|   | 
Details
   web
Records
Author Osorio-Tejada, J.; Escriba-Gelonch, M.; Vertongen, R.; Bogaerts, A.; Hessel, V.
Title CO₂ conversion to CO via plasma and electrolysis : a techno-economic and energy cost analysis Type A1 Journal article
Year 2024 Publication Energy & environmental science Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Electrification and carbon capture technologies are essential for achieving net-zero emissions in the chemical sector. A crucial strategy involves converting captured CO2 into CO, a valuable chemical feedstock. This study evaluates the feasibility of two innovative methods: plasma activation and electrolysis, using clean electricity and captured CO2. Specifically, it compares a gliding arc plasma reactor with an embedded novel carbon bed system to a modern zero-gap type low-temperature electrolyser. The plasma method stood out with an energy cost of 19.5 GJ per tonne CO, marking a 43% reduction compared to electrolysis and conventional methods. CO production costs for plasma- and electrolysis-based plants were $671 and $962 per tonne, respectively. However, due to high uncertainty regarding electrolyser costs, the CO production costs in electrolysis-based plants may actually range from $570 to $1392 per tonne. The carbon bed system in the plasma method was a key factor in facilitating additional CO generation from O-2 and enhancing CO2 conversion, contributing to its cost-effectiveness. Challenges for electrolysis included high costs of equipment and low current densities. Addressing these limitations could significantly decrease production costs, but challenges arise from the mutual relationship between intrinsic parameters, such as CO2 conversion, CO2 input flow, or energy cost. In a future scenario with affordable feedstocks and equipment, costs could drop below $500 per tonne for both methods. While this may be more challenging for electrolysis due to complexity and expensive catalysts, plasma-based CO production appears more viable and competitive.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001218045900001 Publication Date 2024-05-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1754-5692; 1754-5706 ISBN Additional Links UA library record; WoS full record
Impact Factor 32.5 Times cited Open Access
Notes Approved (up) Most recent IF: 32.5; 2024 IF: 29.518
Call Number UA @ admin @ c:irua:205986 Serial 9138
Permanent link to this record
 

 
Author Zhang, L.; Quinn, B.K.; Hui, C.; Lian, M.; Gielis, J.; Gao, J.; Shi, P.
Title New indices to balance α-diversity against tree size inequality Type A1 Journal article
Year 2024 Publication Journal of forestry research Abbreviated Journal
Volume 35 Issue 1 Pages 31-39
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The number and composition of species in a community can be quantified with alpha-diversity indices, including species richness (R), Simpson's index (D), and the Shannon-Wiener index (HGREEK TONOS). In forest communities, there are large variations in tree size among species and individuals of the same species, which result in differences in ecological processes and ecosystem functions. However, tree size inequality (TSI) has been largely neglected in studies using the available diversity indices. The TSI in the diameter at breast height (DBH) data for each of 999 20 m x 20 m forest census quadrats was quantified using the Gini index (GI), a measure of the inequality of size distribution. The generalized performance equation was used to describe the rotated and right-shifted Lorenz curve of the cumulative proportion of DBH and the cumulative proportion of number of trees per quadrat. We also examined the relationships of alpha-diversity indices with the GI using correlation tests. The generalized performance equation effectively described the rotated and right-shifted Lorenz curve of DBH distributions, with most root-mean-square errors (990 out of 999 quadrats) being < 0.0030. There were significant positive correlations between each of three alpha-diversity indices (i.e., R, D, and H') and the GI. Nevertheless, the total abundance of trees in each quadrat did not significantly influence the GI. This means that the TSI increased with increasing species diversity. Thus, two new indices are proposed that can balance alpha-diversity against the extent of TSI in the community: (1 – GI) x D, and (1 – GI) x H'. These new indices were significantly correlated with the original D and HGREEK TONOS, and did not increase the extent of variation within each group of indices. This study presents a useful tool for quantifying both species diversity and the variation in tree sizes in forest communities, especially in the face of cumulative species loss under global climate change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001131698000001 Publication Date 2023-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1007-662x; 1993-0607 ISBN Additional Links UA library record; WoS full record
Impact Factor 3 Times cited Open Access Not_Open_Access
Notes Approved (up) Most recent IF: 3; 2024 IF: 0.774
Call Number UA @ admin @ c:irua:201972 Serial 9061
Permanent link to this record
 

 
Author Bampouli, A.; Goris, Q.; Hussain, M.N.; Louisnard, O.; Stefanidis, G.D.; Van Gerven, T.
Title Importance of design and operating parameters in a sonication system for viscous solutions : effects of input power, horn tip diameter and reactor capacity Type A1 Journal article
Year 2024 Publication Chemical engineering and processing Abbreviated Journal
Volume 198 Issue Pages 109715-12
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract This study investigates the distribution of ultrasound (US) energy in a batch system for solutions with viscosity ranging from 1 to approximately 3000 mPas. Sonication was performed using horn type configurations operating at 20-30 kHz and rated power capacity of 50 or 200 W. Two different tip diameters (3 or 7 mm) and two insertion depths (35 or 25 mm) within vessels of different sizes ( approximate to 60 or 130 ml) were utilized. Additionally, a special conical tip design was employed. For each experimental setup, the calorimetric efficiency was estimated, the cavitationally active regions were visualized using the sonochemiluminescence (SCL) method and bubble cluster formation inside the vessel was macroscopically observed using a high speed camera (HSC). In the viscosity range tested, the calorimetry results showed that the efficiency and continuous operation of the device depend on both the rated power and the horn tip diameter. The ratio between electrical and calorimetric power input remained consistently around 40 to 50% across the different configurations for water, but for the 123.2 mPas solution exhibited significant variation ranging from 40 to 85%. Moreover, the power density in the smaller reactor was found to be nearly double compared to the larger one. The SCL analysis showed multiple cavitationally active zones in all setups, and the zones intensity decreased considerably with increase of the solutions viscosity. The results for the cone tip were not conclusive, but can be used as the basis for further investigation. The current research highlights the importance of thoroughly understanding the impact of each design parameter, and of establishing characterization methodologies to assist in the future development of scaled-up, commercial applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001218630800001 Publication Date 2024-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0255-2701 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.3 Times cited Open Access
Notes Approved (up) Most recent IF: 4.3; 2024 IF: 2.234
Call Number UA @ admin @ c:irua:206003 Serial 9154
Permanent link to this record
 

