focusing on the plasma properties as well as the actual etching process, to obtain a better insight into the underlying mechanisms. Furthermore, the effects of gas pressure, applied power and gas composition are investigated to try to optimize the etch process. In general, the plasma density reaches a maximum near the wafer edge due to the so-called 'edge effect'. As a result, the etch rate is not uniform but will also reach its maximum near the wafer edge. The pressure seems not to have a big effect. A higher power increases the etch rate, but the uniformity becomes (slightly) worse. The gas mixing ratio has no significant effect on the etch process, except when a pure H2 or N2 plasma is used, illustrating the synergistic effects of a N2/H2 plasma. In fact, our calculations reveal that the N2/H2 plasma entails an ion-enhanced etch process. The simulation results are in reasonable agreement with the experimental values. The microscopic etch profile shows the desired anisotropic shape under all conditions under study.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000317275400013 Publication Date 2013-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 13 Open Access
Notes Approved Most recent IF: 3.302; 2013 IF: 3.056
Call Number UA @ lucian @ c:irua:106654 Serial 1084
Permanent link to this record
 

 
Author (up) Van Loenhout, J.; Flieswasser, T.; Freire Boullosa, L.; De Waele, J.; Van Audenaerde, J.; Marcq, E.; Jacobs, J.; Lin, A.; Lion, E.; Dewitte, H.; Peeters, M.; Dewilde, S.; Lardon, F.; Bogaerts, A.; Deben, C.; Smits, E.
Title Cold Atmospheric Plasma-Treated PBS Eliminates Immunosuppressive Pancreatic Stellate Cells and Induces Immunogenic Cell Death of Pancreatic Cancer Cells Type A1 Journal article
Year 2019 Publication Cancers Abbreviated Journal Cancers
Volume 11 Issue 10 Pages 1597
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory for Experimental Hematology (LEH); Center for Oncological Research (CORE)
Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers with a low response to treatment and a five-year survival rate below 5%. The ineffectiveness of treatment is partly because of an immunosuppressive tumor microenvironment, which comprises tumor-supportive pancreatic stellate cells (PSCs). Therefore, new therapeutic strategies are needed to tackle both the immunosuppressive PSC and pancreatic cancer cells (PCCs). Recently, physical cold atmospheric plasma consisting of reactive oxygen and nitrogen species has emerged as a novel treatment option for cancer. In this study, we investigated the cytotoxicity of plasma-treated phosphate-buffered saline (pPBS) using three PSC lines and four PCC lines and examined the immunogenicity of the induced cell death. We observed a decrease in the viability of PSC and PCC after pPBS treatment, with a higher efficacy in the latter. Two PCC lines expressed and released damage-associated molecular patterns characteristic of the induction of immunogenic cell death (ICD). In addition, pPBS-treated PCC were highly phagocytosed by dendritic cells (DCs), resulting in the maturation of DC. This indicates the high potential of pPBS to trigger ICD. In contrast, pPBS induced no ICD in PSC. In general, pPBS treatment of PCCs and PSCs created a more immunostimulatory secretion profile (higher TNF-α and IFN-γ, lower TGF-β) in coculture with DC. Altogether, these data show that plasma treatment via pPBS has the potential to induce ICD in PCCs and to reduce the immunosuppressive tumor microenvironment created by PSCs. Therefore, these data provide a strong experimental basis for further in vivo validation, which might potentially open the way for more successful combination strategies with immunotherapy for PDAC.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000498826000194 Publication Date 2019-10-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 6 Open Access
Notes Universiteit Antwerpen, NA ; Fonds Wetenschappelijk Onderzoek, 11E7719N 1121016N 1S32316N 12S9218N 12E3916N ; Agentschap Innoveren en Ondernemen, 141433 ; Kom op tegen Kanker, NA ; Stichting Tegen Kanker, STK2014-155 ; The authors express their gratitude to Christophe Hermans, Céline Merlin, Hilde Lambrechts, and Hans de Reu for technical assistance; and to VITO for the use of the MSD reader (Mol, Belgium). Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:163328 Serial 5436
Permanent link to this record
 

 
Author (up) Van Loenhout, J.; Freire Boullosa, L.; Quatannens, D.; De Waele, J.; Merlin, C.; Lambrechts, H.; Lau, H.W.; Hermans, C.; Lin, A.; Lardon, F.; Peeters, M.; Bogaerts, A.; Smits, E.; Deben, C.
Title Auranofin and Cold Atmospheric Plasma Synergize to Trigger Distinct Cell Death Mechanisms and Immunogenic Responses in Glioblastoma Type A1 Journal Article;oxidative stress
Year 2021 Publication Cells Abbreviated Journal Cells
Volume 10 Issue 11 Pages 2936
Keywords A1 Journal Article;oxidative stress; auranofin; cold atmospheric plasma; glioblastoma; cancer cell death; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Targeting the redox balance of malignant cells via the delivery of high oxidative stress unlocks a potential therapeutic strategy against glioblastoma (GBM). We investigated a novel reactive oxygen species (ROS)-inducing combination treatment strategy, by increasing exogenous ROS via cold atmospheric plasma and inhibiting the endogenous protective antioxidant system via auranofin (AF), a thioredoxin reductase 1 (TrxR) inhibitor. The sequential combination treatment of AF and cold atmospheric plasma-treated PBS (pPBS), or AF and direct plasma application, resulted in a synergistic response in 2D and 3D GBM cell cultures, respectively. Differences in the baseline protein levels related to the antioxidant systems explained the cell-line-dependent sensitivity towards the combination treatment. The highest decrease of TrxR activity and GSH levels was observed after combination treatment of AF and pPBS when compared to AF and pPBS monotherapies. This combination also led to the highest accumulation of intracellular ROS. We confirmed a ROS-mediated response to the combination of AF and pPBS, which was able to induce distinct cell death mechanisms. On the one hand, an increase in caspase-3/7 activity, with an increase in the proportion of annexin V positive cells, indicates the induction of apoptosis in the GBM cells. On the other hand, lipid peroxidation and inhibition of cell death through an iron chelator suggest the involvement of ferroptosis in the GBM cell lines. Both cell death mechanisms induced by the combination of AF and pPBS resulted in a significant increase in danger signals (ecto-calreticulin, ATP and HMGB1) and dendritic cell maturation, indicating a potential increase in immunogenicity, although the phagocytotic capacity of dendritic cells was inhibited by AF. In vivo, sequential combination treatment of AF and cold atmospheric plasma both reduced tumor growth kinetics and prolonged survival in GBM-bearing mice. Thus, our study provides a novel therapeutic strategy for GBM to enhance the efficacy of oxidative stress-inducing therapy through a combination of AF and cold atmospheric plasma.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000807134000001 Publication Date 2021-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4409 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Olivia Hendrickx Research Fund, 21OCL06 ; University of Antwerp, FFB160231 ; The authors would express their gratitude to Hans de Reu for technical assistance with flow cytometry. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:182915 Serial 6826
Permanent link to this record
 

