toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yang, Z.; Altantzis, T.; Zanaga, D.; Bals, S.; Van Tendeloo, G.; Pileni, M.-P. pdf  url
doi  openurl
  Title Supracrystalline Colloidal Eggs: Epitaxial Growth and Freestanding Three-Dimensional Supracrystals in Nanoscaled Colloidosomes Type A1 Journal article
  Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 138 Issue 138 Pages 3493-3500  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The concept of template-confined chemical reactions allows the synthesis of complex molecules that would hardly be producible through conventional method. This idea was developed to produce high quality nanocrystals more than 20 years ago. However, template-mediated assembly of colloidal nanocrystals is still at an elementary level, not only because of the limited templates suitable for colloidal assemblies, but also because of the poor control over the assembly of nanocrystals within a confined space. Here, we report the design of a new system called “supracrystalline colloidal eggs” formed by controlled assembly of nanocrystals into complex colloidal supracrystals through superlattice-matched epitaxial overgrowth along the existing colloidosomes. Then, with this concept, we extend the supracrystalline growth to lattice-mismatched binary nanocrystal superlattices, in order to reach anisotropic superlattice growths, yielding freestanding binary nanocrystal supracrystals that could not be produced previously.  
  Address CEA/IRAMIS , CEA Saclay F-91191 Gif-sur-Yvette, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000372477700034 Publication Date 2016-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 57 Open Access OpenAccess  
  Notes The research leading to these results has been supported by an Advanced Grant of the European Research Council under Grant 267129. The authors appreciate financial support by the European Union under the Framework 7 program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). The authors thank Dr. P. A. Albouy for the SAXS measurement.; esteem2_ta Approved (down) Most recent IF: 13.858  
  Call Number c:irua:131923 c:irua:131923 Serial 4018  
Permanent link to this record
 

 
Author Mikita, R.; Aharen, T.; Yamamoto, T.; Takeiri, F.; Ya, T.; Yoshimune, W.; Fujita, K.; Yoshida, S.; Tanaka, K.; Batuk, D.; Abakumov, A.M.; Brown, C.M.; Kobayashi, Y.; Kageyama, H.; pdf  doi
openurl 
  Title Topochemical nitridation with anion vacancy -assisted N3-/O2- exchange Type A1 Journal article
  Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 138 Issue 138 Pages 3211-3217  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present how the introduction of anion vacancies in oxyhydrides enables a route to access new oxynitrides, by conducting ammonolysis of perovskite oxyhydride EuTiO3-xHx (x similar to 0.18). At 400 degrees C, similar to our studies on BaTiO3-xHx, hydride lability enables a low temperature direct ammonolysis of EUTi3.82+O-2.82/H-0.18, leading to the N3-/H--exchanged product EuTi4+O2.82No0.12 square 0.06 center dot When the ammonolysis temperature was increased up to 800 degrees C, we observed a further nitridation involving N3-/O2- exchange, yielding a fully oxidized Eu3+Ti4+O2N with the GdFeO3-type distortion (Pnma) as a metastable phase, instead of pyrochlore structure. Interestingly, the same reactions using the oxide EuTiO3 proceeded through a 1:1 exchange of N3- with O-2 only above 600 degrees C and resulted in incomplete nitridation to EuTi02.25N0.75, indicating that anion vacancies created during the initial nitridation process of EuTiO2.82H0.18 play a crucial role in promoting anion (N3-/O2-) exchange at high temperatures. Hence, by using (hydride-induced) anion-deficient precursors, we should be able to expand the accessible anion composition of perovskite oxynitrides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000371945800055 Publication Date 2016-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 28 Open Access  
  Notes Approved (down) Most recent IF: 13.858  
  Call Number UA @ lucian @ c:irua:133156 Serial 4266  
Permanent link to this record
 

 
Author Bladt, E.; van Dijk-Moes, R.J.A.; Peters, J.; Montanarella, F.; de Mello Donega, C.; Vanmaekelbergh, D.; Bals, S. url  doi
openurl 
  Title Atomic Structure of Wurtzite CdSe (Core)/CdS (Giant Shell) Nanobullets Related to Epitaxy and Growth Type A1 Journal article
  Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 138 Issue 138 Pages 14288-14293  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hetero-nanocrystals consisting of a CdSe core and a giant CdS shell have shown remarkable optical properties which are promising for applications in opto-electrical devices. Since these properties sensitively depend on the size and shape, a morphological characterization is of high interest. Here, we present a High Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM) study of CdSe (core) / CdS (giant shell) hetero-nanocrystals. Electron tomography reveals that the nanocrystals have a bullet shape, either ending in a tip or a small dip, and that the CdSe core is positioned closer to the tip (or dip) than to the hexagonal base. Based on a high resolution HAADF-STEM study, we were able to determine all the surface facets. We present a heuristic model for the different growth stages of the CdS crystal around the CdSe core.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000387095000026 Publication Date 2016-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 28 Open Access OpenAccess  
  Notes S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). D.V. wishes to acknowledge the Dutch Foundation for Fundamental Research on Matter (FOM) in the programme ‘Designing Dirac Carriers in Semiconductor Superstructures’. E.B. gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO Vlaanderen).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved (down) Most recent IF: 13.858  
  Call Number EMAT @ emat @ c:irua:138251 Serial 4325  
Permanent link to this record
 

 
Author Polavarapu, L.; Zanaga, D.; Altantzis, T.; Rodal-Cedeira, S.; Pastoriza-Santos, I.; Pérez-Juste, J.; Bals, S.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Galvanic Replacement Coupled to Seeded Growth as a Route for Shape-Controlled Synthesis of Plasmonic Nanorattles Type A1 Journal article
  Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 138 Issue 138 Pages 11453-11456  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Shape-controlled synthesis of metal nanoparticles (NPs) requires mechanistic understanding toward the development of modern nanoscience and nanotechnology. We demonstrate here an unconventional shape transformation of Au@Ag core−shell NPs (nanorods and nanocubes) into octahedral nanorattles via roomtemperature galvanic replacement coupled with seeded growth. The corresponding morphological and chemical transformations were investigated in three dimensions, using state-of-the-art X-ray energy-dispersive spectroscopy (XEDS) tomography. The addition of a reducing agent (ascorbic acid) plays a key role in this unconventional mechanistic path, in which galvanic replacement is found to dominate initially when the shell is made of Ag, while seeded growth suppresses transmetalation when a composition of Au:Ag (∼60:40) is reached in the shell, as revealed by quantitative XEDS tomography. This work not only opens new avenues toward the shape control of hollow NPs beyond the morphology of sacrificial templates, but also expands our understanding of chemical transformations in nanoscale galvanic replacement reactions. The XEDS electron tomography study presented here can be generally applied to investigate a wide range of nanoscale morphological and chemical transformations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383410700008 Publication Date 2016-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 75 Open Access OpenAccess  
  Notes This work has been funded by the European Research Council (ERC Advanced Grant No. 267867- PLASMAQUO, ERC Starting Grant No. 335078-COLOURATOMS) and Spanish MINECO (Grants MAT2013-45168-R and MAT2013-46101-R); ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved (down) Most recent IF: 13.858  
  Call Number EMAT @ emat @ c:irua:137123 Serial 4329  
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Winckelmans, N.; Altantzis, T.; Bals, S.; Grzelczak, M.; Liz-Marzán, L.M. url  doi
openurl 
  Title High-Yield Seeded Growth of Monodisperse Pentatwinned Gold Nanoparticles through Thermally Induced Seed Twinning Type A1 Journal article
  Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 139 Issue 139 Pages 107-110  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We show here that thermal treatment of small seeds results in extensive twinning and a subsequent drastic yield improvement (>85%) in the formation of pentatwinned nanoparticles, with pre-selected morphology (nanorods, bipyramids and decahedra) and aspect ratio. The “quality” of the seeds thus defines the yield of the obtained nanoparticles, which in the case of nanorods avoids the need for additives such as Ag+ ions. This modified seeded growth method also improves reproducibility, as the seeds can be stored for extended periods of time without compromising the quality of the final nanoparticles. Additionally, minor modification of the seeds with Pd allows their localization within the final particles, which opens new avenues toward mechanistic studies. All together, these results represent a paradigm shift in anisotropic gold nanoparticle synthesis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000392036900025 Publication Date 2016-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 267 Open Access OpenAccess  
  Notes Financial support is acknowledged from the European Research Council through ERC Advanced Grant Plasmaquo and the ERC Starting Grant COLOURATOM. T.A. acknowledges financial support from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved (down) Most recent IF: 13.858  
  Call Number EMAT @ emat @ c:irua:139018UA @ admin @ c:irua:139018 Serial 4339  
Permanent link to this record
 