 
Author Koirala, B.; Rasti, B.; Bnoulkacem, Z.; de Lima Ribeiro, A.; Madriz, Y.; Herrmann, E.; Gestels, A.; De Kerf, T.; Lorenz, S.; Fuchs, M.; Janssens, K.; Steenackers, G.; Gloaguen, R.; Scheunders, P.
Title A multisensor hyperspectral benchmark dataset for unmixing of intimate mixtures Type A1 Journal article
Year 2024 Publication IEEE sensors journal Abbreviated Journal
Volume 24 Issue 4 Pages 4694-4710
Keywords A1 Journal article; Engineering sciences. Technology; Vision lab; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Optical hyperspectral cameras capture the spectral reflectance of materials. Since many materials behave as heterogeneous intimate mixtures with which each photon interacts differently, the relationship between spectral reflectance and material composition is very complex. Quantitative validation of spectral unmixing algorithms requires high-quality ground truth fractional abundance data, which are very difficult to obtain. In this work, we generated a comprehensive laboratory ground truth dataset of intimately mixed mineral powders. For this, five clay powders (Kaolin, Roof clay, Red clay, mixed clay, and Calcium hydroxide) were mixed homogeneously to prepare 325 samples of 60 binary, 150 ternary, 100 quaternary, and 15 quinary mixtures. Thirteen different hyperspectral sensors have been used to acquire the reflectance spectra of these mixtures in the visible, near, short, mid, and long-wavelength infrared regions (350-15385) nm. Overlaps in wavelength regions due to the operational ranges of each sensor and variations in acquisition conditions resulted in a large amount of spectral variability. Ground truth composition is given by construction, but to verify that the generated samples are sufficiently homogeneous, XRD and XRF elemental analysis is performed. We believe these data will be beneficial for validating advanced methods for nonlinear unmixing and material composition estimation, including studying spectral variability and training supervised unmixing approaches. The datasets can be downloaded from the following link: https://github.com/VisionlabHyperspectral/Multisensor_datasets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001173599400063 Publication Date 2023-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-437x; 1558-1748 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.3 Times cited Open Access Not_Open_Access
Notes Approved (up) Most recent IF: 4.3; 2024 IF: 2.512
Call Number UA @ admin @ c:irua:203094 Serial 9059
Permanent link to this record
 

 
Author Peeters, H.; Raes, A.; Verbruggen, S.W.
Title Plasmonic photocatalytic coatings with self-cleaning, antibacterial, air and water purifying properties tested according to ISO standards Type A1 Journal article
Year 2024 Publication Journal of photochemistry and photobiology: A: chemistry Abbreviated Journal
Volume 451 Issue Pages 115529-10
Keywords A1 Journal article; Engineering sciences. Technology
Abstract ISO 10678:2010, ISO 22197–1 and 2, ISO 27447:2019 and ISO 27448:2009 for the photocatalytic degradation of organic dyes (methylene blue), air pollution (NOx and acetaldehyde), bacteria (E. coli and S. aureus) and solid organic fouling (oleic acid) are performed on plasmon-embedded TiO2 thin films on Borofloat® glass, as well as the commercially available titania-based self-cleaning glass PilkingtonActivTM. These standardised protocols measure the performance for the four main applications of photocatalytic materials: water purification, air purification, antibacterial and self-cleaning activity, respectively. The standards are performed exactly as prescribed to measure the activity under UV irradiation, and also in a slightly adapted manner to measure the performance under simulated solar light or visible light. Performing experiments according to ISO standards, enables an objective comparison amongst samples tested here, as well as with results from literature. This is a major asset compared to the myriad of customised setups used in laboratories worldwide that hinder a fair comparison. We point at the importance of meticulously following the ISO instructions, as we have noticed that multiple published studies adopting the ISO standards too often deviate from these protocols, thereby nullifying the added value of standardized testing. Following the ISO tests to the letter, we have demonstrated the superior performance of a previously developed plasmonic titania coating with fully embedded gold-silver nanoparticles towards all four application areas. Furthermore, our empirical data strongly support the need for a nuanced understanding of standardized testing, to ensure accurate assessment of photocatalytic materials. An examination of the ISO standards used in this work reveals notable drawbacks, including concerns about the reliability of the methylene blue degradation protocol, the issues of HNO3 accumulation in the NOx removal test, and limitations in assessing antibacterial activity and water contact angles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001188107100001 Publication Date 2024-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1010-6030 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.3 Times cited Open Access Not_Open_Access
Notes Approved (up) Most recent IF: 4.3; 2024 IF: 2.625
Call Number UA @ admin @ c:irua:203203 Serial 9075
Permanent link to this record
 

 
Author Lelouche, S.N.K.; Lemir, I.; Biglione, C.; Craig, T.; Bals, S.; Horcajada, P.
Title AuNP/MIL-88B-NH₂ nanocomposite for the valorization of nitroarene by green catalytic hydrogenation Type A1 Journal article
Year 2024 Publication Chemistry: a European journal Abbreviated Journal
Volume Issue Pages 1-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The efficiency of a catalytic process is assessed based on conversion, yield, and time effectiveness. However, these parameters are insufficient for evaluating environmentally sustainable research. As the world is urged to shift towards green catalysis, additional factors such as reaction media, raw material availability, sustainability, waste minimization and catalyst biosafety, need to be considered to accurately determine the efficacy and sustainability of the process. By combining the high porosity and versatility of metal organic frameworks (MOFs) and the activity of gold nanoparticles (AuNPs), efficient, cyclable and biosafe composite catalysts can be achieved. Thus, a composite based on AuNPs and the nanometric flexible porous iron(III) aminoterephthalate MIL-88B-NH2 was successfully synthesized and fully characterized. This nanocomposite was tested as catalyst in the reduction of nitroarenes, which were identified as anthropogenic water pollutants, reaching cyclable high conversion rates at short times for different nitroarenes. Both synthesis and catalytic reactions were performed using green conditions, and even further tested in a time-optimizing one-pot synthesis and catalysis experiment. The sustainability and environmental impact of the catalytic conditions were assessed by green metrics. Thus, this study provides an easily implementable synthesis, and efficient catalysis, while minimizing the environmental and health impact of the process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001204094600001 Publication Date 2024-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.3 Times cited Open Access
Notes Approved (up) Most recent IF: 4.3; 2024 IF: 5.317
Call Number UA @ admin @ c:irua:205426 Serial 9135
Permanent link to this record
 

 
Author Broos, W.; Wittner, N.; Dries, J.; Vlaeminck, S.E.; Gunde-Cimerman, N.; Cornet, I.
Title Rhodotorula kratochvilovae outperforms Cutaneotrichosporon oleaginosum in the valorisation of lignocellulosic wastewater to microbial oil Type A1 Journal article
Year 2024 Publication Process biochemistry (1991) Abbreviated Journal
Volume 137 Issue Pages 229-238
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract Rhodotorula kratochvilovae has shown to be a promising species for microbial oil production from lignin-derived compounds. Yet, information on R. kratochvilovae’s detoxification and microbial oil production is scarce. This study investigated the growth and microbial oil production on the phenolic-containing effluent from poplar steam explosion and its detoxification with five R. kratochvilovae strains (EXF11626, EXF9590, EXF7516, EXF3697, EXF3471) and compared them with Cutaneotrichosporon oleaginosum. The R. kratochvilovae strains reached a maximum growth rate up to four times higher than C. oleaginosum. Furthermore, all R. kratochvilovae strains generally degraded phenolics more rapidly and to a larger extent than C. oleaginosum. However, the diluted substrate limited the lipid production by all strains as the maximum lipid content and titre were 10.5% CDW and 0.40 g/L, respectively. Therefore, future work should focus on increasing lipid production by using advanced fermentation strategies and stimulating the enzyme excretion by the yeasts for complex substrate breakdown.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-5113 ISBN Additional Links UA library record
Impact Factor 4.4 Times cited Open Access Not_Open_Access
Notes Approved (up) Most recent IF: 4.4; 2024 IF: 2.497
Call Number UA @ admin @ c:irua:202365 Serial 9087
Permanent link to this record
 