 
Author (up) Van Loenhout, J.; Peeters, M.; Bogaerts, A.; Smits, E.; Deben, C.
Title Oxidative Stress-Inducing Anticancer Therapies: Taking a Closer Look at Their Immunomodulating Effects Type A1 Journal article
Year 2020 Publication Antioxidants Abbreviated Journal Antioxidants
Volume 9 Issue 12 Pages 1188
Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Cancer cells are characterized by higher levels of reactive oxygen species (ROS) compared to normal cells as a result of an imbalance between oxidants and antioxidants. However, cancer cells maintain their redox balance due to their high antioxidant capacity. Recently, a high level of oxidative stress is considered a novel target for anticancer therapy. This can be induced by increasing exogenous ROS and/or inhibiting the endogenous protective antioxidant system. Additionally, the immune system has been shown to be a significant ally in the fight against cancer. Since ROS levels are important to modulate the antitumor immune response, it is essential to consider the effects of oxidative stress-inducing treatments on this response. In this review, we provide an overview of the mechanistic cellular responses of cancer cells towards exogenous and endogenous ROS-inducing treatments, as well as the indirect and direct antitumoral immune effects, which can be both immunostimulatory and/or immunosuppressive. For future perspectives, there is a clear need for comprehensive investigations of different oxidative stress-inducing treatment strategies and their specific immunomodulating effects, since the effects cannot be generalized over different treatment modalities. It is essential to elucidate all these underlying immune effects to make oxidative stress-inducing treatments effective anticancer therapy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000602288600001 Publication Date 2020-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-3921 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7 Times cited Open Access
Notes This research was funded by the Olivia Hendrickx Research Fund (21OCL06) and the University of Antwerp (FFB160231). Approved Most recent IF: 7; 2020 IF: NA
Call Number PLASMANT @ plasmant @c:irua:173865 Serial 6441
Permanent link to this record
 

 
Author (up) van Straaten, M.; Bogaerts, A.; Gijbels, R.
Title Experimental determination of the energy distribution of ions bombarding the cathode surface in a glow discharge Type A1 Journal article
Year 1995 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 50 Issue Pages 583-605
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos A1995RD70500026 Publication Date 2003-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.176 Times cited 22 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:12269 Serial 1136
Permanent link to this record
 

 
Author (up) Van Turnhout, J.; Aceto, D.; Travert, A.; Bazin, P.; Thibault-Starzyk, F.; Bogaerts, A.; Azzolina-Jury, F.
Title Observation of surface species in plasma-catalytic dry reforming of methane in a novel atmospheric pressure dielectric barrier discharge in situ IR cell Type A1 Journal article
Year 2022 Publication Catalysis Science & Technology Abbreviated Journal Catal Sci Technol
Volume 12 Issue 22 Pages 6676-6686
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We developed a novel in situ (i.e. inside plasma and during operation) IR dielectric barrier discharge cell allowing investigation of plasma catalysis in transmission mode, atmospheric pressure, flow conditions (WHSV similar to 0-50 000 mL g(-1) h(-1)), at relevant discharge voltages (similar to 0-50 kV) and frequencies (similar to 0-5 kHz). We applied it to study the IR-active surface species formed on a SiO2 support and on a 3 wt% Ru/SiO2 catalyst, which can help to reveal the important surface reaction mechanisms during the plasma-catalytic dry reforming of methane (DRM). Moreover, we present a technique for the challenging task of estimating the temperature of a catalyst sample in a plasma-catalytic system in situ and during plasma operation. We found that during the reaction, water is immediately formed at the SiO2 surface, and physisorbed formic acid is formed with a delay. As Ru/SiO2 is subject to greater plasma-induced heating than SiO2 (with a surface temperature increase in the range of 70-120 degrees C, with peaks up to 150 degrees C), we observe lower amounts of physisorbed water on Ru/SiO2, and less physisorbed formic acid formation. Importantly, the formation of surface species on the catalyst sample in our plasma-catalytic setup, as well as the observed conversions and selectivities in plasma conditions, can not be explained by plasma-induced heating of the catalyst surface, but must be attributed to other plasma effects, such as the adsorption of plasma-generated radicals and molecules, or the occurrence of Eley-Rideal reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000865542600001 Publication Date 2022-10-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2044-4753; 2044-4761 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5
Call Number UA @ admin @ c:irua:191389 Serial 7185
Permanent link to this record
 

 
Author (up) van ‘t Veer, K.; Engelmann, Y.; Reniers, F.; Bogaerts, A.
Title Plasma-Catalytic Ammonia Synthesis in a DBD Plasma: Role of Microdischarges and Their Afterglows Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 124 Issue 42 Pages 22871-22883
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
Abstract Plasma-catalytic ammonia synthesis is receiving ever increasing attention, especially in packed bed dielectric barrier discharge (DBD) reactors. The latter typically operate in the filamentary regime when used for gas conversion applications. While DBDs are in principle well understood and already applied in the industry, the incorporation of packing materials and catalytic surfaces considerably adds to the complexity of the plasma physics and chemistry governing the ammonia formation. We employ a plasma kinetics model to gain insights into the ammonia formation mechanisms, paying special attention to the role of filamentary microdischarges and their afterglows. During the microdischarges, the synthesized ammonia is actually decomposed, but the radicals created upon electron impact dissociation of N2 and H2 and the subsequent catalytic reactions cause a net ammonia gain in the afterglows of the microdischarges. Under our plasma conditions, electron impact dissociation of N2 in the gas phase followed by the adsorption of N atoms is identified as a rate-limiting step, instead of dissociative adsorption of N2 on the catalyst surface. Both elementary Eley−Rideal and Langmuir−Hinshelwood reaction steps can be found important in plasma-catalytic NH3 synthesis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000585970300002 Publication Date 2020-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; Fonds De La Recherche Scientifique – FNRS, 30505023 GoF9618n ; H2020 European Research Council, 810182 ;This research was supported by the Excellence of Science FWOFNRS project (FWO grant ID GoF9618n, EOS ID 30505023) and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 810182-SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. The authors would also like to thank Järi Van den Hoek and Dr. Yury Gorbanev for providing the experimentally measured electrical characteristics and Dr. Fatme Jardali for creating the TOC graphics. Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:173587 Serial 6428
Permanent link to this record
 