 
Author Kuno, Y.; Tassel, C.; Fujita, K.; Batuk, D.; Abakumov, A.M.; Shitara, K.; Kuwabara, A.; Moriwake, H.; Watabe, D.; Ritter, C.; Brown, C.M.; Yamamoto, T.; Takeiri, F.; Abe, R.; Kobayashi, Y.; Tanaka, K.; Kageyama, H. pdf  doi
openurl 
  Title ZnTaO2N: Stabilized High-Temperature LiNbO3-type Structure Type A1 Journal article
  Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 138 Issue 138 Pages 15950-15955  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract By using a high-pressure reaction, we prepared a new oxynitride ZnTaO2N that crystallizes in a centrosymmetric (R (3) over barc) high-temperature LiNbO3-type structure (HTLN-type). The stabilization of the HTLN-type structure down to low temperatures (at least 20 K) makes it possible to investigate not only the stability of this phase, but also the phase transition to a noncentrosymmetric (R3c) LiNbO3-type structure (LN-type) which is yet to be clarified. Synchrotron and neutron diffraction studies in combination with transmission electron microscopy show that Zn is located at a disordered 12c site instead of 6a, implying an order disorder mechanism of the phase transition. It is found that the dosed d-shell of Zn2+, as well as the high-valent Ta5+ ion, is responsible for the stabilization of the HTLN-type structure, affording a novel quasitriangular ZnO2N coordination. Interestingly, only 3% Zn substitution for MnTaO2N induces a phase transition from LN- to HTLN-type structure, implying the proximity in energy between the two structural types, which is supported by the first-principles calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000389962800032 Publication Date 2016-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 13 Open Access  
  Notes Approved (down) Most recent IF: 13.858  
  Call Number UA @ lucian @ c:irua:140298 Serial 4452  
Permanent link to this record
 

 
Author van der Stam, W.; Geuchies, J.J.; Altantzis, T.; van den Bos, K.H.W.; Meeldijk, J.D.; Van Aert, S.; Bals, S.; Vanmaekelbergh, D.; de Mello Donega, C. pdf  url
doi  openurl
  Title Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–xMxBr3Perovskite Nanocrystals through Cation Exchange Type A1 Journal article
  Year 2017 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 139 Issue 139 Pages 4087-4097  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Colloidal CsPbX3 (X = Br, Cl, and I) perovskite nanocrystals (NCs) have emerged as promising phosphors and solar cell materials due to their remarkable optoelectronic properties. These properties can be tailored by not only controlling the size and shape of the NCs but also postsynthetic composition tuning through topotactic

anion exchange. In contrast, property control by cation exchange is still underdeveloped for colloidal CsPbX3 NCs. Here, we present a method that allows partial cation exchange in colloidal CsPbBr3 NCs, whereby Pb2+ is exchanged for several isovalent cations, resulting in doped CsPb1−xMxBr3 NCs (M= Sn2+, Cd2+, and Zn2+; 0 < x ≤ 0.1), with preservation of the original NC shape. The size of the parent NCs is also preserved in the product NCs, apart from a small (few

%) contraction of the unit cells upon incorporation of the guest cations. The partial Pb2+ for M2+ exchange leads to a blue-shift of the optical spectra, while maintaining the high photoluminescence quantum yields (>50%), sharp absorption features, and narrow emission of the parent CsPbBr3 NCs. The blue-shift in the optical spectra is attributed to the lattice contraction that accompanies the Pb2+ for M2+ cation exchange and is observed to scale linearly with the lattice contraction. This work opens up new possibilities to engineer the properties of halide perovskite NCs, which to date are demonstrated to be the only known

system where cation and anion exchange reactions can be sequentially combined while preserving the original NC shape, resulting in compositionally diverse perovskite NCs.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397477700027 Publication Date 2017-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 535 Open Access OpenAccess  
  Notes W.v.d.S. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under grant number ECHO.712.012.001. J.J.G. and D.V. acknowledge financial support from the Debye Graduate program. S.B. acknowledges financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). K.H.W.v.d.B., S.B., S.V.A. and T.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0368.15N, G.0369.15N), a Ph.D. grant to K.H.W.v.d.B, and a postdoctoral research grant to T.A. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved (down) Most recent IF: 13.858  
  Call Number EMAT @ emat @ c:irua:141754UA @ admin @ c:irua:141754 Serial 4482  
Permanent link to this record
 