 
Author Vermeulen, B.B.; Monteiro, M.G.; Giuliano, D.; Sorée, B.; Couet, S.; Temst, K.; Nguyen, V.D.
Title Magnetization-switching dynamics driven by chiral coupling Type A1 Journal article
Year 2024 Publication Physical review applied Abbreviated Journal
Volume 21 Issue 2 Pages 024050-11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Dzyaloshinskii-Moriya interaction (DMI) is known to play a central role in stabilizing chiral spin textures such as skyrmions and domain walls (DWs). Electrical manipulation of DW and skyrmion motion offers possibilities for next-generation, scalable and energy-efficient spintronic devices. However, achieving the full potential of these nanoscale devices requires overcoming several challenges, including reliable electrical write and read techniques for these magnetic objects, and addressing pinning and Joule-heating concerns. Here, through micromagnetic simulations and analytical modeling, we show that DMI can directly induce magnetization switching of a nanomagnet with perpendicular magnetic anisotropy (PMA). We find that the switching is driven by the interplay between the DMI-induced magnetic frustration and the PMA. By introducing magnetic tunnel junctions to electrically access and control the magnetization direction of the PMA nanomagnet, we first show the potential of this concept to enable high-density fieldfree spin-orbit torque magnetic random-access memory. Ultimately, we demonstrate that it offers a way of transferring and processing spin information for logic operation without relying on current-driven DW or skyrmion motion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001187487900001 Publication Date 2024-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited Open Access
Notes Approved (up) Most recent IF: 4.6; 2024 IF: 4.808
Call Number UA @ admin @ c:irua:205518 Serial 9157
Permanent link to this record
 

 
Author Meng, S.; Li, S.; Sun, S.; Bogaerts, A.; Liu, Y.; Yi, Y.
Title NH3 decomposition for H2 production by thermal and plasma catalysis using bimetallic catalysts Type A1 Journal article
Year 2024 Publication Chemical engineering science Abbreviated Journal Chemical Engineering Science
Volume 283 Issue Pages 119449
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis has emerged as a promising approach for driving thermodynamically unfavorable chemical

reactions. Nevertheless, comprehending the mechanisms involved remains a challenge, leading to uncertainty

about whether the optimal catalyst in plasma catalysis aligns with that in thermal catalysis. In this research, we

explore this question by studying monometallic catalysts (Fe, Co, Ni and Mo) and bimetallic catalysts (Fe-Co, Mo-

Co, Fe-Ni and Mo-Ni) in both thermal catalytic and plasma catalytic NH3 decomposition. Our findings reveal that

the Fe-Co bimetallic catalyst exhibits the highest activity in thermal catalysis, the Fe-Ni bimetallic catalyst

outperforms others in plasma catalysis, indicating a discrepancy between the optimal catalysts for the two

catalytic modes in NH3 decomposition. Comprehensive catalyst characterization, kinetic analysis, temperature

program surface reaction experiments and plasma diagnosis are employed to discuss the key factors influencing

NH3 decomposition performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001105312500001 Publication Date 2023-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2509 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.7 Times cited Open Access Not_Open_Access
Notes Universiteit Antwerpen, 32249 ; National Natural Science Foundation of China, 21503032 ; PetroChina Innovation Foundation, 2018D-5007-0501 ; Approved (up) Most recent IF: 4.7; 2024 IF: 2.895
Call Number PLASMANT @ plasmant @c:irua:201009 Serial 8967
Permanent link to this record
 

 
Author Pastorelli, G.; Miranda, A.S.O.; Avranovich Clerici, E.; d'Imporzano, P.; Hansen, B.V.; Janssens, K.; Davies, G.R.; Borring, N.
Title Darkening of lead white in old master drawings and historic prints : a multi-analytical investigation Type A1 Journal article
Year 2024 Publication Microchemical journal Abbreviated Journal
Volume 199 Issue Pages 109912-10
Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Old master drawings and historic prints often feature white highlights, which are typically painted using lead white, one of the most widely used historical white pigments. However, it has been observed that many of these highlights discolour over time, becoming dark brown or black due to unclear degradation processes. This phenomenon not only misrepresents the original artefacts, threatening their suitability for public display, but also diminishes their longevity. To ensure their preservation, it is essential to determine why some lead white highlights in these museum objects retain their light tones while others are prone to darkening. The objective of this study was to identify the relationships between the composition, provenance, and production methods of lead white pigments, and their role in the discolouration observed on drawings, lithographs and early photographs. Selected samples and artefacts were examined using a range of analytical techniques, namely X-ray fluorescence spectroscopy (XRF), X-ray powder diffraction (XRPD), and lead isotope analysis. While XRF analyses confirmed the presence of lead as the primary element in the majority of the highlights, XRPD measurements identified a variety of lead compounds such as the carbonates cerussite and hydrocerussite alongside galena-a black crystalline sulfide-and lead sulfates. Additionally, isotope analyses classified the lead raw materials into five main groups. Through these measurements, the examined lead white pigments were categorised based on their compositional properties in relation to the raw materials used, as well as their geographical and temporal origin. A significant finding is that lead white pigments from different production periods, spanning from older to more modern, may be characterised by varying proneness to discolouration irrespective of their provenance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001166502200001 Publication Date 2024-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record
Impact Factor 4.8 Times cited Open Access
Notes Approved (up) Most recent IF: 4.8; 2024 IF: 3.034
Call Number UA @ admin @ c:irua:205450 Serial 9197
Permanent link to this record
 

 
Author Gios, E.; Verbruggen, E.; Audet, J.; Burns, R.; Butterbach-Bahl, K.; Espenberg, M.; Fritz, C.; Glatzel, S.; Jurasinski, G.; Larmola, T.; Mander, U.; Nielsen, C.; Rodriguez, A.F.; Scheer, C.; Zak, D.; Silvennoinen, H.M.
Title Unraveling microbial processes involved in carbon and nitrogen cycling and greenhouse gas emissions in rewetted peatlands by molecular biology Type A1 Journal article
Year 2024 Publication Biogeochemistry Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Restoration of drained peatlands through rewetting has recently emerged as a prevailing strategy to mitigate excessive greenhouse gas emissions and re-establish the vital carbon sequestration capacity of peatlands. Rewetting can help to restore vegetation communities and biodiversity, while still allowing for extensive agricultural management such as paludiculture. Belowground processes governing carbon fluxes and greenhouse gas dynamics are mediated by a complex network of microbial communities and processes. Our understanding of this complexity and its multi-factorial controls in rewetted peatlands is limited. Here, we summarize the research regarding the role of soil microbial communities and functions in driving carbon and nutrient cycling in rewetted peatlands including the use of molecular biology techniques in understanding biogeochemical processes linked to greenhouse gas fluxes. We emphasize that rapidly advancing molecular biology approaches, such as high-throughput sequencing, are powerful tools helping to elucidate the dynamics of key biogeochemical processes when combined with isotope tracing and greenhouse gas measuring techniques. Insights gained from the gathered studies can help inform efficient monitoring practices for rewetted peatlands and the development of climate-smart restoration and management strategies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001185747700001 Publication Date 2024-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-2563; 1573-515x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4 Times cited Open Access
Notes Approved (up) Most recent IF: 4; 2024 IF: 3.428
Call Number UA @ admin @ c:irua:204875 Serial 9239
Permanent link to this record
 