 
Author (up) van ‘t Veer, K.; Reniers, F.; Bogaerts, A.
Title Zero-dimensional modeling of unpacked and packed bed dielectric barrier discharges: the role of vibrational kinetics in ammonia synthesis Type A1 Journal article
Year 2020 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 29 Issue 4 Pages 045020
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We present a zero-dimensional plasma kinetics model, including both surface and gas phase kinetics, to determine the role of vibrationally excited states in plasma-catalytic ammonia synthesis. We defined a new method to systematically capture the conditions of dielectric barrier discharges (DBDs), including those found in packed bed DBDs. We included the spatial and temporal nature of such discharges by special consideration of the number of micro-discharges in the model. We introduce a parameter that assigns only a part of the plasma power to the microdischarges, to scale the model conditions from filamentary to uniform plasma. Because of the spatial and temporal behaviour of the micro-discharges, not all micro-discharges occurring in the plasma reactor during a certain gas residence time are affecting the molecules. The fraction of power considered in the model ranges from 0.005 %, for filamentary plasma, to 100 %, for uniform plasma. If vibrational excitation is included in the plasma chemistry, these different conditions, however, yield an ammonia density that is only varying within one order of magnitude. At only 0.05 % of the power put into the uniform plasma component, a model neglecting vibrational excitation clearly does not result in adequate amounts of ammonia. Thus, our new model, which accounts for the concept in which not all the power is deposited by the micro-discharges, but some part may also be distributed in between them, suggests that vibrational kinetic processes are really important in (packed bed) DBDs. Indeed, vibrational excitation takes place in both the uniform plasma between the micro-discharges and in the strong micro-discharges, and is responsible for an increased N2 dissociation rate. This is shown here for plasma-catalytic ammonia synthesis, but might also be valid for other gas conversion applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000570241500001 Publication Date 2020-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.8 Times cited Open Access
Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. The authors would also like to thank Dr. Fatme Jardali for the discussions on plasma kinetic modelling and Dr. Jungmi Hong and Dr. Anthony B. Murphy for their aid in the calculation of the diffusion coefficients. Approved Most recent IF: 3.8; 2020 IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:168097 Serial 6359
Permanent link to this record
 

 
Author (up) van ‘t Veer, K.; van Alphen, S.; Remy, A.; Gorbanev, Y.; De Geyter, N.; Snyders, R.; Reniers, F.; Bogaerts, A.
Title Spatially and temporally non-uniform plasmas: microdischarges from the perspective of molecules in a packed bed plasma reactor Type A1 Journal article
Year 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 54 Issue 17 Pages 174002
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Dielectric barrier discharges (DBDs) typically operate in the filamentary regime and thus exhibit great spatial and temporal non-uniformity. In order to optimize DBDs for various applications, such as in plasma catalysis, more fundamental insight is needed. Here, we consider how the millions of microdischarges, characteristic for a DBD, influence individual gas molecules. We use a Monte Carlo approach to determine the number of microdischarges to which a single molecule would be exposed, by means of particle tracing simulations through a full-scale packed bed DBD reactor, as well as an empty DBD reactor. We find that the fraction of microdischarges to which the molecules are exposed can be approximated as the microdischarge volume over the entire reactor gas volume. The use of this concept provides good agreement between a plasma-catalytic kinetics model and experiments for plasma-catalytic NH3 synthesis. We also show that the concept of the fraction of microdischarges indicates the efficiency by which the plasma power is transferred to the gas molecules. This generalised concept is also applicable for other spatially and temporally non-uniform plasmas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000618776000001 Publication Date 2021-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited Open Access OpenAccess
Notes Excellence of Science FWO-FNRS project, FWO grant ID GoF9618n ; Flemish Government, project P2C (HBC.2019.0108) ; H2020 European Research Council, grant agreement No 810182 – SCOPE ERC Synergy pr ; This research was supported by the Excellence of Science FWO-FNRS project (FWO Grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No 810182—SCOPE ERC Synergy project) and by the Flemish Government through the Moonshot cSBO project P2C (HBC. 2019.0108). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. The authors would also like to thank Hamid Ahmadi Eshtehardi for discussions on the plasma-kinetic DBD model and Yannick Engelmann for discussions on the surface kinetics model. Approved Most recent IF: 2.588
Call Number PLASMANT @ plasmant @c:irua:175878 Serial 6674
Permanent link to this record
 

 
Author (up) Vandenbroucke, A.M.; Aerts, R.; Van Gaens, W.; De Geyter, N.; Leys, C.; Morent, R.; Bogaerts, A.
Title Modeling and experimental study of trichloroethylene abatement with a negative direct current corona discharge Type A1 Journal article
Year 2015 Publication Plasma chemistry and plasma processing Abbreviated Journal Plasma Chem Plasma P
Volume 35 Issue 35 Pages 217-230
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work, we study the abatement of dilute trichloroethylene (TCE) in air with a negative direct current corona discharge. A numerical model is used to theoretically investigate the underlying plasma chemistry for the removal of TCE, and a reaction pathway for the abatement of TCE is proposed. The Cl atom, mainly produced by dissociation of COCl, is one of the controlling species in the TCE destruction chemistry and contributes to the production of chlorine containing by-products. The effect of humidity on the removal efficiency is studied and a good agreement is found between experiments and the model for both dry (5 % relative humidity (RH)) and humid air (50 % RH). An increase of the relative humidity from 5 % to 50 % has a negative effect on the removal efficiency, decreasing by ±15 % in humid air. The main loss reactions for TCE are with ClO·, O· and CHCl2. Finally, the by-products and energy cost of TCE abatement are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000347285800014 Publication Date 2014-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-4324;1572-8986; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.355 Times cited 9 Open Access
Notes Approved Most recent IF: 2.355; 2015 IF: 2.056
Call Number c:irua:118882 Serial 2108
Permanent link to this record
 

 
Author (up) Vanmeert, M.; Razzokov, J.; Mirza, M.U.; Weeks, S.D.; Schepers, G.; Bogaerts, A.; Rozenski, J.; Froeyen, M.; Herdewijn, P.; Pinheiro, V.B.; Lescrinier, E.
Title Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins Type A1 Journal article
Year 2019 Publication Nucleic acids research Abbreviated Journal Nucleic Acids Res
Volume 47 Issue 13 Pages 7130-7142
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Xenobiotic nucleic acids (XNA) are nucleic acid analogues not present in nature that can be used for the storage of genetic information. In vivo XNA applications could be developed into novel biocontainment strategies, but are currently limited by the challenge of developing XNA processing enzymes such as polymerases, ligases and nucleases. Here, we present a structure-guided modelling-based strategy for the rational design of those enzymes essential for the development of XNA molecular biology. Docking of protein domains to unbound double-stranded nucleic acids is used to generate a first approximation of the extensive interaction of nucleic acid processing enzymes with their substrate. Molecular dynamics is used to optimise that prediction allowing, for the first time, the accurate prediction of how proteins that form toroidal complexes with nucleic acids interact with their substrate. Using the Chlorella virus DNA ligase as a proof of principle, we recapitulate the ligase's substrate specificity and successfully predict how to convert it into an XNA-templated XNA ligase.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000490556600047 Publication Date 2019-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0305-1048 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.162 Times cited 1 Open Access
Notes European Research Council, FP7/2007-2013 ERC-2012-ADG 20120216/320683 ; KU Leuven, OT/14/128 ; Biotechnology and Biosciences Research Council, BB/N01023X/1 BB/N010221/1 ; Authors are grateful to Prof. Dr A.M.J.J. (Alexandre) Bonvin from the University of Utrecht and the WeNMR institute for his expert contribution. We have greatly benefited from discussions and help from numerous postdocs over the years (in particular, Dr E. Groaz, Dr E. Eremeeva, Dr J. Masschelein, Dr S. Xiaoping and Dr M. Renders) as well as graduate student D. Kestemont and undergraduate student M. Abdel Fattah Ismail. We express our gratitude to L. Margamuljana for helpful discussions and excellent technical assistance on in vitro experiments. Approved Most recent IF: 10.162
Call Number PLASMANT @ plasmant @c:irua:162105 Serial 5359
Permanent link to this record
 