 
Author Wee, L.H.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Zhang, K.; Marleny Rodriguez-Albelo, L.; Masala, A.; Bordiga, S.; Jiang, J.; Navarro, J.A.R.; Kirschhock, C.E.A.; Martens, J.A. doi  openurl
  Title 1D-2D-3D Transformation Synthesis of Hierarchical Metal-Organic Framework Adsorbent for Multicomponent Alkane Separation Type A1 Journal article
  Year 2017 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 139 Issue 139 Pages 819-828  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new hierarchical MOF consisting of Cu(II) centers connected by benzene-tricarboxylates (BTC) is prepared by thermoinduced solid transformation of a dense CuBTC precursor phase. The mechanism of the material formation has been thoroughly elucidated and revealed a transformation of a ribbon-like 1D building unit into 2D layers and finally a 3D network. The new phase contains excess copper, charge compensated by systematic hydroxyl groups, which leads to an open microporous framework with tunable permanent mesoporosity. The new phase is particularly attractive for molecular separation. Energy consumption of adsorptive separation processes can be lowered by using adsorbents that discriminate molecules based on adsorption entropy rather than enthalpy differences. In separation of a 11-component mixture of C-1-C-6 alkanes, the hierarchical phase outperforms the structurally related microporous HKUST-1 as well as silicate-based hierarchical materials. Grand canonical Monte Carlo (GCMC) simulation provides microscopic insight into the structural host-guest interaction, confirming low adsorption enthalpies and significant entropic contributions to the molecular separation. The unique three-dimensional hierarchical structure as well as the systematic presence of Cu(II) unsaturated coordination sites cause this exceptional behavior.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000392459300041 Publication Date 2016-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 33 Open Access Not_Open_Access  
  Notes ; L.H.W. and S.T. thank Research Foundation Flanders (FWO) for a postdoctoral research fellowship under contract numbers 12M1415N and G004613N, respectively. J.J. is grateful to the National University of Singapore for financial supports (R261-508-001-646/733 and R-279-000-474-112). J.A.R.N. acknowledges generous funding from Spanish Ministry of Economy (CTQ2014-53486-R) and FEDER and Marie Curie IIF-625939 (L.M.R.A) funding from European Union. J.A.M. gratefully acknowledges financial support from Flemish Government (Long-term structural funding Methusalem). Collaboration among universities was supported by the Belgian Government (IAP-PAI network). We thank E. Gobechiya for XRD measurements. We would like to acknowledge Matthias Thommes for the discussion on the interpretation of N<INF>2</INF> physisorption isotherms. ; Approved (down) Most recent IF: 13.858  
  Call Number UA @ lucian @ c:irua:141513 c:irua:141513 c:irua:141513 c:irua:141513 Serial 4492  
Permanent link to this record
 

 
Author Niu, H.; Pitcher, M.J.; Corkett, A.J.; Ling, S.; Mandal, P.; Zanella, M.; Dawson, K.; Stamenov, P.; Batuk, D.; Abakumov, A.M.; Bull, C.L.; Smith, R.I.; Murray, C.A.; Day, S.J.; Slater, B.; Cora, F.; Claridge, J.B.; Rosseinsky, M.J. url  doi
openurl 
  Title Room Temperature Magnetically Ordered Polar Corundum GaFeO3 Displaying Magnetoelectric Coupling Type A1 Journal article
  Year 2017 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 139 Issue 4 Pages 1520-1531  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The polar corundum structure type offers a route to new room temperature multiferroic materials, as the partial LiNbO3-type cation ordering that breaks inversion symmetry may be combined with long-range magnetic ordering of high spin d(5) cations above room temperature in the AFeO(3) system. We report the synthesis of a polar corundum GaFeO3 by a high-pressure, high-temperature route and demonstrate that its polarity arises from partial LiNbO3 -type cation ordering by complementary use of neutron, X-ray, and electron diffraction methods. In situ neutron diffraction shows that the polar corundum forms directly from AlFeO3-type GaFeO3 under the synthesis conditions. The A(3+)/Fe3+ cations are shown to be more ordered in polar corundum GaFeO3 than in isostructural ScFeO3. This is explained by DFT calculations which indicate that the extent of ordering is dependent on the configurational entropy available to each system at the very different synthesis temperatures required to form their corundum structures. Polar corundum GaFeO3 exhibits weak ferromagnetism at room temperature that arises from its Fe2O3-like magnetic ordering, which persists to a temperature of 408 K. We demonstrate that the polarity and magnetization are coupled in this system with a measured linear magnetoelectric coupling coefficient of 0.057 ps/m. Such coupling is a prerequisite for potential applications of polar corundum materials in multiferroic/magnetoelectric devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393355600034 Publication Date 2016-12-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 12 Open Access OpenAccess  
  Notes This work was funded by the EPSRC under EP/N004884. We thank the STFC for provision of beam time at ISIS and Diamond Light Source. We thank the Materials Chemistry Consortium (EPSRC, EP/L000202) for access to computer time on the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). A.M.A. is grateful to the Russian Science Foundation (Grant 14-13-00680) for financial support. MJ.R is a Royal Society Research Professor. We wish to thank Dr. Ming Li (University of Nottingham, UK) for helpful discussion and advice. Original data is available at the University of Liverpool's DataCat repository at DOI: 10.17638/datacat.liverpool.ac.uk/235. The supporting crystallographic information file may also be obtained from FIZ Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (e-mail: crysdata@fiz-karlsruhe.de), on quoting the deposition number CSD-432419. Approved (down) Most recent IF: 13.858  
  Call Number EMAT @ emat @c:irua:147507 Serial 4777  
Permanent link to this record
 

 
Author Xia, C.; Winckelmans, N.; Prins, P.T.; Bals, S.; Gerritsen, H.C.; de Mello Donegá, C. url  doi
openurl 
  Title Near-Infrared-Emitting CuInS2/ZnS Dot-in-Rod Colloidal Heteronanorods by Seeded Growth Type A1 Journal article
  Year 2018 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 140 Issue 140 Pages 5755-5763  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Synthesis protocols for anisotropic CuInX2 (X = S, Se, Te)-based heteronanocrystals (HNCs) are scarce due to the difficulty in balancing the reactivities of multiple precursors and the high solid-state diffusion rates of the cations involved in the CuInX2 lattice. In this work, we report a multistep seeded growth synthesis protocol that yields colloidal wurtzite CuInS2/ZnS dot core/rod shell HNCs with photoluminescence in the NIR (∼800 nm). The wurtzite CuInS2 NCs used as seeds are obtained by topotactic partial Cu+ for In3+ cation exchange in template Cu2–xS NCs. The seed NCs are injected in a hot solution of zinc oleate and hexadecylamine in octadecene, 20 s after the injection of sulfur in octadecene. This results in heteroepitaxial growth of wurtzite ZnS primarily on the Sulfur-terminated polar facet of the CuInS2 seed NCs, the other facets being overcoated only by a thin (∼1 monolayer) shell. The fast (∼21 nm/min) asymmetric axial growth of the nanorod proceeds by addition of [ZnS] monomer units, so that the polarity of the terminal (002) facet is preserved throughout the growth. The delayed injection of the CuInS2 seed NCs is crucial to allow the concentration of [ZnS] monomers to build up, thereby maximizing the anisotropic heteroepitaxial growth rates while minimizing the rates of competing processes (etching, cation exchange, alloying). Nevertheless, a mild etching still occurred, likely prior to the onset of heteroepitaxial overgrowth, shrinking the core size from 5.5 to ∼4 nm. The insights provided by this work open up new possibilities in designing multifunctional Cu-chalcogenide based colloidal heteronanocrystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000431600000016 Publication Date 2018-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 43 Open Access OpenAccess  
  Notes Chenghui Xia acknowledges China Scholarship Council (CSC) for financial support (NO. 201406330055). S.B and N.W. acknowledge funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant Number ECHO.712.014.001. The authors thank Xiaobin Xie and Da Wang for some TEM measurements, Donglong Fu for XRD measurements, Christina H. M. van Oversteeg for ICP-OES measurements, and Chun-Che Lin for suggestions regarding the synthesis. ECAS_Sara (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved (down) Most recent IF: 13.858  
  Call Number EMAT @ emat @c:irua:150362UA @ admin @ c:irua:150362 Serial 4917  
Permanent link to this record
 