 
Author Khan, S.U.; Matshitse, R.; Borah, R.; Nemakal, M.; Moiseeva, E.O.; Dubinina, T.V.; Nyokong, T.; Verbruggen, S.W.; De Wael, K.
Title Coupling of phthalocyanines with plasmonic gold nanoparticles by click chemistry for an enhanced singlet oxygen based photoelectrochemical sensing Type A1 Journal article
Year 2024 Publication ChemElectroChem Abbreviated Journal
Volume Issue Pages 1-11
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)
Abstract Coupling photosensitizers (PSs) with plasmonic nanoparticles increases the photocatalytic activity of PSs as the localized surface plasmon resonance (LSPR) of plasmonic nanoparticles leads to extreme concentration of light in their vicinity known as the near-field enhancement effect. To realize this in a colloidal phase, efficient conjugation of the PS molecules with the plasmonic nanoparticle surface is critical. In this work, we demonstrate the coupling of phthalocyanine (Pc) molecules with gold nanoparticles (AuNPs) in the colloidal phase via click chemistry. This conjugated Pc-AuNPs colloidal system is shown to enhance the photocatalytic singlet oxygen (1O2) production over non-conjugated Pcs and hence improve the photoelectrochemical detection of phenols. The plasmonic enhancement of the 1O2 generation by Pcs was clearly elucidated by complementary experimental and computational classical electromagnetic models. The dependence of plasmonic enhancement on the spectral position of the excitation laser wavelength and the absorbance of the Pc molecules with respect to the wavelength specific near-field enhancement is clearly demonstrated. A high similar to 8 times enhancement is obtained with green laser (532 nm) at the LSPR due to the maximum near-field enhancement at the resonance wavelength. Zinc phthalocyanine is covalently linked to plasmonic AuNPs via click chemistry to investigate the synergistic effect that boosts the overall activity toward the detection of HQ under visible light illumination. The 1O2 quantum yield of ZnPc improved significantly after conjugating with AuNPs, resulting in enhanced photoelectrochemical activity. image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001214481000001 Publication Date 2024-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record
Impact Factor 4 Times cited Open Access
Notes Approved (up) Most recent IF: 4; 2024 IF: 4.136
Call Number UA @ admin @ c:irua:205962 Serial 9142
Permanent link to this record
 

 
Author Yorulmaz, U.; Šabani, D.; Sevik, C.; Milošević, M.V.
Title Goodenough-Kanamori-Anderson high-temperature ferromagnetism in tetragonal transition-metal xenes Type A1 Journal article
Year 2024 Publication 2D materials Abbreviated Journal
Volume 11 Issue 3 Pages 035013-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Seminal Goodenough-Kanamori-Anderson (GKA) rules provide an inceptive understanding of the superexchange interaction of two magnetic metal ions bridged with an anion, and suggest fostered ferromagnetic interaction for orthogonal bridging bonds. However, there are no examples of two-dimensional (2D) materials with structure that optimizes the GKA arguments towards enhanced ferromagnetism and its critical temperature. Here we reveal that an ideally planar GKA ferromagnetism is indeed stable in selected tetragonal transition-metal xenes (tTMXs), with Curie temperature above 300 K found in CrC and MnC. We provide the general orbitally-resolved analysis of magnetic interactions that supports the claims and sheds light at the mechanisms dominating the magnetic exchange process in these structures. Furthermore, we propose the set of three GKA-like rules that will guarantee room temperature ferromagetnism. With recent advent of epitaxially-grown tetragonal 2D materials, our findings earmark tTMXs for facilitated spintronic and magnonic applications, or as a desirable magnetic constituent of functional 2D heterostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001208053200001 Publication Date 2024-04-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record
Impact Factor 5.5 Times cited Open Access
Notes Approved (up) Most recent IF: 5.5; 2024 IF: 6.937
Call Number UA @ admin @ c:irua:205464 Serial 9153
Permanent link to this record
 

 
Author Gerrits, N.; Jackson, B.; Bogaerts, A.
Title Accurate Reaction Probabilities for Translational Energies on Both Sides of the Barrier of Dissociative Chemisorption on Metal Surfaces Type A1 Journal Article
Year 2024 Publication The Journal of Physical Chemistry Letters Abbreviated Journal J. Phys. Chem. Lett.
Volume 15 Issue 9 Pages 2566-2572
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Molecular dynamics simulations are essential for a better understanding of dissociative chemisorption on metal surfaces, which is often the rate-controlling step in heterogeneous and plasma catalysis. The workhorse quasi-classical trajectory approach ubiquitous in molecular dynamics is able to accurately predict reactivity only for high translational and low vibrational energies. In contrast, catalytically relevant conditions generally involve low translational and elevated vibrational energies. Existing quantum dynamics approaches are intractable or approximate as a result of the large number of degrees of freedom present in molecule−metal surface reactions. Here, we extend a ring polymer molecular dynamics approach to fully include, for the first time, the degrees of freedom of a moving metal surface. With this approach, experimental sticking probabilities for the dissociative chemisorption of methane on Pt(111) are reproduced for a large range of translational and vibrational energies by including nuclear quantum effects and employing full-dimensional simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001177959900001 Publication Date 2024-03-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record
Impact Factor 5.7 Times cited Open Access
Notes Nick Gerrits has been financially supported through a Dutch Research Council (NWO) Rubicon grant (019.202EN.012). The computational resources and services used in this work were provided by the high performance computing (HPC) core facility CalcUA of the Universiteit Antwerpen and the Flemish Supercomputer Center (VSC) funded by the Research Foundation−Flanders (FWO) and the Flemish Government. The authors thank Mark Somers for useful discussions. Approved (up) Most recent IF: 5.7; 2024 IF: 9.353
Call Number PLASMANT @ plasmant @c:irua:204818 Serial 9114
Permanent link to this record
 

 
Author Clavel, J.; Lembrechts, J.; Lenoir, J.; Haider, S.; McDougall, K.; Nunez, M.A.; Alexander, J.; Barros, A.; Milbau, A.; Seipel, T.; Pauchard, A.; Fuentes-Lillo, E.; Backes, A.R.; Dar, P.; Reshi, Z.A.; Aleksanyan, A.; Zong, S.; Sierra, J.R.A.; Aschero, V.; Verbruggen, E.; Nijs, I.
Title Roadside disturbance promotes plant communities with arbuscular mycorrhizal associations in mountain regions worldwide Type A1 Journal article
Year 2024 Publication Ecography Abbreviated Journal
Volume Issue Pages e07051-14
Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract We assessed the impact of road disturbances on the dominant mycorrhizal types in ecosystems at the global level and how this mechanism can potentially lead to lasting plant community changes. We used a database of coordinated plant community surveys following mountain roads from 894 plots in 11 mountain regions across the globe in combination with an existing database of mycorrhizal-plant associations in order to approximate the relative abundance of mycorrhizal types in natural and disturbed environments. Our findings show that roadside disturbance promotes the cover of plants associated with arbuscular mycorrhizal (AM) fungi. This effect is especially strong in colder mountain environments and in mountain regions where plant communities are dominated by ectomycorrhizal (EcM) or ericoid-mycorrhizal (ErM) associations. Furthermore, non-native plant species, which we confirmed to be mostly AM plants, are more successful in environments dominated by AM associations. These biogeographical patterns suggest that changes in mycorrhizal types could be a crucial factor in the worldwide impact of anthropogenic disturbances on mountain ecosystems. Indeed, roadsides foster AM-dominated systems, where AM-fungi might aid AM-associated plant species while potentially reducing the biotic resistance against invasive non-native species, often also associated with AM networks. Restoration efforts in mountain ecosystems will have to contend with changes in the fundamental make-up of EcM- and ErM plant communities induced by roadside disturbance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001198654900001 Publication Date 2024-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0906-7590 ISBN Additional Links UA library record; WoS full record
Impact Factor 5.9 Times cited Open Access
Notes Approved (up) Most recent IF: 5.9; 2024 IF: 4.902
Call Number UA @ admin @ c:irua:205605 Serial 9224
Permanent link to this record
 