 
Author (up) Vanraes, P.; Bogaerts, A.
Title Plasma physics of liquids—A focused review Type A1 Journal article
Year 2018 Publication Applied physics reviews Abbreviated Journal Appl Phys Rev
Volume 5 Issue 3 Pages 031103
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The interaction of plasma with liquids has led to various established industrial implementations as well as promising applications, including high-voltage switching, chemical analysis, nanomaterial synthesis, and plasma medicine. Along with these numerous accomplishments, the physics of plasma in liquid or in contact with a liquid surface has emerged as a bipartite research field, for which we introduce here the term “plasma physics of liquids.” Despite the intensive research

investments during the recent decennia, this field is plagued by some controversies and gaps in knowledge, which might restrict further progress. The main difficulties in understanding revolve around the basic mechanisms of plasma initiation in the liquid phase and the electrical interactions at a plasma-liquid interface, which require an interdisciplinary approach. This review aims to provide the wide applied physics community with a general overview of the field, as well as the opportunities for interdisciplinary research on topics, such as nanobubbles and the floating water bridge, and involving the research domains of amorphous semiconductors, solid state physics, thermodynamics, material science, analytical chemistry, electrochemistry, and molecular dynamics simulations. In addition, we provoke awareness of experts in the field on yet underappreciated question marks. Accordingly, a strategy for future experimental and simulation work is proposed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000446117000003 Publication Date 2018-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1931-9401 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.667 Times cited 33 Open Access OpenAccess
Notes P. Vanraes acknowledges funding by a University of Antwerp BOF grant. The authors express their gratitude to Professor Dr. Peter Bruggeman (University of Minnesota, USA) for very useful comments on a draft of Sec. III C. P. Vanraes is very grateful to Professor Dr. Lars Pettersson (Stockholm University, Sweden) for the interesting discussions on the microscopic structure of water, to Dr. Xiaolong Deng (National University of Defense Technology, China) for his help with the figures, to Dr. Anton Nikiforov (Ghent University, Belgium) for the help with retrieving the relevant chapter of Ref. 319, and to Dr. Tatiana Nikitenko (Vitebst State Masherov University, Belarus), Katja Nygard (Netherlands), Iryna Kuchakova (Ghent University, Belgium), and Mindaugas Kersys (Lithuania) for their tremendous help with the translation of the corresponding chapter. Approved Most recent IF: 13.667
Call Number PLASMANT @ plasmant @c:irua:152823 Serial 5001
Permanent link to this record
 

 
Author (up) Vanraes, P.; Bogaerts, A.
Title Laser-induced excitation mechanisms and phase transitions in spectrochemical analysis – Review of the fundamentals Type A1 Journal article
Year 2021 Publication Spectrochimica Acta Part B-Atomic Spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 179 Issue Pages 106091
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nowadays, lasers are commonly applied in spectrochemical analysis methods, for sampling, plasma formation or a combination of both. Despite the numerous investigations that have been performed on these applications, the underlying processes are still insufficiently understood. In order to fasten progress in the field and in honor of the lifework of professor Rick Russo, we here provide a brief overview of the fundamental mechanisms in lasermatter interaction as proposed in literature, and throw the spotlight on some aspects that have not received much attention yet. For an organized discussion, we choose laser ablation, laser desorption and the associated gaseous plasma formation as the central processes in this perspective article, based on a classification of the laserbased spectrochemical analysis techniques and the corresponding laser-matter interaction regimes. First, we put the looking glass over the excitation and thermalization mechanisms in the laser-irradiated condensed phase, for which we propose the so-called multi-plasma model. This novel model can be understood as an extension of the well-known two-temperature model, featuring multiple thermodynamic dimensions, each of which corresponds to a quasi-particle type. Next, the focus is placed on the mass transfer and ionization mechanisms, after which we shortly highlight the possible role of anisotropic and magnetic effects in the laser-excited material. We hope this perspective article motivates more fundamental research on laser-matter interaction, as a continuation of the lifework of Rick Russo.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000631868700005 Publication Date 2021-03-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited Open Access OpenAccess
Notes University of Antwerp; We acknowledge funding by a University of Antwerp BOF grant and by a University of Antwerp Methusalem grant. Approved Most recent IF: 3.241
Call Number PLASMANT @ plasmant @c:irua:176876 Serial 6710
Permanent link to this record
 

 
Author (up) Vanraes, P.; Bogaerts, A.
Title The essential role of the plasma sheath in plasma–liquid interaction and its applications—A perspective Type A1 Journal Article
Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 129 Issue 22 Pages 220901
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Based on the current knowledge, a plasma–liquid interface looks and behaves very differently from its counterpart at a solid surface. Local processes characteristic to most liquids include a stronger evaporation, surface deformations, droplet ejection, possibly distinct mechanisms behind secondary electron emission, the formation of an electric double layer, and an ion drift-mediated liquid resistivity. All of them can strongly influence the interfacial charge distribution. Accordingly, the plasma sheath at a liquid surface is most likely unique in its own way, both with respect to its structure and behavior. However, insights into these properties are still rather scarce or uncertain, and more studies are required to further disclose them. In this Perspective, we argue why more research on the plasma sheath is not only recommended but also crucial to an accurate understanding of the plasma–liquid interaction. First, we analyze how the sheath regulates various elementary processes at the plasma–liquid interface, in terms of the electrical coupling, the bidirectional mass transport, and the chemistry between plasma and liquid phase. Next, these three regulatory functions of the sheath are illustrated for concrete applications. Regarding the electrical coupling, a great deal of attention is paid to the penetration of fields into biological systems due to their relevance for plasma medicine, plasma agriculture, and food processing. Furthermore, we illuminate the role of the sheath in nuclear fusion, nanomaterial synthesis, and chemical applications. As such, we hope to motivate the plasma community for more fundamental research on plasma sheaths at liquid surfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000681700000013 Publication Date 2021-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited Open Access OpenAccess
Notes P.V. thanks Dr. Angela Privat Maldonado (University of Antwerp) for the fruitful discussions on Sec. III and Professor Mark J. Kushner (University of Michigan) for the interesting discussion on Ref. 198. Approved Most recent IF: 2.068
Call Number PLASMANT @ plasmant @c:irua:178814 Serial 6794
Permanent link to this record
 

