|
Record |
Links |
|
Author |
Sánchez-Iglesias, A.; Winckelmans, N.; Altantzis, T.; Bals, S.; Grzelczak, M.; Liz-Marzán, L.M. |
|
|
Title |
High-Yield Seeded Growth of Monodisperse Pentatwinned Gold Nanoparticles through Thermally Induced Seed Twinning |
Type |
A1 Journal article |
|
Year |
2016 |
Publication |
Journal of the American Chemical Society |
Abbreviated Journal |
J Am Chem Soc |
|
|
Volume |
139 |
Issue |
139 |
Pages |
107-110 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
We show here that thermal treatment of small seeds results in extensive twinning and a subsequent drastic yield improvement (>85%) in the formation of pentatwinned nanoparticles, with pre-selected morphology (nanorods, bipyramids and decahedra) and aspect ratio. The “quality” of the seeds thus defines the yield of the obtained nanoparticles, which in the case of nanorods avoids the need for additives such as Ag+ ions. This modified seeded growth method also improves reproducibility, as the seeds can be stored for extended periods of time without compromising the quality of the final nanoparticles. Additionally, minor modification of the seeds with Pd allows their localization within the final particles, which opens new avenues toward mechanistic studies. All together, these results represent a paradigm shift in anisotropic gold nanoparticle synthesis. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000392036900025 |
Publication Date |
2016-12-29 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0002-7863 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
13.858 |
Times cited |
267 |
Open Access |
OpenAccess |
|
|
Notes |
Financial support is acknowledged from the European Research Council through ERC Advanced Grant Plasmaquo and the ERC Starting Grant COLOURATOM. T.A. acknowledges financial support from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara |
Approved |
Most recent IF: 13.858 |
|
|
Call Number |
EMAT @ emat @ c:irua:139018UA @ admin @ c:irua:139018 |
Serial |
4339 |
|
Permanent link to this record |