 
Author Joy, R.M.; Pobedinskas, P.; Bourgeois, E.; Chakraborty, T.; Goerlitz, J.; Herrmann, D.; Noel, C.; Heupel, J.; Jannis, D.; Gauquelin, N.; D'Haen, J.; Verbeeck, J.; Popov, C.; Houssiau, L.; Becher, C.; Nesladek, M.; Haenen, K.
Title Photoluminescence of germanium-vacancy centers in nanocrystalline diamond films : implications for quantum sensing applications Type A1 Journal article
Year 2024 Publication ACS applied nano materials Abbreviated Journal
Volume 7 Issue 4 Pages 3873-3884
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Point defects in diamond, promising candidates for nanoscale pressure- and temperature-sensing applications, are potentially scalable in polycrystalline diamond fabricated using the microwave plasma-enhanced chemical vapor deposition (MW PE CVD) technique. However, this approach introduces residual stress in the diamond films, leading to variations in the characteristic zero phonon line (ZPL) of the point defect in diamond. Here, we report the effect of residual stress on germanium-vacancy (GeV) centers in MW PE CVD nanocrystalline diamond (NCD) films fabricated using single crystal Ge as the substrate and solid dopant source. GeV ensemble formation indicated by the zero phonon line (ZPL) at similar to 602 nm is confirmed by room temperature (RT) photoluminescence (PL) measurements. PL mapping results show spatial nonuniformity in GeV formation along with other defects, including silicon-vacancy centers in the diamond films. The residual stress in NCD results in shifts in the PL peak positions. By estimating a stress shift coefficient of (2.9 +/- 0.9) nm/GPa, the GeV PL peak position in the NCD film is determined to be between 598.7 and 603.2 nm. A larger ground state splitting due to the strain on a GeV-incorporated NCD pillar at a low temperature (10 K) is also reported. We also report the observation of intense ZPLs at RT that in some cases could be related to low Ge concentration and the surrounding crystalline environment. In addition, we also observe thicker microcrystalline diamond (MCD) films delaminate from the Ge substrate due to film residual stress and graphitic phase at the diamond/Ge substrate interface (confirmed by electron energy loss spectroscopy). Using this approach, a free-standing color center incorporated MCD film with dimensions up to 1 x 1 cm(2) is fabricated. Qualitative analysis using time-of-flight secondary ion mass spectroscopy reveals the presence of impurities, including Ge and silicon, in the MCD film. Our experimental results will provide insights into the scalability of GeV fabrication using the MW PE CVD technique and effectively implement NCD-based nanoscale-sensing applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001164609600001 Publication Date 2024-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record
Impact Factor 5.9 Times cited Open Access
Notes Approved (up) Most recent IF: 5.9; 2024 IF: NA
Call Number UA @ admin @ c:irua:204826 Serial 9164
Permanent link to this record
 

 
Author Pankratov, D.; Hidalgo Martinez, S.; Karman, C.; Gerzhik, A.; Gomila, G.; Trashin, S.; Boschker, H.T.S.; Geelhoed, J.S.; Mayer, D.; De Wael, K.; Meysman, F.J.R.
Title The organo-metal-like nature of long-range conduction in cable bacteria Type A1 Journal article
Year 2024 Publication Bioelectrochemistry: an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry Abbreviated Journal
Volume 157 Issue Pages 108675-10
Keywords A1 Journal article
Abstract Cable bacteria are filamentous, multicellular microorganisms that display an exceptional form of biological electron transport across centimeter-scale distances. Currents are guided through a network of nickel-containing protein fibers within the cell envelope. Still, the mechanism of long-range conduction remains unresolved. Here, we characterize the conductance of the fiber network under dry and wet, physiologically relevant, conditions. Our data reveal that the fiber conductivity is high (median value: 27 S cm−1; range: 2 to 564 S cm−1), does not show any redox signature, has a low thermal activation energy (Ea = 69 ± 23 meV), and is not affected by humidity or the presence of ions. These features set the nickel-based conduction mechanism in cable bacteria apart from other known forms of biological electron transport. As such, conduction resembles that of an organic semi-metal with a high charge carrier density. Our observation that biochemistry can synthesize an organo-metal-like structure opens the way for novel bio-based electronic technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1567-5394 ISBN Additional Links UA library record
Impact Factor 5 Times cited Open Access
Notes Approved (up) Most recent IF: 5; 2024 IF: 3.346
Call Number UA @ admin @ c:irua:205117 Serial 9215
Permanent link to this record
 

 
Author Thiruvottriyur Shanmugam, S.; Campos, R.; Trashin, S.; Daems, E.; Carneiro, D.; Fraga, A.; Ribeiro, R.; De Wael, K.
Title Singlet oxygen-based photoelectrochemical detection of miRNAs in prostate cancer patients’ plasma : a novel diagnostic tool for liquid biopsy Type A1 Journal article
Year 2024 Publication Bioelectrochemistry: an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry Abbreviated Journal
Volume 158 Issue Pages 108698-108699
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Dysregulation of miRNA expression occurs in many cancers, making miRNAs useful in cancer diagnosis and therapeutic guidance. In a clinical context using methods such as polymerase chain reaction (PCR), the limited amount of miRNAs in circulation often limits their quantification. Here, we present a PCR-free and sensitive singlet oxygen (1O2)-based strategy for the detection and quantification of miRNAs in untreated human plasma from patients diagnosed with prostate cancer. A target miRNA is specifically captured by functionalised magnetic beads and a detection oligonucleotide probe in a sandwich-like format. The formed complex is concentrated at the sensor surface via magnetic beads, providing an interface for the photoinduced redox signal amplification. The detection oligonucleotide probe bears a molecular photosensitiser, which produces 1O2 upon illumination, oxidising a redox reporter and creating a redox cycling loop, allowing quantification of pM level miRNA in diluted human plasma within minutes after hybridisation and without target amplification.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-04-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1567-5394 ISBN Additional Links UA library record
Impact Factor 5 Times cited Open Access
Notes Approved (up) Most recent IF: 5; 2024 IF: 3.346
Call Number UA @ admin @ c:irua:205281 Serial 9229
Permanent link to this record
 