 
Author (up) Vanraes, P.; Nikiforov, A.; Bogaerts, A.; Leys, C.
Title Study of an AC dielectric barrier single micro-discharge filament over a water film Type A1 Journal article
Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 8 Issue 1 Pages 10919
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In the last decades, AC powered atmospheric dielectric barrier discharges (DBDs) in air with a liquid electrode have been proposed as a promising plasma technology with versatile applicability in medicine agriculture and water treatment. The fundamental features of the micro-discharge filaments that make up this type of plasma have, however, not been studied yet in sufficient detail. In order to address this need, we investigated a single DBD micro-discharge filament over a water film in a sphere-to-sphere electrode configuration, by means of ICCD imaging and optical emission spectroscopy. When the water film temporarily acts as the cathode, the plasma duration is remarkably long and shows a clear similarity with a resistive barrier discharge, which we attribute to the resistive nature of the water film and the formation of a cathode fall. As another striking difference to DBD with solid electrodes, a constant glow-like plasma is observed at the water surface during the entire duration of the applied voltage cycle, indicating continuous plasma treatment of the liquid. We propose several elementary mechanisms that might underlie the observed unique behavior, based on the specific features of a water electrode.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000439101600018 Publication Date 2018-07-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 3 Open Access OpenAccess
Notes P. Vanraes acknowledges funding by a University of Antwerp BOF grant. Approved Most recent IF: 4.259
Call Number PLASMANT @ plasmant @c:irua:152822c:irua:152411 Serial 4999
Permanent link to this record
 

 
Author (up) Vanraes, P.; Parayil Venugopalan, S.; Besemer, M.; Bogaerts, A.
Title Assessing neutral transport mechanisms in aspect ratio dependent etching by means of experiments and multiscale plasma modeling Type A1 Journal Article
Year 2023 Publication Plasma Sources Science and Technology Abbreviated Journal Plasma Sources Sci. Technol.
Volume 32 Issue 6 Pages 064004
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Since the onset of pattern transfer technologies for chip manufacturing, various strategies have been developed to circumvent or overcome aspect ratio dependent etching (ARDE). These methods have, however, their own limitations in terms of etch non-idealities, throughput or costs. Moreover, they have mainly been optimized for individual in-device features and die-scale patterns, while occasionally ending up with poor patterning of metrology marks, affecting the alignment and overlay in lithography. Obtaining a better understanding of the underlying mechanisms of ARDE and how to mitigate them therefore remains a relevant challenge to date, for both marks and advanced nodes. In this work, we accordingly assessed the neutral transport mechanisms in ARDE by means of experiments and multiscale modeling for SiO<sub>2</sub>etching with CHF<sub>3</sub>/Ar and CF<sub>4</sub>/Ar plasmas. The experiments revealed a local maximum in the etch rate for an aspect ratio around unity, i.e. the simultaneous occurrence of regular and inverse reactive ion etching lag for a given etch condition. We were able to reproduce this ARDE trend in the simulations without taking into account charging effects and the polymer layer thickness, suggesting shadowing and diffuse reflection of neutrals as the primary underlying mechanisms. Subsequently, we explored four methods with the simulations to regulate ARDE, by varying the incident plasma species fluxes, the amount of polymer deposition, the ion energy and angular distribution and the initial hardmask sidewall angle, for which the latter was found to be promising in particular. Although our study focusses on feature dimensions characteristic to metrology marks and back-end-of-the-line integration, the obtained insights have a broader relevance, e.g. to the patterning of advanced nodes. Additionally, this work supports the insight that physisorption may be more important in plasma etching at room temperature than originally thought, in line with other recent studies, a topic on which we recommend further research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001021250100001 Publication Date 2023-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.8 Times cited Open Access Not_Open_Access
Notes P Vanraes acknowledges funding by ASML for the project ‘Computational simulation of plasma etching of trench structures’. P Vanraes and A Bogaerts want to express their gratitude to Mark J Kushner (University of Michigan) for the sharing of the HPEM and MCFPM codes, and for the interesting exchange of views. P Vanraes wishes to thank Violeta Georgieva and Stefan Tinck for the fruitful discussions on the HPEM code, Yu-Ru Zhang for an example of the CCP reactor code and Karel Venken for his technical help with the server maintenance and use. S P Venugopalan and M Besemer wish to thank Luigi Scaccabarozzi, Sander Wuister, Coen Verschuren, Michael Kubis, Kuan-Ming Chen, Ruben Maas, Huaichen Zhang and Julien Mailfert (ASML) for the insightful discussions. Approved Most recent IF: 3.8; 2023 IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:197760 Serial 8811
Permanent link to this record
 

 
Author (up) Vanraes, P.; Parayil Venugopalan, S.; Bogaerts, A.
Title Multiscale modeling of plasma–surface interaction—General picture and a case study of Si and SiO2etching by fluorocarbon-based plasmas Type A1 Journal Article
Year 2021 Publication Applied Physics Reviews Abbreviated Journal Appl Phys Rev
Volume 8 Issue 4 Pages 041305
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract The physics and chemistry of plasma–surface interaction is a broad domain relevant to various applications and several natural processes, including plasma etching for microelectronics fabrication, plasma deposition, surface functionalization, nanomaterial synthesis, fusion reactors, and some astrophysical and meteorological phenomena. Due to their complex nature, each of these processes is generally investigated in separate subdomains, which are considered to have their own theoretical, modeling, and experimental challenges. In this review, however, we want to emphasize the overarching nature of plasma–surface interaction physics and chemistry, by focusing on the general strategy for its computational simulation. In the first half of the review, we provide a menu card with standard and less standardized computational methods to be used for the multiscale modeling of the underlying processes. In the second half, we illustrate the benefits and potential of the multiscale modeling strategy with a case study of Si and SiO2 etching by fluorocarbon plasmas and identify the gaps in knowledge still present on this intensely investigated plasma–material combination, both on a qualitative and quantitative level. Remarkably, the dominant etching mechanisms remain the least understood. The resulting new insights are of general relevance, for all plasmas and materials, including their various applications. We therefore hope to motivate computational and experimental scientists and engineers to collaborate more intensely on filling the existing gaps in knowledge. In this way, we expect that research will overcome a bottleneck stage in the development and optimization of multiscale models, and thus the fundamental understanding of plasma–surface interaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000754799700001 Publication Date 2021-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1931-9401 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.667 Times cited Open Access OpenAccess
Notes Asml; P. Vanraes acknowledges funding by ASML for the project “Computational simulation of plasma etching of trench structures.” P. Vanraes wishes to thank Violeta Georgieva and Stefan Tinck for the fruitful discussions on the HPEM code, Yu-Ru Zhang for an example of the CCP reactor code, and Karel Venken for his technical help with the server maintenance and use. P. Vanraes and A. Bogaerts want to express their gratitude to Mark J. Kushner (University of Michigan) for the sharing of the HPEM and MCFPM codes and for the interesting exchange of views. S. P. Venugopalan wishes to thank Sander Wuister, Coen Verschuren, Michael Kubis, Mohammad Kamali, Approved Most recent IF: 13.667
Call Number PLASMANT @ plasmant @c:irua:183287 Serial 6814
Permanent link to this record
 