 
Author Imran, M.; Peng, L.; Pianetti, A.; Pinchetti, V.; Ramade, J.; Zito, J.; Di Stasio, F.; Buha, J.; Toso, S.; Song, J.; Infante, I.; Bals, S.; Brovelli, S.; Manna, L. url  doi
openurl 
  Title Halide perovskite-lead chalcohalide nanocrystal heterostructures Type A1 Journal article
  Year 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 143 Issue 3 Pages 1435-1446  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the synthesis of colloidal CsPbX3-Pb4S3Br2 (X = Cl, Br, I) nanocrystal heterostructures, providing an example of a sharp and atomically resolved epitaxial interface between a metal halide perovskite and a non-perovskite lattice. The CsPbBr3-Pb4S3Br2 nanocrystals are prepared by a two-step direct synthesis using preformed subnanometer CsPbBr3 clusters. Density functional theory calculations indicate the creation of a quasi-type II alignment at the heterointerface as well as the formation of localized trap states, promoting ultrafast separation of photogenerated excitons and carrier trapping, as confirmed by spectroscopic experiments. Postsynthesis reaction with either Cl- or I- ions delivers the corresponding CsPbCI3-Pb4S3Br2 and CsPbI3-Pb4S3Br2 heterostructures, thus enabling anion exchange only in the perovskite domain. An increased structural rigidity is conferred to the perovskite lattice when it is interfaced with the chalcohalide lattice. This is attested by the improved stability of the metastable gamma phase (or “black” phase) of CsPbI3 in the CsPbI3-Pb4S3Br2 heterostructure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000614064400024 Publication Date 2021-01-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 54 Open Access OpenAccess  
  Notes This work was performed on the Dutch national e-infrastructure with the support of SURF Cooperative. L.P. and J.S. are thankful for the support by the National Key R&D Program of China (2018YFC0910600) and the National Natural Science Foundation of China (61775145). F.D.S. and S.B. acknowledge support by the European Research Council via the ERC-StG “NANOLED” (851794) and the ERC-Cog “REALNANO” (815128). The authors acknowledge financial support from the European Commission under the Horizon 2020 Programme through Grant Agreement No. 731019 (EUSMI). S.B., A.P., and V.P. gratefully acknowledge the financial support from the Italian Ministry of University and Research (MIUR) through grant “Dipartimenti di Eccellenza2017 Materials For Energy”.; sygma Approved (down) Most recent IF: 13.858  
  Call Number UA @ admin @ c:irua:176584 Serial 6726  
Permanent link to this record
 

 
Author Bhaskar, G.; Gvozdetskyi, V.; Batuk, M.; Wiaderek, K.M.; Sun, Y.; Wang, R.; Zhang, C.; Carnahan, S.L.; Wu, X.; Ribeiro, R.A.; Bud'ko, S.L.; Canfield, P.C.; Huang, W.; Rossini, A.J.; Wang, C.-Z.; Ho, K.-M.; Hadermann, J.; Zaikina, J., V pdf  doi
openurl 
  Title Topochemical deintercalation of Li from layered LiNiB : toward 2D MBene Type A1 Journal article
  Year 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 143 Issue 11 Pages 4213-4223  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li similar to 0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state Li-7 and B-1(1) NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of (Li similar to 0.5NiB) and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a “zip-lock” mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li[NiB](2) and Li[NiB](3) compositions. The crystal structure of Li similar to 0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB](2), or triple [NiB](3) layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li similar to 0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634761500021 Publication Date 2021-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited Open Access Not_Open_Access  
  Notes Approved (down) Most recent IF: 13.858  
  Call Number UA @ admin @ c:irua:177697 Serial 6790  
Permanent link to this record
 

 
Author Feng, X.; Jena, H.S.; Krishnaraj, C.; Arenas-Esteban, D.; Leus, K.; Wang, G.; Sun, J.; Rüscher, M.; Timoshenko, J.; Roldan Cuenya, B.; Bals, S.; Voort, P.V.D. pdf  url
doi  openurl
  Title Creation of Exclusive Artificial Cluster Defects by Selective Metal Removal in the (Zn, Zr) Mixed-Metal UiO-66 Type A1 Journal article
  Year 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume Issue Pages jacs.1c05357  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The differentiation between missing linker defects

and missing cluster defects in MOFs is difficult, thereby limiting the

ability to correlate materials properties to a specific type of defects.

Herein, we present a novel and easy synthesis strategy for the

creation of solely “missing cluster defects” by preparing mixed-metal

(Zn, Zr)-UiO-66 followed by a gentle acid wash to remove the Zn

nodes. The resulting material has the reo UiO-66 structure, typical

for well-defined missing cluster defects. The missing clusters are

thoroughly characterized, including low-pressure Ar-sorption, iDPCSTEM

at a low dose (1.5 pA), and XANES/EXAFS analysis. We

show that the missing cluster UiO-66 has a negligible number of missing linkers. We show the performance of the missing cluster

UiO-66 in CO2 sorption and heterogeneous catalysis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000730569500001 Publication Date 2021-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 29 Open Access OpenAccess  
  Notes Agentschap Innoveren en Ondernemen, HBC.2019.0110 HBC.2021.0254 ; Universiteit Gent; Fonds Wetenschappelijk Onderzoek, 665501 ; Dalian University of Technology; China Scholarship Council, 201507565009 ; National Natural Science Foundation of China, 22101039 ; H2020 European Research Council, 815128 REALNANO ; sygmaSB Approved (down) Most recent IF: 13.858  
  Call Number EMAT @ emat @c:irua:183951 Serial 6833  
Permanent link to this record
 

 
Author Gonzalez-Nelson, A.; Mula, S.; Simenas, M.; Balciunas, S.; Altenhof, A.R.; Vojvodin, C.S.; Canossa, S.; Banys, J.; Schurko, R.W.; Coudert, F.-X.; van der Veen, M.A. url  doi
openurl 
  Title Emergence of coupled rotor dynamics in metal-organic frameworks via tuned steric interactions Type A1 Journal article
  Year 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 143 Issue 31 Pages 12053-12062  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The organic components in metal-organic frameworks (MOFs) are unique: they are embedded in a crystalline lattice, yet, as they are separated from each other by tunable free space, a large variety of dynamic behavior can emerge. These rotational dynamics of the organic linkers are especially important due to their influence over properties such as gas adsorption and kinetics of guest release. To fully exploit linker rotation, such as in the form of molecular machines, it is necessary to engineer correlated linker dynamics to achieve their cooperative functional motion. Here, we show that for MIL-53, a topology with closely spaced rotors, the phenylene functionalization allows researchers to tune the rotors' steric environment, shifting linker rotation from completely static to rapid motions at frequencies above 100 MHz. For steric interactions that start to inhibit independent rotor motion, we identify for the first time the emergence of coupled rotation modes in linker dynamics. These findings pave the way for function-specific engineering of gear-like cooperative motion in MOFs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000684581100022 Publication Date 2021-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited Open Access OpenAccess  
  Notes Approved (down) Most recent IF: 13.858  
  Call Number UA @ admin @ c:irua:180504 Serial 6867  
Permanent link to this record
 