 
Author Leinders, G.; Grendal, O.G.; Arts, I.; Bes, R.; Prozheev, I.; Orlat, S.; Fitch, A.; Kvashnina, K.; Verwerft, M.
Title Refinement of the uranium dispersion corrections from anomalous diffraction Type A1 Journal Article
Year 2024 Publication Journal of Applied Crystallography Abbreviated Journal J Appl Cryst
Volume 57 Issue 2 Pages 284-295
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract The evolution of the uranium chemical state in uranium compounds, principally in the oxides, is of concern in the context of nuclear fuel degradation under storage and repository conditions, and in accident scenarios. The U–O system shows complicated phase relations between single-valence uranium dioxide (UO<sub>2</sub>) and different mixed-valence compounds (<italic>e.g.</italic>U<sub>4</sub>O<sub>9</sub>, U<sub>3</sub>O<sub>7</sub>and U<sub>3</sub>O<sub>8</sub>). To try resolving the electronic structure associated with unique atomic positions, a combined application of diffraction and spectroscopic techniques, such as diffraction anomalous fine structure (DAFS), can be considered. Reported here is the application of two newly developed routines for assessing a DAFS data set, with the aim of refining the uranium X-ray dispersion corrections. High-resolution anomalous diffraction data were acquired from polycrystalline powder samples of UO<sub>2</sub>(containing tetravalent uranium) and potassium uranate (KUO<sub>3</sub>, containing pentavalent uranium) using synchrotron radiation in the vicinity of the U<italic>L</italic><sub>3</sub>edge (17.17 keV). Both routines are based on an iterative refinement of the dispersion corrections, but they differ in either using the intensity of a selection of reflections or doing a full-pattern (Rietveld method) refinement. The uranium dispersion corrections obtained using either method are in excellent agreement with each other, and they show in great detail the chemical shifts and differences in fine structure expected for tetravalent and pentavalent uranium. This approach may open new possibilities for the assessment of other, more complicated, materials such as mixed-valence compounds. Additionally, the DAFS methodology can offer a significant resource optimization because each data set contains both structural (diffraction) and chemical (spectroscopy) information, which can avoid the requirement to use multiple experimental stations at synchrotron sources.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001208800100008 Publication Date 2024-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1600-5767 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.1 Times cited Open Access
Notes FPS Economy, SF-CORMOD; Approved (up) Most recent IF: 6.1; 2024 IF: 2.495
Call Number EMAT @ emat @c:irua:206011 Serial 9127
Permanent link to this record
 

 
Author Deleu, N.; Hillen, M.; Steenackers, G.; Borms, G.; Janssens, K.; Van der Stighelen, K.; Van der Snickt, G.
Title Combined macro X-ray fluorescence (MA-XRF) and pulse phase thermography (PPT) imaging for the technical study of panel paintings Type A1 Journal article
Year 2024 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal
Volume 270 Issue Pages 125533-11
Keywords A1 Journal article; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Museum staff usually relies on a proven combination of X-ray radiography (XRR) and infrared reflectography (IRR) to study paintings in a non-destructive manner. In the last decades, however, the research toolbox of heritage scientists has expanded considerably, with a prime example being macro X-ray fluorescence (MA-XRF), producing element-specific images. The goal of this article is to illustrate the added value of augmenting MA-XRF with pulse phase thermography (PPT), a variant of active infrared thermographic imaging (IRT), which is an innovative diagnostic method that is able to reveal variations between or in materials, based on a different response to minor fluctuations in temperature when irradiated with optical radiation. By examining three 16thand 17th-century panel paintings we assess the extent in which combined MA-XRF and PPT contributes to a better understanding of two commonly encountered interventions to panel paintings: (a) Anstuckungen (enlargement of the panel) or (b) substitutions (replacement of part of the panel). Yielding information from different depths of the painting, these two techniques proved highly complementary with IRR and XRR, expanding the understanding of the build-up, genesis, and material history of the paintings. While MA-XRF documented the interventions to the wooden substrate indirectly by revealing variations in painting materials, paint handling and/ or layer sequence between the original part and the extended or replaced planks, PPT proved beneficial for the study of the wooden support itself, by providing a clear image of the wood structure quasi-free of distortion by the superimposed paint or cradling. XRR, on the other hand, revealed other features from the wood structure, not visible with PPT, and allowed looking through the wooden panels, revealing e.g. the dowels used for joining the planks. Additionally, IRR visualised dissimilarities in the underdrawings. In this way, the results indicate that PPT has the potential to become an acknowledged add-on to the expanding set of imaging methods for paintings, especially when used in combination with MA-XRF, IRR and XRR.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001144098200001 Publication Date 2023-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.1 Times cited Open Access
Notes Approved (up) Most recent IF: 6.1; 2024 IF: 4.162
Call Number UA @ admin @ c:irua:203764 Serial 9193
Permanent link to this record
 

 
Author Ignatova, K.; Vlasov, E.; Seddon, S.D.; Gauquelin, N.; Verbeeck, J.; Wermeille, D.; Bals, S.; Hase, T.P.A.; Arnalds, U.B.
Title Phase coexistence induced surface roughness in V2O3/Ni magnetic heterostructures Type A1 Journal Article
Year 2024 Publication APL Materials Abbreviated Journal
Volume 12 Issue 4 Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract We present an investigation of the microstructure changes in V2O3 as it goes through its inherent structural phase transition. Using V2O3 films with a well-defined crystal structure deposited by reactive magnetron sputtering on r-plane Al2O3 substrates, we study the phase coexistence region and its impact on the surface roughness of the films and the magnetic properties of overlying Ni magnetic layers in V2O3/Ni hybrid magnetic heterostructures. The simultaneous presence of two phases in V2O3 during its structural phase transition was identified with high resolution x-ray diffraction and led to an increase in surface roughness observed using x-ray reflectivity. The roughness reaches its maximum at the midpoint of the transition. In V2O3/Ni hybrid heterostructures, we find a concomitant increase in the coercivity of the magnetic layer correlated with the increased roughness of the V2O3 surface. The chemical homogeneity of the V2O3 is confirmed through transmission electron microscopy analysis. High-angle annular dark field imaging and electron energy loss spectroscopy reveal an atomically flat interface between Al2O3 and V2O3, as well as a sharp interface between V2O3 and Ni.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001202661800003 Publication Date 2024-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532X ISBN Additional Links UA library record; WoS full record
Impact Factor 6.1 Times cited Open Access
Notes This work was supported by the funding from the University of Iceland Research Fund, the Icelandic Research Fund Grant No. 207111. Instrumentation funding from the Icelandic Infrastructure Fund is acknowledged. This work was based on experiments per- formed at the BM28 (XMaS) beamline at the European Synchrotron Radiation Facility, Grenoble, France. XMaS is a National Research Facility funded by the UK EPSRC and managed by the Universi- ties of Liverpool and Warwick. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 823717—ESTEEM3. Approved (up) Most recent IF: 6.1; 2024 IF: 4.335
Call Number EMAT @ emat @c:irua:205569 Serial 9120
Permanent link to this record
 

 
Author Ozdemir, I.; Arkin, H.; Milošević, M.V.; V. Barth, J.; Aktuerk, E.
Title Exploring the adsorption mechanisms of neurotransmitter and amino acid on Ti3C2-MXene monolayer : insights from DFT calculations Type A1 Journal article
Year 2024 Publication Surfaces and interfaces Abbreviated Journal
Volume 46 Issue Pages 104169-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this study, we conducted a systematic density functional theory (DFT) investigation of the interaction between Ti3C2-MXene monolayer and biological molecules dopamine (DA) and serine (Ser) as neurotransmitter and amino acid, respectively. Our calculations show good agreement with previous literature findings for the optimized Ti3C2 monolayer. We found that DA and Ser molecules bind to the Ti3C2 surface with adsorption energies of -2.244 eV and -3.960 eV, respectively. The adsorption of Ser resulted in the dissociation of one H atom. Electronic density of states analyses revealed little changes in the electronic properties of the Ti3C2-MXene monolayer upon adsorption of the biomolecules. We further investigated the interaction of DA and Ser with Ti3C2 monolayers featuring surface -termination with OH functional group, and Ti -vacancy. Our calculations indicate that the adsorption energies significantly decrease in the presence of surface termination, with adsorption energies of -0.097 eV and -0.330 eV for DA and Ser, respectively. Adsorption energies on the Ti -vacancy surface, on the other hand, are calculated to be -3.584 eV and -3.856 eV for DA and Ser, respectively. Our results provide insights into the adsorption behavior of biological molecules on Ti3C2-MXene, demonstrating the potential of this material for biosensing and other biomedical applications. These findings highlight the importance of surface modifications in the development of functional materials and devices based on Ti3C2-MXene, and pave the way for future investigations into the use of 2D materials for biomedical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001206950300001 Publication Date 2024-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.2 Times cited Open Access
Notes Approved (up) Most recent IF: 6.2; 2024 IF: NA
Call Number UA @ admin @ c:irua:205977 Serial 9150
Permanent link to this record
 