 
Author (up) Vanraes, P.; Wardenier, N.; Surmont, P.; Lynen, F.; Nikiforov, A.; Van Hulle, S.W.H.; Leys, C.; Bogaerts, A.
Title Removal of alachlor, diuron and isoproturon in water in a falling film dielectric barrier discharge (DBD) reactor combined with adsorption on activated carbon textile: Reaction mechanisms and oxidation by-products Type A1 Journal article
Year 2018 Publication Journal of hazardous materials Abbreviated Journal J Hazard Mater
Volume 354 Issue Pages 180-190
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A falling film dielectric barrier discharge (DBD) plasma reactor combined with adsorption on activated carbon textile material was optimized to minimize the formation of hazardous oxidation by-products from the treatment of persistent pesticides (alachlor, diuron and isoproturon) in water. The formation of by-products and the reaction mechanism was investigated by HPLC-TOF-MS. The maximum concentration of each by-product was at least two orders of magnitude below the initial pesticide concentration, during the first 10 min of treatment. After 30 min of treatment, the individual by-product concentrations had decreased to values of at least three orders of magnitude below the initial pesticide concentration. The proposed oxidation pathways revealed five main oxidation steps: dechlorination, dealkylation, hydroxylation, addition of a double-bonded oxygen and nitrification. The latter is one of the main oxidation mechanisms of diuron and isoproturon for air plasma treatment. To our knowledge, this is the first time that the formation of nitrificated intermediates is reported for the plasma treatment of non-phenolic compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000437814600021 Publication Date 2018-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.065 Times cited 4 Open Access Not_Open_Access: Available from 04.05.2020
Notes This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors would like to thank Carbon Cloth Division for Zorflex® samples and personally thank Jack Taylor for fruitful discussion of active carbon water treatment processes Approved Most recent IF: 6.065
Call Number PLASMANT @ plasmant @c:irua:152179 Serial 4989
Permanent link to this record
 

 
Author (up) Verheyen, C.; Silva, T.; Guerra, V.; Bogaerts, A.
Title The effect of H2O on the vibrational populations of CO2in a CO2/H2O microwave plasma: a kinetic modelling investigation Type A1 Journal article
Year 2020 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 29 Issue 9 Pages 095009
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma has been studied for several years to convert CO2 into value-added products. If CO2 could be converted in the presence of H2O as a cheap H-source for making syngas and oxygenates, it would mimic natural photosynthesis. However, CO2/H2O plasmas have not yet been extensively studied, not by experiments, and certainly not computationally. Therefore, we present here a kinetic modelling study to obtain a greater understanding of the vibrational kinetics of a CO2/H2O microwave plasma. For this purpose, we first created an electron impact cross section set for H2O, using a swarm-derived method. We added the new cross section set and CO2/H2O-related chemistry to a pure CO2 model. While it was expected that H2O addition mainly causes quenching of the CO2 asymmetric mode vibrational levels due to the additional CO2/H2O vibrational-translational relaxation, our model shows that the modifications in the vibrational kinetics are mainly induced by the strong electron dissociative attachment to H2O molecules, causing a reduction in electron density, and the corresponding changes in the input of energy into the CO2 vibrational levels by electron impact processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000570601300001 Publication Date 2020-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.8 Times cited Open Access
Notes Fonds Wetenschappelijk Onderzoek, 1184820N ; Fundação para a Ciência e a Tecnologia, under projects UIDB/50010/2020 and ; This research was supported by FWO–PhD fellowshipaspirant, Grant 1184820N. VG and TS were partially supported by the Portuguese FCT, under projects UIDB/50010/2020 and UIDP/50010/2020 Approved Most recent IF: 3.8; 2020 IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:172011 Serial 6433
Permanent link to this record
 

 
Author (up) Verheyen, C.; van ’t Veer, K.; Snyders, R.; Bogaerts, A.
Title Atomic oxygen assisted CO2 conversion: A theoretical analysis Type A1 Journal article
Year 2023 Publication Journal of CO2 utilization Abbreviated Journal
Volume 67 Issue Pages 102347
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract With climate change still a pressing issue, there is a great need for carbon capture, utilisation and storage (CCUS)

methods. We propose a novel concept where CO2 conversion is accomplished by O2 splitting followed by the

addition of O atoms to CO2. The latter is studied here by means of kinetic modelling. In the first instance, we

study various CO2/O ratios, and we observe an optimal CO2 conversion of around 30–40% for 50% O addition.

Gas temperature also has a large influence, with a minimum temperature of around 1000 K to a maximum of

2000 K for optimal conversion. In the second instance, we study various CO2/O/O2 ratios, due to O2 being a

starting gas. Also here we define optimal regions for CO2 conversion, which reach maximum conversion for a

CO2 fraction of 50% and an O/O2 ratio bigger than 1. Those can be expanded by heating on one hand, for low

atomic oxygen availability, and by quenching after reaction on the other hand, for cases where the temperatures

are too high. Our model predictions can serve as a guideline for experimental research in this domain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000908384000005 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.7 Times cited Open Access OpenAccess
Notes This research was supported by FWO – PhD fellowship-aspirant, Grant 1184820N. We also want to thank Bj¨orn Loenders and Joachim Slaets. Approved Most recent IF: 7.7; 2023 IF: 4.292
Call Number PLASMANT @ plasmant @c:irua:192321 Serial 7231
Permanent link to this record
 

 
Author (up) Verlackt, C.C.W.; Neyts, E.C.; Bogaerts, A.
Title Atomic scale behavior of oxygen-based radicals in water Type A1 Journal article
Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 50 Issue 50 Pages 11LT01
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric pressure plasmas in and in contact with liquids represent a growing field of research for various applications. Understanding the interactions between the plasma generated species and the liquid is crucial. In this work we perform molecular dynamics (MD) simulations based on a quantum mechanical method, i.e. density-functional based tight-binding (DFTB), to examine the interactions of OH radicals and O atoms in bulk water. Our calculations reveal that the transport of OH radicals through water is not only governed by diffusion, but also by an equilibrium reaction of H-abstraction with water molecules. Furthermore, when two OH radicals encounter each other, they either form a stable cluster, or react, resulting in the formation of a new water molecule and an O atom. In addition,

the O atoms form either oxywater (when in singlet configuration) or they remain stable in solution (when in triplet configuration), stressing the important role that O atoms can play in aqueous solution, and in contact with biomolecules. Our observations are in line with both experimental and ab initio results from the literature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000415252400001 Publication Date 2017-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 11 Open Access OpenAccess
Notes The authors thank Peter Bruggeman (University of Minnesota, USA) and Jan Benedikt (Ruhr-Universität Bochum, Germany) for the interesting discussions regarding the existence of O in aqueous solutions. Furthermore, they acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (project number G012413N). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. Approved Most recent IF: 2.588
Call Number PLASMANT @ plasmant @ c:irua:140845 Serial 4420
Permanent link to this record
 