 
Author Ejsmont, A.; Andreo, J.; Lanza, A.; Galarda, A.; Macreadie, L.; Wuttke, S.; Canossa, S.; Ploetz, E.; Goscianska, J. pdf  url
doi  openurl
  Title Applications of reticular diversity in metal-organic frameworks : an ever-evolving state of the art Type A1 Journal article
  Year 2021 Publication Coordination Chemistry Reviews Abbreviated Journal Coordin Chem Rev  
  Volume 430 Issue Pages 213655  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Metal-organic frameworks (MOFs) are exciting materials due to their extensive applicability in a multitude of modern technological fields. Their most prominent characteristic and primary origin of their widespread success is the exceptional variety of their structures, which we termed 'reticular diversity'. Naturally, the ever-emerging applications of MOFs made it increasingly common that researchers from various areas delve into reticular chemistry to overcome their scientific challenges. This confers a crucial role to comprehensive overviews capable of providing newcomers with the knowledge of the state of the art, as well as with the key physics and chemistry considerations needed to design MOFs for a specific application. In this review, we commit to this purpose by outlining the fundamental understanding needed to carefully navigate MOFs' reticular diversity in their main fields of application, namely hostguest chemistry, chemical sensing, electronics, photophysics, and catalysis. Such knowledge and a meticulous, open-minded approach to the design of MOFs paves the way for their most innovative and successful applications, and for the global advancement of the research areas they are employed in. (C) 2020 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000615299000008 Publication Date 2020-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-8545 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.324 Times cited Open Access OpenAccess  
  Notes Approved (down) Most recent IF: 13.324  
  Call Number UA @ admin @ c:irua:176731 Serial 6715  
Permanent link to this record
 

 
Author Cai, Y.; Mei, D.; Chen, Y.; Bogaerts, A.; Tu, X. url  doi
openurl 
  Title Machine learning-driven optimization of plasma-catalytic dry reforming of methane Type A1 Journal Article
  Year 2024 Publication Journal of Energy Chemistry Abbreviated Journal Journal of Energy Chemistry  
  Volume 96 Issue Pages 153-163  
  Keywords A1 Journal Article; Plasma catalysis Machine learning Process optimization Dry reforming of methane Syngas production; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This study investigates the dry reformation of methane (DRM) over Ni/Al2O3 catalysts in a dielectric barrier discharge (DBD) non-thermal plasma reactor. A novel hybrid machine learning (ML) model is developed to optimize the plasma-catalytic DRM reaction with limited experimental data. To address the non-linear and complex nature of the plasma-catalytic DRM process, the hybrid ML model integrates three well-established algorithms: regression trees, support vector regression, and artificial neural networks. A genetic algorithm (GA) is then used to optimize the hyperparameters of each algorithm within the hybrid ML model. The ML model achieved excellent agreement with the experimental data, demonstrating its efficacy in accurately predicting and optimizing the DRM process. The model was subsequently used to investigate the impact of various operating parameters on the plasma-catalytic DRM performance. We found that the optimal discharge power (20 W), CO2/CH4 molar ratio (1.5), and Ni loading (7.8 wt%) resulted in the maximum energy yield at a total flow rate of 51 mL/min. Furthermore, we investigated the relative significance of each operating parameter on the performance of the plasmacatalytic DRM process. The results show that the total flow rate had the greatest influence on the conversion, with a significance exceeding 35% for each output, while the Ni loading had the least impact on the overall reaction performance. This hybrid model demonstrates a remarkable ability to extract valuable insights from limited datasets, enabling the development and optimization of more efficient and selective plasma-catalytic chemical processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-4956 ISBN Additional Links  
  Impact Factor 13.1 Times cited Open Access  
  Notes This project received funding from the European Union’s Hori- zon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 813393. Approved (down) Most recent IF: 13.1; 2024 IF: 2.594  
  Call Number PLASMANT @ plasmant @ Serial 9124  
Permanent link to this record
 

 
Author Loenders, B.; Michiels, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Is a catalyst always beneficial in plasma catalysis? Insights from the many physical and chemical interactions Type A1 Journal Article
  Year 2023 Publication Journal of Energy Chemistry Abbreviated Journal Journal of Energy Chemistry  
  Volume 85 Issue Pages 501-533  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma-catalytic dry reforming of CH4 (DRM) is promising to convert the greenhouse gasses CH4 and CO2 into value-added chemicals, thus simultaneously providing an alternative to fossil resources as feedstock for the chemical industry. However, while many experiments have been dedicated to plasma-catalytic DRM, there is no consensus yet in literature on the optimal choice of catalyst for targeted products, because the underlying mechanisms are far from understood. Indeed, plasma catalysis is very complex, as it encompasses various chemical and physical interactions between plasma and catalyst, which depend on many parameters. This complexity hampers the comparison of experimental results from different studies, which, in our opinion, is an important bottleneck in the further development of this promising research field. Hence, in this perspective paper, we describe the important physical and chemical effects that should be accounted for when designing plasma-catalytic experiments in general, highlighting the need for standardized experimental setups, as well as careful documentation of packing properties and reaction conditions, to further advance this research field. On the other hand, many parameters also create many windows of opportunity for further optimizing plasma-catalytic systems. Finally, various experiments also reveal the lack of improvement in plasma catalysis compared to plasma-only, specifically for DRM, but the underlying mechanisms are unclear. Therefore, we present our newly developed coupled plasma-surface kinetics model for DRM, to provide more insight in the underlying reasons. Our model illustrates that transition metal catalysts can adversely affect plasmacatalytic DRM, if radicals dominate the plasma-catalyst interactions. Thus, we demonstrate that a good understanding of the plasma-catalyst interactions is crucial to avoiding conditions at which these interactions negatively affect the results, and we provide some recommendations for improvement. For instance, we believe that plasma-catalytic DRM may benefit more from higher reaction temperatures, at which vibrational excitation can enhance the surface reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-4956 ISBN Additional Links UA library record  
  Impact Factor 13.1 Times cited Open Access Not_Open_Access  
  Notes This research was supported by the FWO-SBO project PlasMa- CatDESIGN (FWO grant ID S001619N), the FWO fellowship of R. Michiels (FWO grant ID 1114921N), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project). The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. Approved (down) Most recent IF: 13.1; 2023 IF: 2.594  
  Call Number PLASMANT @ plasmant @c:irua:198159 Serial 8806  
Permanent link to this record
 