 
Author Minja, A.C.; Ag, K.R.; Raes, A.; Borah, R.; Verbruggen, S.W.
Title Recent progress in developing non-noble metal-based photocathodes for solar green hydrogen production Type A1 Journal article
Year 2024 Publication Current Opinion in Chemical Engineering Abbreviated Journal
Volume 43 Issue Pages 101000
Keywords A1 Journal article; Engineering sciences. Technology
Abstract Photocathodes play a vital role in photoelectrocatalytic water splitting by acting as catalysts for reducing protons to hydrogen gas when exposed to light. Recent advancements in photocathodes have focused on addressing the limitations of noble metal-based materials. These noble metal-based photocathodes rely on expensive and scarce metals such as platinum and gold as cocatalysts or ohmic back contacts, respectively, rendering the final system less sustainable and costly when applied at scale. This mini-review summarizes the important recent progress in the development of non-noble metal-based photocathodes and their performance in the hydrogen evolution reaction during photoelectrochemical (PEC) water splitting. These advancements bring non-noble metal-based photocathodes closer to their noble metal-based counterparts in terms of performance, thereby paving the way forward toward industrial-scale photoelectrolyzers or PEC cells for green hydrogen production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001166826200001 Publication Date 2024-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-3398 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.6 Times cited Open Access Not_Open_Access
Notes Approved (up) Most recent IF: 6.6; 2024 IF: 3.403
Call Number UA @ admin @ c:irua:202625 Serial 9080
Permanent link to this record
 

 
Author Raes, A.; Minja, A.C.; Ag, K.R.; Verbruggen, S.W.
Title Recent advances in metal-doped defective TiO₂ for photocatalytic CO₂ conversion Type A1 Journal article
Year 2024 Publication Current Opinion in Chemical Engineering Abbreviated Journal
Volume 44 Issue Pages 101013-11
Keywords A1 Journal article; Engineering sciences. Technology
Abstract Introducing defects in TiO2-based photocatalytic materials is a promising strategy for improving light-driven CO2 reduction. However, defects such as oxygen vacancies are generally unstable. As a solution and to further enhance the photocatalytic activity, metal doping has been applied. This mini review aims to summarize recent progress in this particular field. Herein, we have classified metal-doped architectures into three different categories: single metal doping, alloy- and co-doping, and doping of morphologically nanoengineered TiO2−x substrates. The direct relationship between specific metals and product selectivity remains complex, as selectivity can vary significantly among seemingly similar materials. However, numerous methods do show promise in fine-tuning selectivity towards either CO or CH4. In terms of photocatalytic turnover, remarkable yields have been reported in isolated reports, but insufficient experimental data and divergent reaction conditions hamper a true comparison. This puts an emphasis on the need for standardized activity testing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-3398 ISBN Additional Links UA library record
Impact Factor 6.6 Times cited Open Access
Notes Approved (up) Most recent IF: 6.6; 2024 IF: 3.403
Call Number UA @ admin @ c:irua:204462 Serial 9221
Permanent link to this record
 

 
Author Rabani, I.; Tahir, M.S.; Nisar, S.; Parrilla, M.; Truong, H.B.; Kim, M.; Seo, Y.-S.
Title Fabrication of larger surface area of ZIF8@ZIF67 reverse core-shell nanostructures for energy storage applications Type A1 Journal article
Year 2024 Publication Electrochimica acta Abbreviated Journal
Volume 475 Issue Pages 143532-11
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract The construction of uniform nanostructure with larger surface area electrodes is a huge challenge for the highvalue added energy storage application. Herein, we demonstrates ZIF67@ZIF8 (core-shell) and ZIF8@ZIF67 (reverse core-shell) nanostructures using a low-cost wet chemical route and used them as supercapacitors. Pristine ZIF-67 and ZIF-8 was used as reference electrodes. Benefiting from the synergistic effect between the ZIF8 and ZIF67, the ZIF8@ZIF67 exhibited the outstanding electrochemical consequences owing to its larger surface area with uniform hexagonal morphology. As optimized ZIF8@ZIF67 nanostructure displayed the highcapacity of 1521 F/g at 1 A/g of current density in a three-electrode assembly in 1 M KOH electrolyte compared with other as-fabricated electrodes. In addition, the ZIF8@ZIF67 nanostructure employed into the symmetric supercapacitors (SSCs) with 1 M KOH electrolyte in two-electrode setup and it exhibited still superior output including capacity (249.8 F/g at 1 A/g), remarkable repeatability (87 % over 10,000 GCD cycles) along with high energy and power density (61.2 Wh/kg & 1260 W/kg). The present study uncovers the relationship between the larger surface area and electrocatalyst performance, supporting an effective approach to prepare favorable materials for enhanced capacity, extended lifespan, and energy density.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001134022100001 Publication Date 2023-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.6 Times cited Open Access Not_Open_Access
Notes Approved (up) Most recent IF: 6.6; 2024 IF: 4.798
Call Number UA @ admin @ c:irua:202082 Serial 9036
Permanent link to this record
 

 
Author Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J.
Title In Situ Plasma Studies Using a Direct Current Microplasma in a Scanning Electron Microscope Type A1 Journal Article
Year 2024 Publication Advanced Materials Technologies Abbreviated Journal Adv Materials Technologies
Volume Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Microplasmas can be used for a wide range of technological applications and to improve the understanding of fundamental physics. Scanning electron microscopy, on the other hand, provides insights into the sample morphology and chemistry of materials from the mm‐ down to the nm‐scale. Combining both would provide direct insight into plasma‐sample interactions in real‐time and at high spatial resolution. Up till now, very few attempts in this direction have been made, and significant challenges remain. This work presents a stable direct current glow discharge microplasma setup built inside a scanning electron microscope. The experimental setup is capable of real‐time in situ imaging of the sample evolution during plasma operation and it demonstrates localized sputtering and sample oxidation. Further, the experimental parameters such as varying gas mixtures, electrode polarity, and field strength are explored and experimental<italic>V</italic>–<italic>I</italic>curves under various conditions are provided. These results demonstrate the capabilities of this setup in potential investigations of plasma physics, plasma‐surface interactions, and materials science and its practical applications. The presented setup shows the potential to have several technological applications, for example, to locally modify the sample surface (e.g., local oxidation and ion implantation for nanotechnology applications) on the µm‐scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001168639900001 Publication Date 2024-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2365-709X ISBN Additional Links UA library record; WoS full record
Impact Factor 6.8 Times cited Open Access OpenAccess
Notes L.G., S.B., and J.V. acknowledge support from the iBOF-21-085 PERsist research fund. D.C., S.V.A., and J.V. acknowledge funding from a TOPBOF project of the University of Antwerp (FFB 170366). R.D.M., A.B., and J.V. acknowledge funding from the Methusalem project of the University of Antwerp (FFB 15001A, FFB 15001C). A.O. and J.V. acknowledge funding from the Research Foundation Flanders (FWO, Belgium) project SBO S000121N. Approved (up) Most recent IF: 6.8; 2024 IF: NA
Call Number EMAT @ emat @c:irua:204363 Serial 8995
Permanent link to this record
 