 
Author (up) Verlackt, C.C.W.; Neyts, E.C.; Jacob, T.; Fantauzzi, D.; Golkaram, M.; Shin, Y.-K.; van Duin, A.C.T.; Bogaerts, A.
Title Atomic-scale insight into the interactions between hydroxyl radicals and DNA in solution using the ReaxFF reactive force field Type A1 Journal article
Year 2015 Publication New journal of physics Abbreviated Journal New J Phys
Volume 17 Issue 17 Pages 103005
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric pressure plasmas have proven to provide an alternative treatment of cancer by targeting tumorous cells while leaving their healthy counterparts unharmed. However, the underlying mechanisms of the plasma–cell interactions are not yet fully understood. Reactive oxygen species, and in particular hydroxyl radicals (OH), are known to play a crucial role in plasma driven apoptosis of

malignant cells. In this paper we investigate the interaction of OH radicals, as well as H2O2 molecules and HO2 radicals, with DNA by means of reactive molecular dynamics simulations using the ReaxFF force field. Our results provide atomic-scale insight into the dynamics of oxidative stress on DNA caused by the OH radicals, while H2O2 molecules appear not reactive within the considered timescale. Among the observed processes are the formation of 8-OH-adduct radicals, forming the first stages towards the formation of 8-oxoGua and 8-oxoAde, H-abstraction reactions of the amines, and the partial opening of loose DNA ends in aqueous solution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000367328100001 Publication Date 2015-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 18 Open Access
Notes CCWV,ECN and AB acknowledge the contribution of J Van Beeck who is investigating the interaction between H2O2 andDNAusingrMDsimulations. Furthermore, they acknowledge financial support from the Fund for Scientific Research—Flanders (project number G012413N). The calculations were performed using the Turing HPCinfrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. TJ and DF gratefully acknowledge support from the European Research Council through the ERC-Starting GrantTHEOFUN(Grant Agreement No. 259608). Approved Most recent IF: 3.786; 2015 IF: 3.558
Call Number c:irua:129178 Serial 3955
Permanent link to this record
 

 
Author (up) Verlackt, C.C.W.; Van Boxem, W.; Bogaerts, A.
Title Transport and accumulation of plasma generated species in aqueous solution Type A1 Journal article
Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 20 Issue 10 Pages 6845-6859
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The interaction between cold atmospheric pressure plasma and liquids is receiving increasing attention for various applications. In particular, the use of plasma-treated liquids (PTL) for biomedical applications is of growing importance, in particular for sterilization and cancer treatment. However, insight into the

underlying mechanisms of plasma–liquid interactions is still scarce. Here, we present a 2D fluid dynamics model for the interaction between a plasma jet and liquid water. Our results indicate that the formed reactive species originate from either the gas phase (with further solvation) or are formed at the liquid interface. A clear increase in the aqueous density of H2O2, HNO2/NO2- and NO3-

is observed as a function of time, while the densities of O3, HO2/O2- and ONOOH/ONOO- are found to quickly reach a maximum due to chemical reactions in solution. The trends observed in our model correlate well with experimental observations from the literature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000429286100009 Publication Date 2018-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 35 Open Access OpenAccess
Notes The authors thank Petr Luke`s (Institute of Plasma Physics AS CR, Czech Republic) and Yury Gorbanev (UAntwerp, group PLASMANT) for the fruitful discussions regarding the chemistry in the model and the plasma–liquid interactions. Approved Most recent IF: 4.123
Call Number PLASMANT @ plasmant @c:irua:149557 Serial 4908
Permanent link to this record
 

 
Author (up) Verlackt, C.C.W.; Van Boxem, W.; Dewaele, D.; Lemière, F.; Sobott, F.; Benedikt, J.; Neyts, E.C.; Bogaerts, A.
Title Mechanisms of Peptide Oxidation by Hydroxyl Radicals: Insight at the Molecular Scale Type A1 Journal article
Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue 121 Pages 5787-5799
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Molecular dynamics (MD) simulations were performed to provide atomic scale insight in the initial interaction between hydroxyl radicals (OH) and peptide systems in solution. These OH radicals are representative reactive oxygen species produced by cold atmospheric plasmas. The use of plasma for biomedical applications is gaining increasing interest, but the fundamental mechanisms behind the plasma modifications still remain largely elusive. This study helps to gain more insight in the underlying mechanisms of plasma medicine but is also more generally applicable to peptide oxidation, of interest for other applications. Combining both reactive and nonreactive MD simulations, we are able to elucidate the reactivity of the amino acids inside the peptide systems and their effect on their structure up to 1 μs. Additionally, experiments were performed, treating the simulated peptides with a plasma jet. The computational results presented here correlate well with the obtained experimental data and highlight the importance of the chemical environment for the reactivity of the individual amino acids, so that specific amino acids are attacked in higher numbers than expected. Furthermore, the long time scale simulations suggest that a single oxidation has an effect on the 3D conformation due to an increase in hydrophilicity and intra- and intermolecular interactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000396969900037 Publication Date 2017-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 5 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G012413N ; Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @ c:irua:142202 Serial 4537
Permanent link to this record
 

 
Author (up) Verloy, R.; Privat-Maldonado, A.; Smits, E.; Bogaerts, A.
Title Cold Atmospheric Plasma Treatment for Pancreatic Cancer–The Importance of Pancreatic Stellate Cells Type A1 Journal article
Year 2020 Publication Cancers Abbreviated Journal Cancers
Volume 12 Issue 10 Pages 2782
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with low five-year survival rates of 8% by conventional treatment methods, e.g., chemotherapy, radiotherapy, and surgery. PDAC shows high resistance towards chemo- and radiotherapy and only 15–20% of all patients can have surgery. This disease is predicted to become the third global leading cause of cancer death due to its significant rise in incidence. Therefore, the development of an alternative or combinational method is necessary to improve current approaches. Cold atmospheric plasma (CAP) treatments could offer multiple advantages to this emerging situation. The plasma-derived reactive species can induce oxidative damage and a cascade of intracellular signaling pathways, which could lead to cell death. Previous reports have shown that CAP treatment also influences cells in the tumor microenvironment, such as the pancreatic stellate cells (PSCs). These PSCs, when activated, play a crucial role in the propagation, growth and survival of PDAC tumors. However, the effect of CAP on PSCs is not yet fully understood. This review focuses on the application of CAP for PDAC treatment and the importance of PSCs in the response to treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000584150700001 Publication Date 2020-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Server Medical Art templates were used for creating figures. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:172454 Serial 6418
Permanent link to this record
 

 
Author (up) Vermeiren, V.; Bogaerts, A.
Title Supersonic Microwave Plasma: Potential and Limitations for Energy-Efficient CO2Conversion Type A1 Journal Article
Year 2018 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 122 Issue 45 Pages 25869-25881
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Supersonic flows provide a high thermodynamic

nonequilibrium, which is crucial for energy-efficient conversion of

CO 2 in microwave plasmas and are therefore of great interest.

However, the effect of the flow on the chemical reactions is poorly

understood. In this work, we present a combined flow and plasma

chemical kinetics model of a microwave CO 2 plasma in a Laval

nozzle setup. The effects of the flow field on the different dissociation

and recombination mechanisms, the vibrational distribution, and the

vibrational transfer mechanism are discussed. In addition, the effect

of experimental parameters, like position of power deposition, outlet

pressure, and specific energy input, on the CO 2 conversion and

energy efficiency is examined. The short residence time of the gas in

the plasma region, the shockwave, and the maximum critical heat,

and thus power, that can be added to the flow to avoid thermal

choking are the main obstacles to reaching high energy efficiencies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451101400016 Publication Date 2018-11-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 5 Open Access Not_Open_Access
Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:155412 Serial 5070
Permanent link to this record
 

 
Author (up) Vermeiren, V.; Bogaerts, A.
Title Improving the Energy Efficiency of CO2Conversion in Nonequilibrium Plasmas through Pulsing Type A1 Journal article
Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 123 Issue 29 Pages 17650-17665
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nonequilibrium plasmas offer a pathway for energy-efficient CO2 conversion through vibrationally induced dissociation. However, the efficiency of this pathway is limited by a rise in gas temperature, which increases vibrational−translational (VT) relaxation and quenches the vibrational levels. Therefore, we investigate here the effect of plasma pulsing on the VT nonequilibrium and on the CO2 conversion by means of a zerodimensional chemical kinetics model, with self-consistent gas temperature calculation. Specifically, we show that higher energy efficiencies can be reached by correctly tuning the plasma pulse and interpulse times. The ideal plasma pulse time corresponds to the time needed to reach the highest vibrational temperature. In addition, the highest energy efficiencies are obtained with long interpulse times, that is, ≥0.1 s, in which the gas temperature can entirely drop to room temperature. Furthermore, additional cooling of the reactor walls can give higher energy efficiencies at shorter interpulse times of 1 ms. Finally, our model shows that plasma pulsing can significantly improve the energy efficiency at low reduced electric fields (50 and 100 Td, typical for microwave and gliding arc plasmas) and intermediate ionization degrees (5 × 10−7 and 10−6).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477785000003 Publication Date 2019-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 1 Open Access
Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; This research was supported by the FWO project (grant G.0383.16N). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UAntwerpen. We also like to thank N. Britun (ChIPS) for the interesting discussions. Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:161621 Serial 5289
Permanent link to this record
 

 
Author (up) Vermeiren, V.; Bogaerts, A.
Title Plasma-Based CO2Conversion: To Quench or Not to Quench? Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 124 Issue 34 Pages 18401-18415
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma technology is gaining increasing interest for CO2 conversion. The gas temperature in (and after) the plasma reactor largely affects the performance. Therefore, we examine the effect of cooling/quenching, during and after the plasma, on the CO2 conversion and energy efficiency, for typical “warm” plasmas, by means of chemical kinetics modeling. For plasmas at low specific energy input (SEI ∼ 0.5 eV/molecule), it is best to quench at the plasma end, while for high-SEI plasmas (SEI ∼ 4 eV/molecule), quenching at maximum conversion is better. For low-SEI plasmas, quenching can even increase the conversion beyond the dissociation in the plasma, known as superideal quenching. To better understand the effects of quenching at different plasma conditions, we study the dissociation and recombination rates, as well as the vibrational distribution functions (VDFs) of CO2, CO, and O2. When a high vibrational−translational (VT) nonequilibrium exists at the moment of quenching, the dissociation and recombination reaction rates both increase. Depending on the conversion degree at the moment of quenching, this can lead to a net increase or decrease of CO2 conversion. In general, however, and certainly for equilibrium plasmas at high temperature, quenching after the plasma helps prevent recombination reactions and clearly enhances the final CO2 conversion. We also investigate the effect of different quenching cooling rates on the CO2 conversion and energy efficiency. Finally, we compare plasma-based conversion to purely thermal conversion. For warm plasmas with typical temperatures of 3000−4000 K, the conversion is roughly thermal.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000566481000003 Publication Date 2020-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; H2020 European Research Council, 810182 ; This research was supported by the FWO project (grant no. G.0383.16N) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 810182SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UAntwerpen. Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:172052 Serial 6407
Permanent link to this record
 

 
Author (up) Vermeylen, S.; De Waele, J.; Vanuytsel, S.; De Backer, J.; Van der Paal, J.; Ramakers, M.; Leyssens, K.; Marcq, E.; Van Audenaerde, J.; L. J. Smits, E.; Dewilde, S.; Bogaerts, A.
Title Cold atmospheric plasma treatment of melanoma and glioblastoma cancer cells Type A1 Journal article
Year 2016 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 13 Issue 13 Pages 1195-1205
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, two types of melanoma and glioblastoma cancer cell lines are treated with cold atmospheric plasma to assess the effect of several parameters on the cell viability. The cell viability decreases with treatment duration and time until analysis in all cell lines with varying sensitivity. The majority of dead cells stains both AnnexinV (AnnV) and propidium iodide, indicating that the plasma-treated non-viable cells are mostly late apoptotic or necrotic. Genetic mutations might be involved in the response to plasma. Comparing the effects of two gas mixtures, as well as indirect plasma-activated medium versus direct treatment, gives different results per cell line. In conclusion, this study confirms the potential of plasma for cancer therapy and emphasizes the influence of experimental parameters on therapeutic outcome.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393131600007 Publication Date 2016-10-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 26 Open Access
Notes The authors acknowledge the University of Antwerp for providing research funds. The authors are very grateful to V. Schulz-von der Gathen and J. Benedikt (Bochum University) for providing the COST RF plasma jet. The authors would also like to thank Eva Santermans (University of Hasselt) for statistical advice. J. De Waele, J. Van Audenaerde and J. Van der Paal are research fellows of the Research Foundation Flanders (fellowship numbers: 1121016N, 1S32316N and 11U5416N), E. Marcq of Flanders Innovation & Entrepreneurship (fellowship number: 141433). Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:138722 Serial 4328
Permanent link to this record