 
Author Wanten, B.; Vertongen, R.; De Meyer, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-based CO2 conversion: How to correctly analyze the performance? Type A1 journal article
  Year 2023 Publication Journal of Energy Chemistry Abbreviated Journal Journal of Energy Chemistry  
  Volume 86 Issue Pages 180-196  
  Keywords A1 journal article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001070885000001 Publication Date 2023-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-4956 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.1 Times cited Open Access Not_Open_Access  
  Notes We acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (Grant ID 110221N), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement No 810182 – SCOPE ERC Synergy project), and the Methusalem funding of the University of Antwerp. We acknowledge the icons from the graphical abstract made by dDara, geotatah, Spashicons and Freepik on www.flaticon.com. We also thank Stein Maerivoet, Joachim Slaets, Elizabeth Mercer, Colín Ó’Modráin, Joran Van Turnhout, Pepijn Heirman, dr. Yury Gorbanev, dr. Fanny Girard-Sahun and dr. Sean Kelly for the interesting discussions and feedback. Approved (down) Most recent IF: 13.1; 2023 IF: 2.594  
  Call Number PLASMANT @ plasmant @c:irua:198709 Serial 8816  
Permanent link to this record
 

 
Author Bigiani, L.; Andreu, T.; Maccato, C.; Fois, E.; Gasparotto, A.; Sada, C.; Tabacchi, G.; Krishnan, D.; Verbeeck, J.; Ramon Morante, J.; Barreca, D. url  doi
openurl 
  Title Engineering Au/MnO₂ hierarchical nanoarchitectures for ethanol electrochemical valorization Type A1 Journal article
  Year 2020 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A  
  Volume 8 Issue 33 Pages 16902-16907  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The design of eco-friendly electrocatalysts for ethanol valorization is an open challenge towards sustainable hydrogen production. Herein we present an original fabrication route to effective electrocatalysts for the ethanol oxidation reaction (EOR). In particular, hierarchical MnO(2)nanostructures are grown on high-area nickel foam scaffolds by a plasma-assisted strategy and functionalized with low amounts of optimally dispersed Au nanoparticles. This strategy leads to catalysts with a unique morphology, designed to enhance reactant-surface contacts and maximize active site utilization. The developed nanoarchitectures show superior performances for ethanol oxidation in alkaline media. We reveal that Au decoration boosts MnO(2)catalytic activity by inducing pre-dissociation and pre-oxidation of the adsorbed ethanol molecules. This evidence validates our strategy as an effective route for the development of green electrocatalysts for efficient electrical-to-chemical energy conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000562931300008 Publication Date 2020-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.9 Times cited 16 Open Access OpenAccess  
  Notes ; This work was financially supported by Padova University DOR 2016-2019 and P-DiSC #03BIRD2018-UNIPD OXYGENA projects, as well as by the INSTM Consortium (INSTMPD004 – NETTUNO), AMGA Foundation Mn4Energy project and Insubria University FAR2018. J. V. and D. K. acknowledge funding from the Flemish Government (Hercules), GOA project “Solarpaint” (Antwerp University) and European Union's H2020 programme under grant agreement no. 823717 ESTEEM3. The authors are grateful to Dr Gianluca Corr for skillful technical support. ; esteem3TA; esteem3reported Approved (down) Most recent IF: 11.9; 2020 IF: 8.867  
  Call Number UA @ admin @ c:irua:171989 Serial 6506  
Permanent link to this record
 

 
Author Bafekry, A.; Obeid, M.; Nguyen, C.; Bagheri Tagani, M.; Ghergherehchi, M. url  doi
openurl 
  Title Graphene hetero-multilayer on layered platinum mineral Jacutingaite (Pt₂HgSe₃): Van der Waals heterostructures with novel optoelectronic and thermoelectric performances Type A1 Journal article
  Year 2020 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A  
  Volume 8 Issue 26 Pages 13248-13260  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent successful synthesis of the layered platinum mineral jacutingaite (Pt2HgSe3), we have studied the optoelectronic, mechanical, and thermoelectric properties of graphene hetero-multilayer on Pt(2)HgSe(3)monolayer (PHS) heterostructures (LG/PHS) by using first-principles calculations. PHS is a topological insulator with a band gap of about 160 meV with fully relativistic calculations; when graphene layers are stacked on PHS, a narrow band gap of similar to 10-15 meV opens. In the presence of gate-voltage and out-of plane strain,i.e.pressure, the electronic properties are modified; the Dirac-cone of graphene can be shifted upwards (downward) to a lower (higher) binding energy. The absorption spectrum shows two peaks, which are located around 216 nm (5.74 eV) and protracted to 490 nm (2.53 eV), indicating that PHS could absorb more visible light. Increasing the number of graphene layers on PHS has a positive impact on the UV-vis light absorption and gives a clear red-shift with enhanced absorption intensity. To investigate the electronic performance of the heterostructure, the electrical conductance and thermopower of a device composed of graphene layers and PHS is examined by a combination of DFT and Green function formalism. The number of graphene layers can significantly tune the thermopower and electrical conductance. This analysis reveals that the heterostructures not only significantly affect the electronic properties, but they can also be used as an efficient way to modulate the optic and thermoelectric properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000546391600032 Publication Date 2020-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.9 Times cited 20 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (NRF-2017R1A2B2011989) and Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.01-2019.05. ; Approved (down) Most recent IF: 11.9; 2020 IF: 8.867  
  Call Number UA @ admin @ c:irua:169755 Serial 6529  
Permanent link to this record
 

 
Author Liu, F.; Meng, J.; Xia, F.; Liu, Z.; Peng, H.; Sun, C.; Xu, L.; Van Tendeloo, G.; Mai, L.; Wu, J. url  doi
openurl 
  Title Origin of the extra capacity in nitrogen-doped porous carbon nanofibers for high-performance potassium ion batteries Type A1 Journal article
  Year 2020 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A  
  Volume 8 Issue 35 Pages 18079-18086  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract While graphite has limited capacity as an anode material for potassium-ion batteries, nitrogen-doped carbon materials are more promising as extra capacity can usually be produced. However, the mechanism behind the origin of the extra capacity remains largely unclear. Here, the potassium storage mechanisms have been systematically studied in freestanding and porous N-doped carbon nanofibers with an additional similar to 100 mA h g(-1)discharge capacity at 0.1 A g(-1). The extra capacity is generated in the whole voltage window range from 0.01 to 2 V, which corresponds to both surface/interface K-ion absorptions due to the pyridinic N and pyrrolic N induced atomic vacancies and layer-by-layer intercalation due to the effects of graphitic N. As revealed by transmission electron microscopy, the N-doped samples have a clear and enhanced K-intercalation reaction. Theoretical calculations confirmed that the micropores with pyridinic N and pyrrolic N provide extra sites to form bonds with K, resulting in the extra capacity at high voltage. The chemical absorption of K-ions occurring inside the defective graphitic layer will prompt fast diffusion of K-ions and full realization of the intercalation capacity at low voltage. The approach of preparing N-doped carbon-based materials and the mechanism revealed by this work provide directions for the development of advanced materials for efficient energy storage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000569873400015 Publication Date 2020-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.9 Times cited 2 Open Access OpenAccess  
  Notes ; F. Liu and J. S. Meng contributed equally to this work. This work was supported by the National Natural Science Foundation of China (51832004 and 51521001), the National Key Research and Development Program of China (2016YFA0202603), and the Natural Science Foundation of Hubei Province (2019CFA001). The S/TEM work was performed at the Nanostructure Research Center (NRC), which is supported by the Fundamental Research Funds for the Central Universities (WUT: 2019III012GX, 2020III002GX), the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and the State Key Laboratory of Silicate Materials for Architectures (all of the laboratories are at Wuhan University of Technology). ; Approved (down) Most recent IF: 11.9; 2020 IF: 8.867  
  Call Number UA @ admin @ c:irua:172741 Serial 6573  
Permanent link to this record
 