 
Author Morad, V.; Stelmakh, A.; Svyrydenko, M.; Feld, L.G.; Boehme, S.C.; Aebli, M.; Affolter, J.; Kaul, C.J.; Schrenker, N.J.; Bals, S.; Sahin, Y.; Dirin, D.N.; Cherniukh, I.; Raino, G.; Baumketner, A.; Kovalenko, M.V.
Title Designer phospholipid capping ligands for soft metal halide nanocrystals Type A1 Journal article
Year 2024 Publication Nature Abbreviated Journal
Volume 626 Issue Pages 542-548
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The success of colloidal semiconductor nanocrystals (NCs) in science and optoelectronics is inextricable from their surfaces. The functionalization of lead halide perovskite NCs1-5 poses a formidable challenge because of their structural lability, unlike the well-established covalent ligand capping of conventional semiconductor NCs6,7. We posited that the vast and facile molecular engineering of phospholipids as zwitterionic surfactants can deliver highly customized surface chemistries for metal halide NCs. Molecular dynamics simulations implied that ligand-NC surface affinity is primarily governed by the structure of the zwitterionic head group, particularly by the geometric fitness of the anionic and cationic moieties into the surface lattice sites, as corroborated by the nuclear magnetic resonance and Fourier-transform infrared spectroscopy data. Lattice-matched primary-ammonium phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites (FAPbBr3 and MAPbBr3 (FA, formamidinium; MA, methylammonium)) and lead-free metal halide NCs. The molecular structure of the organic ligand tail governs the long-term colloidal stability and compatibility with solvents of diverse polarity, from hydrocarbons to acetone and alcohols. These NCs exhibit photoluminescence quantum yield of more than 96% in solution and solids and minimal photoluminescence intermittency at the single particle level with an average ON fraction as high as 94%, as well as bright and high-purity (about 95%) single-photon emission. Phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites and lead-free metal halide nanocrystals, which then exhibit enhanced robustness and optical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001176943100001 Publication Date 2023-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836; 1476-4687 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 64.8 Times cited Open Access
Notes Approved (up) Most recent IF: 64.8; 2024 IF: 40.137
Call Number UA @ admin @ c:irua:204796 Serial 9144
Permanent link to this record
 

 
Author Tong, J.; Fu, Y.; Domaretskiy, D.; Della Pia, F.; Dagar, P.; Powell, L.; Bahamon, D.; Huang, S.; Xin, B.; Costa Filho, R.N.; Vega, L.F.; Grigorieva, I.V.; Peeters, F.M.; Michaelides, A.; Lozada-Hidalgo, M.
Title Control of proton transport and hydrogenation in double-gated graphene Type A1 Journal Article
Year 2024 Publication Nature Abbreviated Journal Nature
Volume 630 Issue 8017 Pages 619-624
Keywords A1 Journal Article; Condensed Matter Theory (CMT) ;
Abstract The basal plane of graphene can function as a selective barrier that is permeable to protons but impermeable to all ions and gases, stimulating its use in applications such as membranes, catalysis and isotope separation. Protons can chemically adsorb on graphene and hydrogenate it, inducing a conductor–insulator transition that has been explored intensively in graphene electronic devices. However, both processes face energy barriersand various strategies have been proposed to accelerate proton transport, for example by introducing vacancies, incorporating catalytic metalsor chemically functionalizing the lattice. But these techniques can compromise other properties, such as ion selectivity or mechanical stability. Here we show that independent control of the electric field,<italic>E</italic>, at around 1 V nm<sup>−1</sup>, and charge-carrier density,<italic>n</italic>, at around 1 × 10<sup>14</sup> cm<sup>−2</sup>, in double-gated graphene allows the decoupling of proton transport from lattice hydrogenation and can thereby accelerate proton transport such that it approaches the limiting electrolyte current for our devices. Proton transport and hydrogenation can be driven selectively with precision and robustness, enabling proton-based logic and memory graphene devices that have on–off ratios spanning orders of magnitude. Our results show that field effects can accelerate and decouple electrochemical processes in double-gated 2D crystals and demonstrate the possibility of mapping such processes as a function of<italic>E</italic>and<italic>n</italic>, which is a new technique for the study of 2D electrode–electrolyte interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-06-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Additional Links
Impact Factor 64.8 Times cited Open Access
Notes This work was supported by UKRI (EP/X017745: M.L.-H; EP/X035891: A.M.), the Directed Research Projects Program of the Research and Innovation Center for Graphene and 2D Materials at Khalifa University (RIC2D-D001: M.L.-H., L.F.V. and D.B.), The Royal Society (URF\R1\201515: M.L.-H.) and the European Research Council (101071937: A.M.). Part of this work was supported by the Flemish Science Foundation (FWO-Vl, G099219N). A.M. acknowledges access to the UK national high-performance computing service (ARCHER2). Approved (up) Most recent IF: 64.8; 2024 IF: 40.137
Call Number CMT @ cmt @ Serial 9247
Permanent link to this record
 

 
Author Faraji, F.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M.
Title Comment on “Misinterpretation of the Shuttleworth equation” Type A1 Journal Article
Year 2024 Publication Scripta Materialia Abbreviated Journal Scripta Materialia
Volume 250 Issue Pages 116186
Keywords A1 Journal Article; CMT
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462 ISBN Additional Links
Impact Factor 6 Times cited Open Access
Notes Research Foundation Flanders; Approved (up) Most recent IF: 6; 2024 IF: 3.747
Call Number UA @ lucian @ CMT Serial 9116
Permanent link to this record
 

 
Author Khalilov, U.; Uljayev, U.; Mehmonov, K.; Nematollahi, P.; Yusupov, M.; Neyts, E.C.; Neyts, E.C.
Title Can endohedral transition metals enhance hydrogen storage in carbon nanotubes? Type A1 Journal article
Year 2024 Publication International journal of hydrogen energy Abbreviated Journal
Volume 55 Issue Pages 640-610
Keywords A1 Journal article; Engineering sciences. Technology; Modelling and Simulation in Chemistry (MOSAIC); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The safe and efficient use of hydrogen energy, which is in high demand worldwide today, requires efficient hydrogen storage. Despite significant advances in hydrogen storage using carbon-based nanomaterials, including carbon nanotubes (CNTs), efforts to substantially increase the storage capacity remain less effective. In this work, we demonstrate the effect of endohedral transition metal atoms on the hydrogen storage capacity of CNTs using reactive molecular dynamics simulations. We find that an increase in the volume fraction of endohedral nickel atoms leads to an increase in the concentration of physisorbed hydrogen molecules around single-walled CNTs (SWNTs) by approximately 1.6 times compared to pure SWNTs. The obtained results provide insight into the underlying mechanisms of how endohedral transition metal atoms enhance the hydrogen storage ability of SWNTs under nearly ambient conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001142427400001 Publication Date 2023-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.2 Times cited Open Access Not_Open_Access
Notes Approved (up) Most recent IF: 7.2; 2024 IF: 3.582
Call Number UA @ admin @ c:irua:202315 Serial 9006
Permanent link to this record