 
Author Sarikurt, S.; Kocabas, T.; Sevik, C. doi  openurl
  Title High-throughput computational screening of 2D materials for thermoelectrics Type A1 Journal article
  Year 2020 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A  
  Volume 8 Issue 37 Pages 19674-19683  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract High-performance thermoelectric materials are critical in recuperating the thermal losses in various machinery and promising in renewable energy applications. In this respect, the search for novel thermoelectric materials has attracted considerable attention. In particular, low dimensional materials have been proposed as potential candidates due to their unique and controllable thermal and electronic transport properties. The considerable potential of several two-dimensional materials as thermoelectric devices has already been uncovered and many new candidates that merit further research have been suggested. In this regard, we comprehensively investigate the thermoelectric coefficients and electronic fitness function (EFF) of a large family of structurally isotropic and anisotropic two-dimensional layered materials using density functional theory combined with semi-classical Boltzmann transport theory. With this high-throughput screening, we bring to light additional 2D crystals that haven't been previously classified as favorable TE materials. We predict that Pb2Se2, GeS2, As-2, NiS2, Hf2O6, Zr2O6, AsBrS, ISbTe, ISbSe, AsISe, and AsITe are promising isotropic thermoelectric materials due to their considerably high EFF values. In addition to these materials, Hf2Br4, Zr2Br4, Hf2Cl4, Zr2Cl4, Hf2O6, Zr(2)O(6)and Os(2)O(4)exhibit strong anisotropy and possess prominently high EFF values.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000573889000046 Publication Date 2020-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.9 Times cited Open Access  
  Notes Approved (down) Most recent IF: 11.9; 2020 IF: 8.867  
  Call Number UA @ admin @ c:irua:193778 Serial 8039  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Tsirlin, A.A.; Hadermann, J.; Abakumov, A.M. pdf  url
doi  openurl
  Title Trapping of Oxygen Vacancies at Crystallographic Shear Planes in Acceptor-Doped Pb-Based Ferroelectrics Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 54 Issue 54 Pages 14787-14790  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The defect chemistry of the ferroelectric material PbTiO3 after doping with Fe(III) acceptor ions is reported. Using advanced transmission electron microscopy and powder X-ray and neutron diffraction, we demonstrate that even at concentrations as low as circa 1.7% (material composition approximately ABO2.95), the oxygen vacancies are trapped into extended planar defects, specifically crystallographic shear planes. We investigate the evolution of these defects upon doping and unravel their detailed atomic structure using the formalism of superspace crystallography, thus unveiling their role in nonstoichiometry in the Pb-based perovskites.  
  Address Chemistry Department, Moscow State University, 119991, Moscow (Russia). artem.abakumov@uantwerpen.be  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000367723400031 Publication Date 2015-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 3 Open Access  
  Notes A.M.A. is grateful to the Russian Science Foundation (grant 14-13-00680). AT was funded by the Mobilitas grant MTT77 of the ESF and by the Federal Ministry for Education and Research through the Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. Approved (down) Most recent IF: 11.994; 2015 IF: 11.261  
  Call Number c:irua:131104 Serial 4080  
Permanent link to this record
 

 
Author Li, M.R.; Retuerto, M.; Deng, Z.; Stephens, P.W.; Croft, M.; Huang, Q.; Wu, H.; Deng, X.; Kotliar, G.; Sánchez-Benítez, J.; Hadermann, J.; Walker, D.; Greenblatt, M.; pdf  doi
openurl 
  Title Giant magnetoresistance in the half-metallic double-perovskite ferrimagnet Mn2FeReO6 Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 54 Issue 54 Pages 12069-12073  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The first transition-metal-only double perovskite compound, Mn2+ Fe-2(3+) Re5+ O-6, with 17 unpaired d electrons displays ferrimagnetic ordering up to 520K and a giant positive magnetoresistance of up to 220% at 5K and 8 T. These properties result from the ferrimagnetically coupled Fe and Re sublattice and are affected by a two-to-one magnetic-structure transition of the Mn sublattice when a magnetic field is applied. Theoretical calculations indicate that the half-metallic state can be mainly attributed to the spin polarization of the Fe and Re sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000363396000031 Publication Date 2015-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited Open Access  
  Notes Approved (down) Most recent IF: 11.994; 2015 IF: 11.261  
  Call Number UA @ lucian @ c:irua:129457 Serial 4186  
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Hendriks, E.; Vanmeert, F.; van der Snickt, G.; Cotte, M.; Falkenberg, G.; Brunetti, B.G.; Miliani, C. pdf  doi
openurl 
  Title Evidence for degradation of the chrome yellows in Van Gogh's sunflowers : a study using noninvasive in situ methods and synchrotron-radiation-based x-ray techniques Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 54 Issue 47 Pages 13923-13927  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This paper presents firm evidence for the chemical alteration of chrome yellow pigments in Van Gogh's Sunflowers (Van Gogh Museum, Amsterdam). Noninvasive in situ spectroscopic analysis at several spots on the painting, combined with synchrotron-radiation-based X-ray investigations of two microsamples, revealed the presence of different types of chrome yellow used by Van Gogh, including the lightfast PbCrO4 and the sulfur-rich PbCr1-xSxO4 (x approximate to 0.5) variety that is known for its high propensity to undergo photoinduced reduction. The products of this degradation process, i.e., Cr-III compounds, were found at the interface between the paint and the varnish. Selected locations of the painting with the highest risk of color modification by chemical deterioration of chrome yellow are identified, thus calling for careful monitoring in the future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367722500009 Publication Date 2015-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 24 Open Access  
  Notes ; We acknowledge financial support from the Italian MIUR project SICH-PRIN (2010329WPF_001) and BELSPO (Brussels) Project S2-ART (SD04A), GOA “SOLARPAINT” (Research Fund Antwerp University, BOF-2015), and FWO (Brussels) projects G.0C12.13, G.0704.08, G.01769.09. We thank ESRF (EC-1051, HG-26) and DESY (I-20120312 EC) for beamtime grants received. Noninvasive analysis of Sunflowers were supported by the EU FP7 programme CHARISMA (Grant 228330) and the Fund Inbev-Baillet Latour (Brussels). L.M. acknowledges financial support from the CNR Short Term Mobility Programme-2013. We thank Muriel Geldof, Luc Megens, Suzan de Groot (The Netherlands Cultural Heritage Agency, RCE), Chiara Grazia, David Buti (CNR-ISTM and SMAArt Centre), and the staff of the Van Gogh Museum for their collaboration. ; Approved (down) Most recent IF: 11.994; 2015 IF: 11.261  
  Call Number UA @ admin @ c:irua:131110 Serial 5617  
Permanent link to this record
 

 
Author Vanmeert, F.; van der Snickt, G.; Janssens, K. pdf  doi
openurl 
  Title Plumbonacrite identified by X-ray powder diffraction tomography as a missing link during degradation of red lead in a Van Gogh painting Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 54 Issue 12 Pages 3607-3610  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Red lead, a semiconductor pigment used by artists since antiquity, is known to undergo several discoloration phenomena. These transformations are either described as darkening of the pigment caused by the formation of either plattnerite (β-PbO2) or galena (PbS) or as whitening by which red lead is converted into anglesite (PbSO4) or (hydro)cerussite (2 PbCO3⋅Pb(OH)2; PbCO3). X-ray powder diffraction tomography, a powerful analytical method that allows visualization of the internal distribution of different crystalline compounds in complex samples, was used to investigate a microscopic paint sample from a Van Gogh painting. A very rare lead mineral, plumbonacrite (3 PbCO3⋅ Pb(OH)2⋅PbO), was revealed to be present. This is the first reported occurrence of this compound in a painting dating from before the mid 20th century. It constitutes the missing link between on the one hand the photoinduced reduction of red lead and on the other hand (hydro)cerussite, and thus sheds new light on the whitening of red lead.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000351178300008 Publication Date 2015-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 24 Open Access  
  Notes ; The authors acknowledge L. Van der Loeff and M. Leeuwestein (Kroller-Muller Museum) for providing the paint sample. We thank Dr. J. Jaroszewicz (WUT) for performing the CT measurements. This research was carried out at the light source PETRA III at DESY, a member of the Helmholtz Association (HGF). We thank Dr. G. Falkenberg and the members of his team for their assistance in using beam line P06. We acknowledge financial support from the University of Antwerp GOA projects “XANES meets EELS” and “SOLARPaint”, as well as from BELSPO (Brussels) Project S2-ART and FWO (Brussels) project “ESRF-Dubble”. ; Approved (down) Most recent IF: 11.994; 2015 IF: 11.261  
  Call Number UA @ admin @ c:irua:124620 Serial 5774  
Permanent link to this record
 

 
Author Kundu, P.; Heidari, H.; Bals, S.; Ravishankar, N.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Formation and thermal stability of gold-silica nanohybrids : insight into the mechanism and morphology by electron tomography Type A1 Journal article
  Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 53 Issue 15 Pages 3970-3974  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Gold-silica hybrids are appealing in different fields of applications like catalysis, sensorics, drug delivery, and biotechnology. In most cases, the morphology and distribution of the heterounits play significant roles in their functional behavior. Methods of synthesizing these hybrids, with variable ordering of the heterounits, are replete; however, a complete characterization in three dimensions could not be achieved yet. A simple route to the synthesis of Au-decorated SiO2 spheres is demonstrated and a study on the 3D ordering of the heterounits by scanning transmission electron microscopy (STEM) tomography is presentedat the final stage, intermediate stages of formation, and after heating the hybrid. The final hybrid evolves from a soft self-assembled structure of Au nanoparticles. The hybrid shows good thermal stability up to 400 degrees C, beyond which the Au particles start migrating inside the SiO2 matrix. This study provides an insight in the formation mechanism and thermal stability of the structures which are crucial factors for designing and applying such hybrids in fields of catalysis and biotechnology. As the method is general, it can be applied to make similar hybrids based on SiO2 by tuning the reaction chemistry as needed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000333634800036 Publication Date 2014-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 10 Open Access OpenAccess  
  Notes This research has received funding from the European Community’s Seventh Framework Program (ERC; grant number 246791)— COUNTATOMS, COLOURATOMS, as well as from the IAP 7/05 Programme initiated by the Belgian Science Policy Office. Funding from the Department of Science and Technology (DST) is also acknowledged.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved (down) Most recent IF: 11.994; 2014 IF: 11.261  
  Call Number UA @ lucian @ c:irua:117186 Serial 1251  
Permanent link to this record
 

 
Author Lueangchaichaweng, W.; Brooks, N.R.; Fiorilli, S.; Gobechiya, E.; Lin, K.; Li, L.; Parres-Esclapez, S.; Javon, E.; Bals, S.; Van Tendeloo, G.; Martens, J.A.; Kirschhock, C.E.A.; Jacobs, P.A.; Pescarmona, P.P.; pdf  url
doi  openurl
  Title Gallium oxide nanorods : novel, template-free synthesis and high catalytic activity in epoxidation reactions Type A1 Journal article
  Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 53 Issue 6 Pages 1585-1589  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Gallium oxide nanorods with unprecedented small dimensions (20-80nm length and 3-5nm width) were prepared using a novel, template-free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2O2, rivaling the industrial benchmark microporous titanosilicate TS-1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000330558400021 Publication Date 2014-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 61 Open Access OpenAccess  
  Notes START 1; Methusalem; Prodex; IAP-PAI; and the ERC (grant number 24691-COUNTATOMS and grant number 335078-COLOURATOM) projects; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved (down) Most recent IF: 11.994; 2014 IF: 11.261  
  Call Number UA @ lucian @ c:irua:115726 Serial 1314  
Permanent link to this record
 

 
Author Bals, S.; Goris, B.; Liz-Marzan, L.M.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Three-dimensional characterization of noble-metal nanoparticles and their assemblies by electron tomography Type A1 Journal article
  Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 53 Issue 40 Pages 10600-10610  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract New developments in the field of nanomaterials drive the need for quantitative characterization techniques that yield information down to the atomic scale. In this Review, we focus on the three-dimensional investigations of metal nanoparticles and their assemblies by electron tomography. This technique has become a versatile tool to understand the connection between the properties and structure or composition of nanomaterials. The different steps of an electron tomography experiment are discussed and we show how quantitative three-dimensional information can be obtained even at the atomic scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000342761500006 Publication Date 2014-08-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 58 Open Access OpenAccess  
  Notes 267867 Plasmaquo; 246791 Countatoms; 335078 Colouratom; 262348 Esmi; Fwo; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved (down) Most recent IF: 11.994; 2014 IF: 11.261  
  Call Number UA @ lucian @ c:irua:121093 Serial 3646  
Permanent link to this record
 

 
Author Tan, H.; Tian, H.; Verbeeck, J.; Janssens, K.; Van Tendeloo, G. pdf  doi
openurl 
  Title Nanoscale investigation of the degradation mechanism of a historical chrome yellow paint by quantitative electron energy loss spectroscopy mapping of chromium species Type A1 Journal article
  Year 2013 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 52 Issue 43 Pages 11360-11363  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Getting the picture: The investigation of 100 year old chrome yellow paint by transmission electron microscopy and spectroscopy has led to the identification of four types of coreshell particles. This nanoscale investigation has allowed a mechanism to be proposed for the darkening of some bright yellow colors in Van Gogh's paintings (e.g. in Falling leaves (Les Alyscamps), 1888).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000330735800026 Publication Date 2013-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 29 Open Access  
  Notes Esteem2; Vortex; Countatoms; esteem2jra3 ECASJO; Approved (down) Most recent IF: 11.994; 2013 IF: 11.336  
  Call Number UA @ lucian @ c:irua:110947UA @ admin @ c:irua:110947 Serial 2266  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: