toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Aibéo, C.L.; Goffin, S.; Schalm, O.; van der Snickt, G.; Laquière, N.; Eyskens, P.; Janssens, K. pdf  doi
openurl 
  Title Micro-Raman analysis for the identification of pigments from 19th and 20th century paintings Type A1 Journal article
  Year 2008 Publication Journal of Raman spectroscopy Abbreviated Journal J Raman Spectrosc  
  Volume 39 Issue 8 Pages 1091-1098  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In this article, results using confocal µ-Raman to analyse the cross-section of paint samples are presented. Results obtained with light microscopy, scanning electron microscopy (SEM) combined with an energy dispersive X-ray analysis (EDX) and micro-X-ray fluorescence (µ-XRF) are mentioned and compared to the ones obtained with confocal (MRS). In some cases, pigment identification was possible only by combining analytical results from different techniques. The samples were drawn from five paintings belonging to the Academy of Fine Arts of Antwerp, which are part of a collection of 34 paintings made by students from the Academy between 1819 and 1920. Since, on the one hand, the painting techniques and materials, especially pigments, used in this period are still not completely known, and on the other hand, this collection constitutes a very important and reliable resource of information, these paintings were chosen for a systematic investigation. They represent the evolution of painting in Belgium over approximately a century.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000259242100020 Publication Date 2008-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0377-0486 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.969 Times cited 28 Open Access  
  Notes Approved (up) Most recent IF: 2.969; 2008 IF: 3.526  
  Call Number UA @ admin @ c:irua:74467 Serial 5716  
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Hendriks, E.; Brunetti, B.G.; Miliani, C. pdf  doi
openurl 
  Title Raman study of different crystalline forms of PbCrO4 and PbCr1-xSxO4 solid solutions for the noninvasive identification of chrome yellows in paintings : a focus on works by Vincent van Gogh Type A1 Journal article
  Year 2014 Publication Journal of Raman spectroscopy Abbreviated Journal J Raman Spectrosc  
  Volume 45 Issue 11-12 Pages 1034-1045  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Chrome yellows, a class of pigments frequently used by painters of the Impressionism and Post-impressionism period, are known for their different chemical stability; the latter depends on the chemical composition (PbCrO4, PbCr1-xSxO4) and crystalline structure (monoclinic or orthorhombic) of the material. The possibility to distinguish among different forms of this pigment is therefore relevant in order to extend knowledge on the corresponding degradation process that is observed on several original paintings. For this purpose, three paintings conserved at the Van Gogh Museum (Amsterdam) were analyzed using noninvasive Raman spectroscopy, while equivalent investigations employing bench-top instrumentation were performed to obtain information from micro-samples originating from these works of art. In each painting, the chrome yellow was identified either as monoclinic PbCrO4 or in the form of monoclinic PbCr1-xSxO4 (x<0.25) or S-rich orthorhombic PbCr1-xSxO4 (x similar to 0.5). Our ability to make this fairly subtle distinction is based on a Raman study of several oil paint model samples made up of monoclinic and/or orthorhombic crystalline forms of PbCrO4 and PbCr1-xSxO4 (0.1x0.8). These paints were studied using several excitation wavelengths (namely 785.0, 532.0, 514.5, and 488nm). Because of the absence of the resonance Raman effect, which strongly enhances the chromate symmetric stretching band, and the absence of any laser-induced photodecomposition, it is advantageous to acquire data at 785.0nm. The band-shape and the position of the chromate bending modes proved to be more sensitive to the solid solution composition and crystalline structure than the stretching modes and can be used as distinctive spectral markers to discriminate among the different chrome yellow forms that are present. Copyright (c) 2014 John Wiley & Sons, Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000346912700008 Publication Date 2014-07-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0377-0486 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.969 Times cited 34 Open Access  
  Notes ; This research was supported by Interuniversity Attraction Poles Programme – Belgian Science Policy (S2-ART project S4DA) and also presents results from GOA 'XANES meets ELNES' (Research Fund University of Antwerp, Belgium), FWO (Brussels, Belgium) projects no. G.0704.08 and G.01769.09. Support from the Italian projects PRIN (SICH Sustainability in Cultural Heritage: from diagnosis to the development of innovative system for consolidation, cleaning and protection) and PON (ITACHA Italian advanced technologies for cultural heritage applications) is also acknowledged. The analysis of the paintings Sunflowers gone to seed, Bank of the Seine, and Portrait of Gauguin was performed within the mobile laboratory access activity of the FP7 programme CHARISMA supported by EC (Grant Agreement 228330). LM acknowledges the Italian National Research Council (CNR) for the financial support in the framework of the Short Term Mobility Programme 2013. Thanks are expressed to Muriel Geldof, Cultural Heritage Agency of The Netherlands, for selecting and sharing the information on the cross-sections and to the staff of the Van Gogh Museum for the agreeable cooperation. ; Approved (up) Most recent IF: 2.969; 2014 IF: 2.671  
  Call Number UA @ admin @ c:irua:122841 Serial 5798  
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M. pdf  doi
openurl 
  Title Single-layer and bilayer graphene superlattices: collimation, additional Dirac points and Dirac lines Type A1 Journal article
  Year 2010 Publication Philosophical transactions of the Royal Society : mathematical, physical and engineering sciences Abbreviated Journal Philos T R Soc A  
  Volume 368 Issue 1932 Pages 5499-5524  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We review the energy spectrum and transport properties of several types of one-dimensional superlattices (SLs) on single-layer and bilayer graphene. In single-layer graphene, for certain SL parameters an electron beam incident on an SL is highly collimated. On the other hand, there are extra Dirac points generated for other SL parameters. Using rectangular barriers allows us to find analytical expressions for the location of new Dirac points in the spectrum and for the renormalization of the electron velocities. The influence of these extra Dirac points on the conductivity is investigated. In the limit of δ-function barriers, the transmission T through and conductance G of a finite number of barriers as well as the energy spectra of SLs are periodic functions of the dimensionless strength P of the barriers, Graphic, with vF the Fermi velocity. For a KronigPenney SL with alternating sign of the height of the barriers, the Dirac point becomes a Dirac line for P = π/2+nπ with n an integer. In bilayer graphene, with an appropriate bias applied to the barriers and wells, we show that several new types of SLs are produced and two of them are similar to type I and type II semiconductor SLs. Similar to single-layer graphene SLs, extra Dirac points are found in bilayer graphene SLs. Non-ballistic transport is also considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000283660000011 Publication Date 2010-11-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-503X;1471-2962; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.97 Times cited 64 Open Access  
  Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP) and the Canadian NSERC through grant no. OGP0121756. ; Approved (up) Most recent IF: 2.97; 2010 IF: 2.459  
  Call Number UA @ lucian @ c:irua:85597 Serial 3023  
Permanent link to this record
 

 
Author Nerantzaki, M.; Filippousi, M.; Van Tendeloo, G.; Terzopoulou, Z.; Bikiaris, D.; Goudouri, O.M.; Detsch, R.; Grueenewald, A.; Boccaccini, A.R. pdf  url
doi  openurl
  Title Novel poly(butylene succinate) nanocomposites containing strontium hydroxyapatite nanorods with enhanced osteoconductivity for tissue engineering applications Type A1 Journal article
  Year 2015 Publication Express polymer letters Abbreviated Journal Express Polym Lett  
  Volume 9 Issue 9 Pages 773-789  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Three series of poly(butylene succinate) (PBSu) nanocomposites containing 0.5, 1 and 2.5 wt% strontium hydroxyapatite [Sr-5(PO4)(3)OH] nanorods (SrHAp nrds) were prepared by in situ polymerisation. The structural effects of Sr-5(PO4)(3)OH nanorods, for the different concentrations, inside the polymeric matrix (PBSu), were studied through high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). HAADF-STEM measurements revealed that the SrHAp nanorods at low concentrations are dispersed inside the polymeric PBSu matrix while in 1 wt% some aggregates are formed. These aggregations affect the mechanical properties giving an enhancement for the concentration of 0.5 wt% SrHAp nrds in tensile strength, while a reduction is recorded for higher loadings of the nanofiller. Studies on enzymatic hydrolysis revealed that all nanocomposites present higher hydrolysis rates than neat PBSu, indicating that nanorods accelerate the hydrolysis degradation process. In vitro bioactivity tests prove that SrHAp nrds promote the formation of hydroxyapatite on the PBSu surface. All nanocomposites were tested also in relevant cell culture using osteoblast-like cells (MG-63) to demonstrate their biocompatibility showing SrHAp nanorods support cell attachment.  
  Address  
  Corporate Author Thesis  
  Publisher Budapest University of Technology and Economics Department of Polymer Engineering Place of Publication Budapest, Hungary Editor  
  Language Wos 000357287800004 Publication Date 2015-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1788-618X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.983 Times cited 21 Open Access  
  Notes 262348 Esmi Approved (up) Most recent IF: 2.983; 2015 IF: 2.761  
  Call Number c:irua:127009 Serial 2382  
Permanent link to this record
 

 
Author Özen, M.; Mertens, M.; Snijkers, F.; Van Tendeloo, G.; Cool, P. pdf  url
doi  openurl
  Title Texturing of hydrothermally synthesized BaTiO3 in a strong magnetic field by slip casting Type A1 Journal article
  Year 2016 Publication Ceramics international Abbreviated Journal Ceram Int  
  Volume 42 Issue 42 Pages 5382-5390  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Barium titanate powder was processed by slip casting in a rotating strong magnetic field of 9.4 T. The orientation factor of the sintered compact was analyzed by the X-ray diffraction technique and the microstructure (grain-size) was analyzed by scanning electron microscope. The hydrothermally prepared barium titanate was used as matrix material and the molten-salt synthesized barium titanate, with a larger particle-size, was used as template for the templated grain-growth process. Addition of large template particles was observed to increase the orientation factor of the sintered cast (5 vol% loading). Template particles acted as starting grains for the abnormal grain-growth process and the average grain-size was increased after sintering. Increasing the solid loading (15 vol%) resulted in a similar orientation factor with a decrease of the average grain size by more than half. However, addition of templates to the 15 vol% cast had a negative effect on the orientation factor. The impingement of growing particles was stated as the primary cause of particle misorientation resulting in a low orientation factor after sintering. Different heating conditions were tested and it was determined that a slow heating rate gave the highest orientation factor, the smallest average grain-size and the highest relative density. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Barking Editor  
  Language Wos 000369460500098 Publication Date 2015-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-8842 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.986 Times cited 11 Open Access  
  Notes Approved (up) Most recent IF: 2.986  
  Call Number UA @ lucian @ c:irua:132228 Serial 4260  
Permanent link to this record
 

 
Author Özen, M.; Mertens, M.; Luyten, J.; Snijkers, F.; d' Hondt, H.; Cool, P. pdf  doi
openurl 
  Title Hydrothermal synthesis of carbonate-free submicron-sized barium titanate from an amorphous precursor : synthesis and characterization Type A1 Journal article
  Year 2012 Publication Ceramics international Abbreviated Journal Ceram Int  
  Volume 38 Issue 1 Pages 619-625  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract In this paper, the amorphous barium titanate precursor was prepared by the peroxo-hydroxide method and post-treated by various drying procedures, such as: room temperature drying, room temperature vacuum drying and vacuum drying at 50 degrees C. The objective in the latter two treatments was to increase the Ti-O-Ba bonds of the precursor. The post-treated precursors were compared with the untreated (i.e., 'wet') precursor. Also, a barium titanate precursor was prepared by an alkoxide route. Afterwards, the precursors were hydrothermally treated at 200 degrees C in a 10 M NaOH solution. Vacuum drying of the precursor seemingly promoted the formation of Ti-O-Ti bonds in the hydrothermal end-product. The low Ba:Ti ratio (0.66) of the alkoxide-route prepared precursor lead to a multi-phase hydrothermal product with BaTiO(3) as the main phase. In contrast, phase pure BaTiO(3), i.e. without BaCO(3) contamination, was obtained for the precursor which was dried at room temperature. Cube-shaped and highly crystalline BaTiO(3) particles were observed by electron microscopy for the hydrothermally treated peroxo-hydroxide-route prepared precursor. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Barking Editor  
  Language Wos 000298766900083 Publication Date 2011-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-8842; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.986 Times cited 14 Open Access  
  Notes Approved (up) Most recent IF: 2.986; 2012 IF: 1.789  
  Call Number UA @ lucian @ c:irua:96263 Serial 1541  
Permanent link to this record
 

 
Author Buysse, C.; Michielsen, B.; Middelkoop, V.; Snijkers, F.; Buekenhondt, A.; Kretzschmar, J.; Lenaerts, S. pdf  doi
openurl 
  Title Modeling of the performance of BSCF capillary membranes in four-end and three-end integration mode Type A1 Journal article
  Year 2013 Publication Ceramics international Abbreviated Journal Ceram Int  
  Volume 39 Issue 4 Pages 4113-4123  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Owing to their high surface-to-volume ratio, there has been an increasing research interest in mixed ionic electronic conducting (MIEC) capillary membranes for large-scale high temperature oxygen separation applications. They offer an energy-efficient solution for high temperature combustion processes in oxy-fuel and pre-combustion CO2 capture technologies used in fossil fuel power plants. In order to assess the effectiveness of these membranes in power plant applications, the impact of the geometry of Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) capillaries on their performance in the three-end and four-end integration modes has been investigated and thoroughly discussed. The model's parameters were derived from four-end mode lab-scale experiments using gas-tight, macrovoid free and sulfur-free BSCF capillary membranes that were prepared by a phase-inversion spinning technique. The results of this modeling study revealed that in the four-end mode higher average oxygen fluxes and smaller total membrane areas can be obtained than in the three-end mode. This is due to the higher pO(2) gradient across the membrane wall. (C) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000318129100084 Publication Date 2012-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-8842 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.986 Times cited 4 Open Access  
  Notes ; The authors wish to thank all the VITO staff involved in the project for their continued support, and in particular B. Molenberghs, W. Doyen, H. Beckers and S. Mullens. C. Buysse would like to acknowledge funding from VITO and the University of Antwerp for a Ph.D. studentship. This work has been performed in the framework of the German Helmholtz Alliance Project “MEM-BRAIN”, aiming at the development of gas separation membranes for zero-emission fossil fuel power plants. ; Approved (up) Most recent IF: 2.986; 2013 IF: 2.086  
  Call Number UA @ admin @ c:irua:109020 Serial 5971  
Permanent link to this record
 

 
Author Pacquets, L.; Irtem, E.; Neukermans, S.; Daems, N.; Bals, S.; Breugelmans, T. pdf  url
doi  openurl
  Title Size-controlled electrodeposition of Cu nanoparticles on gas diffusion electrodes in methanesulfonic acid solution Type A1 Journal article
  Year 2020 Publication Journal Of Applied Electrochemistry Abbreviated Journal J Appl Electrochem  
  Volume 51 Issue 2 Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract In this paper electrodeposition is used to obtain Cu nanoparticles, as it allows good control over particle size and distribution. These Cu particles were deposited onto a gas diffusion electrode which increased the resulting surface area. Prior to deposition, the surface was pre-treated with NaOH, HNO3, MQ and TX100 to investigate the influence on the electrodeposition of Cu on the gas diffusion electrode (GDE). When using HNO3, the smallest particles with the most homogeneous distribution and high particle roughness were obtained. Once the optimal substrate was determined, we further demonstrated that by altering the electrodeposition parameters, the particle size and density could be tuned. On the one hand, increasing the nucleation potential led to a higher particle density resulting in smaller particles because of an increased competition between particles. Finally, the Cu particle size increased when applying a greater growth charge and growth potential. This fundamental study thus opens up a path towards the synthesis of supported Cu materials with increased surface areas, which is interesting from a catalytic point of view. Larger surface areas are generally correlated with a better catalyst performance and thus higher product yields. This research can contributed in obtaining new insides into the deposition of metallic nanoparticles on rough surfaces. [GRAPHICS] .  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000568651000001 Publication Date 2020-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-891x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.9 Times cited 3 Open Access OpenAccess  
  Notes ; L. Pacquets was supported through a PhD fellowship strategic basic research (1S56918N) of the Research Foundation-Flanders (FWO). N. Daems was supported through a postdoctoral fellowship (12Y3919N-ND) of the Research Foundation-Flanders (FWO). S. Neukermans was supported through an FWO project grant (G093317N). This research was financed by the research counsel of the university of Antwerp (BOF-GOA 33928). The authors recognize the contribution of Thomas Kenis for analytical validation and methodology. ; Approved (up) Most recent IF: 2.9; 2020 IF: 2.235  
  Call Number UA @ admin @ c:irua:171588 Serial 6603  
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Shayesteh, S.F. pdf  url
doi  openurl
  Title A first-principles study of C3N nanostructures : control and engineering of the electronic and magnetic properties of nanosheets, tubes and ribbons Type A1 Journal article
  Year 2020 Publication Chemphyschem Abbreviated Journal Chemphyschem  
  Volume 21 Issue 2 Pages 164-174  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations we systematically investigate the atomic, electronic and magnetic properties of novel two-dimensional materials (2DM) with a stoichiometry C3N which has recently been synthesized. We investigate how the number of layers affect the electronic properties by considering monolayer, bilayer and trilayer structures, with different stacking of the layers. We find that a transition from semiconducting to metallic character occurs which could offer potential applications in future nanoelectronic devices. We also study the affect of width of C3N nanoribbons, as well as the radius and length of C3N nanotubes, on the atomic, electronic and magnetic properties. Our results show that these properties can be modified depending on these dimensions, and depend markedly on the nature of the edge states. Functionalization of the nanostructures by the adsorption of H adatoms is found induce metallic, half-metallic, semiconducting and ferromagnetic behavior, which offers an approach to tailor the properties, as can the application of strain. Our calculations give insight into this new family of C3N nanostructures, which reveal unusual electronic and magnetic properties, and may have great potential in applications such as sensors, electronics and optoelectronic at the nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000503453100001 Publication Date 2019-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1439-4235 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.9 Times cited 27 Open Access  
  Notes ; ; Approved (up) Most recent IF: 2.9; 2020 IF: 3.075  
  Call Number UA @ admin @ c:irua:165045 Serial 6282  
Permanent link to this record
 

 
Author Zamani, M.; Yapicioglu, H.; Kara, A.; Sevik, C. pdf  doi
openurl 
  Title Statistical analysis of porcelain tiles' technical properties : full factorial design investigation on oxide ratios and temperature Type A1 Journal article
  Year 2023 Publication Physica scripta Abbreviated Journal  
  Volume 98 Issue 12 Pages 125953-18  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract This study focuses on optimizing the composition and firing temperature of porcelain tiles using statistical analysis techniques. A full factorial design, including model adequacy checking, analysis of variance, Pareto charts, interaction plots, regression model, and response optimizer is employed. The key factors were the Seger ratios of SiO2/Al2O3, Na2O/K2O, MgO/CaO, and firing temperature. The response variables investigated were bulk density, water absorption, linear shrinkage, coefficient of thermal expansion (at 500 degrees C), and strength. The statistical analysis revealed highly significant results, which were further validated, confirming their reliability for practical use in the production of porcelain tiles. The study demonstrated the effectiveness of utilizing Seger formulas and properties of typical raw materials to accurately predict the final properties of ceramic tiles. By employing SiO2/Al2O3 = 5.2, Na2O/K2O = 1.50, MgO/CaO = 3.0, and firing temperature of 1180 degrees C, optimized properties, such as maximum strength, maximum bulk density, and minimum water absorption, was achieved with a composite desirability of 0.9821.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001105879800001 Publication Date 2023-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949; 1402-4896 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.9 Times cited Open Access  
  Notes Approved (up) Most recent IF: 2.9; 2023 IF: 1.28  
  Call Number UA @ admin @ c:irua:202033 Serial 9097  
Permanent link to this record
 

 
Author Ramesha, B.M.; Pawlak, B.; Arenas Esteban, D.; Reekmans, G.; Bals, S.; Marchal, W.; Carleer, R.; Adriaensens, P.; Meynen, V. pdf  url
doi  openurl
  Title Partial hydrolysis of diphosphonate ester during the formation of hybrid Tio₂ nanoparticles : role of acid concentration Type A1 Journal article
  Year 2023 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal  
  Volume Issue Pages e202300437-13  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract In the present work, a method was utilized to control the in‐situ partial hydrolysis of a diphosphonate ester in presence of a titania precursor and in function of acid content and its impact on the hybrid nanoparticles was assessed. The hydrolysis degree of organodiphosphonate ester linkers during the formation of hybrid organic‐inorganic metal oxide nanoparticles, are relatively underexplored . Quantitative solution NMR spectroscopy revealed that during the synthesis of TiO2 nanoparticles, an increase in acid concentration introduces a higher degree of partial hydrolysis of the TEPD linker into diverse acid/ester derivatives of TEPD. Increasing the HCl/Ti ratio from 1 to 3, resulted in an increase in degree of partial hydrolysis of the TEPD linker in solution from 4% to 18.8% under the here applied conditions. As a result of the difference in partial hydrolysis, the linker‐TiO2 bonding was altered. Upon subsequent drying of the colloidal TiO2 solution, different textures, at nanoscale and macroscopic scale, were obtained dependent on the HCl/Ti ratio and thus the degree of hydrolysis of TEPD. Understanding such linker‐TiO2 nanoparticle surface dynamics is crucial for making hybrid organic‐inorganic materials (i.e. (porous) metal phosphonates) employed in applications such as electronic/photonic devices, separation technology and heterogeneous catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001071673900001 Publication Date 2023-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1439-4235; 1439-7641 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.9 Times cited Open Access OpenAccess  
  Notes This work was supported by the Research Foundation-Flanders (FWO Vlaanderen) Project G.0121.17 N. The work was further supported by Hasselt University and the Research Foundation – Flanders (FWO Vlaanderen) via the Hercules project AUHL/15/2 – GOH3816 N. V. M. acknowledges the Research Foundation Flanders (FWO) for project K801621 N. B. M. R. acknowledges, Prof. Dr. Christophe Detavernier and Dr. Davy Deduystche (COCOON, Ghent University) for PXRD and VT-XRD measurements, Prof. Dr. Christophe Van De Velde (iPRACS, University of Antwerp) and Dr. Radu Ciocarlan (LADCA, University of Antwerp) for helpful discussions on PXRD measurements and Dr. Nick Gys (University of Antwerp and VITO) for ICP-OES measurements. Approved (up) Most recent IF: 2.9; 2023 IF: 3.075  
  Call Number UA @ admin @ c:irua:198934 Serial 8911  
Permanent link to this record
 

 
Author Truta, F.M.; Cruz, A.G.; Dragan, A.-M.; Tertis, M.; Cowen, T.; Stefan, M.-G.; Topala, T.; Slosse, A.; Piletska, E.; Van Durme, F.; Kiss, B.; De Wael, K.; Piletsky, S.A.; Cristea, C. pdf  doi
openurl 
  Title Design of smart nanoparticles for the electrochemical detection of 3,4-methylenedioxymethamphetamine to allow in field screening by law enforcement officers Type A1 Journal article
  Year 2023 Publication Drug testing and analysis Abbreviated Journal  
  Volume Issue Pages 1-14  
  Keywords A1 Journal article; Pharmacology. Therapy; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract A portable and highly sensitive sensor was designed for the specific detection of 3,4-methyl-enedioxy-methamphetamine (MDMA), in a range of field-testing situations. The sensor can detect MDMA in street samples, even when other controlled substances drugs, or adulterants are present. In this work, we report for the first time a sensor using electroactive molecularly imprinted polymer nanoparticles computationally designed to recognize MDMA and then produced using solid phase synthesis. A composite comprising chitosan, reduced graphene oxide, and molecularly imprinted polymer nanoparticles synthesized for MDMA for the first time was immobilized on screen-printed carbon electrodes. The sensors displayed a satisfactory sensitivity (106.8 nA x mu M-1), limit of detection (1.6 nM; 0.31 ng/mL), and recoveries (92-99%). The accuracy of the results was confirmed through validation using Ultra-High Performance Liquid Chromatography coupled with tandem Mass Spectrometry (UPLC-MS/MS). This technology could be used in forensic analysis and make it possible to selectively detect MDMA in street samples. A highly sensitive and portable sensor has been developed to detect MDMA in street samples. It uses electroactive molecularly imprinted polymer nanoparticles computationally designed to recognize MDMA, which were immobilized on screen-printed carbon electrodes with chitosan and graphene. The sensor showed good sensitivity and satisfactory recoveries (92-99%), confirmed with UPLC-MS/MS validation. This technology has the potential to be used in forensic analysis.image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001107703400001 Publication Date 2023-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.9 Times cited Open Access  
  Notes Approved (up) Most recent IF: 2.9; 2023 IF: 3.469  
  Call Number UA @ admin @ c:irua:202058 Serial 9020  
Permanent link to this record
 

 
Author Deconinck, E.; Polet, M.A.; Canfyn, M.; Duchateau, C.; De Braekeleer, K.; Van Echelpoel, R.; De Wael, K.; Gremeaux, L.; Degreef, M.; Balcaen, M. pdf  doi
openurl 
  Title Evaluation of an electrochemical sensor and comparison with spectroscopic approaches as used today in practice for harm reduction in a festival setting: a case study : analysis of 3,4-methylenedioxymethamphetamine samples Type A1 Journal article
  Year 2023 Publication Drug testing and analysis Abbreviated Journal  
  Volume Issue Pages 1-13  
  Keywords A1 Journal article; Pharmacology. Therapy; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract More and more countries and organisations emphasise the value of harm reduction measures in the context of illicit drug use and abuse. One of these measures is drug checking, a preventive action that can represent a quick win by tailored consultation on the risks of substance use upon analytical screening of a submitted sample. Unlike drop-in centres that operate within a fixed setting, enabling drug checking in a harm reduction context at events requires portable, easy to use analytical approaches, operated by personnel with limited knowledge of analytical chemistry. In this case study, four different approaches were compared for the characterisation of 3,4-methylenedioxymethamphetamine samples and this in the way the approaches would be applied today in an event context. The four approaches are mid-infrared (MIR), near-infrared, and Raman spectroscopy, which are today used in drug checking context in Belgium, as well as an electrochemical sensor approach initially developed in the context of law enforcement at ports. The MIR and the electrochemical approach came out best, with the latter allowing for a direct straightforward analysis of the percentage 3,4-methylenedioxymethamphetamine (as base equivalent) in the samples. However, MIR has the advantage that, in a broader drug checking context, it allows to screen for several molecules and so is able to identify unexpected active components or at least the group to which such components belong. The latter is also an important advantage in the context of the growing emergence of new psychotropic substances. MIR, NIR, Raman spectroscopy, and an electrochemical sensor (Narcoreader (R)) for MDMA analysis were compared in a realistic harm reduction context. NIR and Raman failed in simple library approaches. MIR and Narcoreader (R) were preferred. MIR came out as first choice. MIR and Narcoreader (R) have complementary (dis)advantages and could be used in a two-step approach: MIR for screening and Narcoreader (R) for dosage/risk evaluation of MDMA samples.image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001122493700001 Publication Date 2023-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.9 Times cited Open Access  
  Notes Approved (up) Most recent IF: 2.9; 2023 IF: 3.469  
  Call Number UA @ admin @ c:irua:202047 Serial 9032  
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Neyts, E.C. pdf  url
doi  openurl
  Title Toward the Understanding of Selective Si Nano-Oxidation by Atomic Scale Simulations Type A1 Journal article
  Year 2017 Publication Accounts of chemical research Abbreviated Journal Accounts Chem Res  
  Volume 50 Issue 50 Pages 796-804  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The continuous miniaturization of nanodevices, such as transistors, solar cells, and optical fibers, requires the controlled synthesis of (ultra)thin gate oxides (<10 nm), including Si gate-oxide (SiO2) with high quality at the atomic scale. Traditional thermal growth of SiO2 on planar Si surfaces, however, does not allow one to obtain such ultrathin oxide due to either the high oxygen diffusivity at high temperature or the very low sticking ability of incident oxygen at low temperature. Two recent techniques, both operative at low (room) temperature, have been put forward to overcome these obstacles: (i) hyperthermal oxidation of planar Si surfaces and (ii) thermal or plasma-assisted oxidation of nonplanar Si surfaces, including Si nanowires (SiNWs). These nanooxidation processes are, however, often difficult to study experimentally, due to the key intermediate processes taking place on the nanosecond time scale.

In this Account, these Si nano-oxidation techniques are discussed from a computational point of view and compared to both hyperthermal and thermal oxidation experiments, as well as to well-known models of thermal oxidation, including the Deal−Grove, Cabrera−Mott, and Kao models and several alternative mechanisms. In our studies, we use reactive molecular dynamics (MD) and hybrid MD/Monte Carlo simulation techniques, applying the Reax force field. The incident energy of oxygen species is chosen in the range of 1−5 eV in hyperthermal oxidation of planar Si surfaces in order to prevent energy-induced damage. It turns out that hyperthermal growth allows for two growth modes, where the ultrathin oxide thickness depends on either (1) only the kinetic energy of the incident oxygen species at a growth temperature below Ttrans = 600 K, or (2) both the incident energy and the growth temperature at a growth temperature above Ttrans. These modes are specific to such ultrathin oxides, and are not observed in traditional thermal oxidation, nor theoretically considered by already existing models. In the case of thermal or plasma-assisted oxidation of small Si nanowires, on the other hand, the thickness of the ultrathin oxide is a function of the growth temperature and the nanowire diameter. Below Ttrans, which varies with the nanowire diameter, partially oxidized SiNW are formed, whereas complete oxidation to a SiO2 nanowire occurs only above Ttrans. In both nano-oxidation processes at lower temperature (T < Ttrans), final sandwich c-Si|SiOx|a-SiO2 structures are obtained due to a competition between overcoming the energy barrier to penetrate into Si subsurface layers and the compressive stress (∼2−3 GPa) at the Si crystal/oxide interface. The overall atomic-simulation results strongly indicate that the thickness of the intermediate SiOx (x < 2) region is very limited (∼0.5 nm) and constant irrespective of oxidation parameters. Thus, control over the ultrathin SiO2 thickness with good quality is indeed possible by accurately tuning the oxidant energy, oxidation temperature and surface curvature.

In general, we discuss and put in perspective these two oxidation mechanisms for obtaining controllable ultrathin gate-oxide films, offering a new route toward the fabrication of nanodevices via selective nano-oxidation.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399859800016 Publication Date 2017-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 20.268 Times cited 5 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 12M1315N ; Approved (up) Most recent IF: 20.268  
  Call Number PLASMANT @ plasmant @ c:irua:142638 Serial 4561  
Permanent link to this record
 

 
Author Albrecht, W.; Van Aert, S.; Bals, S. pdf  url
doi  openurl
  Title Three-Dimensional Nanoparticle Transformations Captured by an Electron Microscope Type A1 Journal article
  Year 2021 Publication Accounts Of Chemical Research Abbreviated Journal Accounts Chem Res  
  Volume 54 Issue 5 Pages 1189-1199  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000626269900011 Publication Date 2021-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 20.268 Times cited 12 Open Access OpenAccess  
  Notes The authors acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grants No. 815128–REALNANO and No. 770887–PICOMETRICS), the Research Foundation Flanders (FWO, G.0267.18N), and the European Commission (EUSMI). The authors furthermore acknowledge funding from the European Union’s Horizon 2020 research and innovation program, ESTEEM3. The authors also acknowledge contributions from all co-workers that have contributed over the years: Thomas Altantzis, Annick De Backer, Joost Batenburg and co-workers, Armand Béché, Eva Bladt, Lewys Jones and co-workers, Luis Liz-Marzán and co-workers, Ivan Lobato, Thais Milagres de Oliveira, Peter Nellist and co-workers, Hugo Pérez Garza and co-workers, Alexander Skorikov, Sara Skrabalak and co-workers, Sandra Van Aert, Alfons van Blaaderen and co-workers, Hans Vanrompay, Staf Van Tendeloo, and Johan Verbeeck.; sygmaSB; Approved (up) Most recent IF: 20.268  
  Call Number EMAT @ emat @c:irua:177644 Serial 6752  
Permanent link to this record
 

 
Author Janssens, K.; Dik, J.; Cotte, M.; Susini, J. doi  openurl
  Title Photon-based techniques for nondestructive subsurface analysis of painted cultural heritage artifacts Type A1 Journal article
  Year 2010 Publication Accounts of chemical research Abbreviated Journal Accounts Chem Res  
  Volume 43 Issue 6 Pages 814-825  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Often, just micrometers below a paintings surface lies a wealth of information, both with Old Masters such as Peter Paul Rubens and Rembrandt van Rijn and with more recent artists of great renown such as Vincent Van Gogh and James Ensor. Subsurface layers may include underdrawing, underpainting, and alterations, and in a growing number of cases conservators have discovered abandoned compositions on paintings, illustrating artists practice of reusing a canvas or panel. The standard methods for studying the inner structure of cultural heritage (CH) artifacts are infrared reflectography and X-ray radiography, techniques that are optionally complemented with the microscopic analysis of cross-sectioned samples. These methods have limitations, but recently, a number of fundamentally new approaches for fully imaging the buildup of hidden paint layers and other complex three-dimensional (3D) substructures have been put into practice. In this Account, we discuss these developments and their recent practical application with CH artifacts. We begin with a tabular summary of 14 IR- and X-ray-based imaging methods and then continue with a discussion of each technique, illustrating CH applications with specific case studies. X-ray-based tomographic and laminographic techniques can be used to generate 3D renditions of artifacts of varying dimensions. These methods are proving invaluable for exploring inner structures, identifying the conservation state, and postulating the original manufacturing technology of metallic and other sculptures. In the analysis of paint layers, terahertz time-domain spectroscopy (THz-TDS) can highlight interfaces between layers in a stratigraphic buildup, whereas macrosopic scanning X-ray fluorescence (MA-XRF) has been employed to measure the distribution of pigments within these layers. This combination of innovative methods provides topographic and color information about the micrometer depth scale, allowing us to look into paintings in an entirely new manner. Over the past five years, several new variants of traditional IR- and X-ray-based imaging methods have been implemented by conservators and museums, and the first reports have begun to emerge in the primary research literature. Applying these state-of-the-art techniques in a complementary fashion affords a more comprehensive view of paintings and other artworks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000278842500013 Publication Date 2010-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 20.268 Times cited 78 Open Access  
  Notes ; This research was supported by the Interuniversity Attraction Poles Programme-Belgian Science Policy (IUAP VI/16). The text also presents results of FWO (Brussels, Belgium) projects nr. G.0704.08 and G.0179.09 and from the UA-BOF GOA programme. ; Approved (up) Most recent IF: 20.268; 2010 IF: 21.852  
  Call Number UA @ admin @ c:irua:83983 Serial 5772  
Permanent link to this record
 

 
Author Cotte, M.; Susini, J.; Dik, J.; Janssens, K. doi  openurl
  Title Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward Type A1 Journal article
  Year 2010 Publication Accounts of chemical research Abbreviated Journal Accounts Chem Res  
  Volume 43 Issue 6 Pages 705-714  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A variety of analytical techniques augmented by the use of synchrotron radiation (SR), such as X-ray fluorescence (SR-XRF) and X-ray diffraction (SR-XRD), are now readily available, and they differ little, conceptually, from their common laboratory counterparts. Because of numerous advantages afforded by SR-based techniques over benchtop versions, however, SR methods have become popular with archaeologists, art historians, curators, and other researchers in the field of cultural heritage (CH). Although the CH community now commonly uses both SR-XRF and SR-XRD, the use of synchrotron-based X-ray absorption spectroscopy (SR-XAS) techniques remains marginal, mostly because CH specialists rarely interact with SR physicists. In this Account, we examine the basic principles and capabilities of XAS techniques in art preservation. XAS techniques offer a combination of features particularly well-suited for the chemical analysis of works of art. The methods are noninvasive, have low detection limits, afford high lateral resolution, and provide exceptional chemical sensitivity. These characteristics are highly desirable for the chemical characterization of precious, heterogeneous, and complex materials. In particular, the chemical mapping capability, with high spatial resolution that provides information about local composition and chemical states, even for trace elements, is a unique asset. The chemistry involved in both the objects history (that is, during fabrication) and future (that is, during preservation and restoration treatments) can be addressed by XAS. On the one hand, many studies seek to explain optical effects occurring in historical glasses or ceramics by probing the molecular environment of relevant chromophores. Hence, XAS can provide insight into craft skills that were mastered years, decades, or centuries ago but were lost over the course of time. On the other hand, XAS can also be used to characterize unwanted reactions, which are then considered alteration phenomena and can dramatically alter the objects original visual properties. In such cases, the bulk elemental composition is usually unchanged. Hence, monitoring oxidation state (or, more generally, other chemical modifications) can be of great importance. Recent applications of XAS in art conservation are reviewed and new trends are discussed, highlighting the value (and future possibilities) of XAS, which remains, given its potential, underutilized in the CH community.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000278842500003 Publication Date 2010-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 20.268 Times cited 74 Open Access  
  Notes ; ; Approved (up) Most recent IF: 20.268; 2010 IF: 21.852  
  Call Number UA @ admin @ c:irua:83982 Serial 5861  
Permanent link to this record
 

 
Author Yu, W.-B.; Hu, Z.-Y.; Jin, J.; Yi, M.; Yan, M.; Li, Y.; Wang, H.-E.; Gao, H.-X.; Mai, L.-Q.; Hasan, T.; Xu, B.-X.; Peng, D.-L.; Van Tendeloo, G.; Su, B.-L. url  doi
openurl 
  Title Unprecedented and highly stable lithium storage capacity of (001) faceted nanosheet-constructed hierarchically porous TiO₂/rGO hybrid architecture for high-performance Li-ion batteries Type A1 Journal article
  Year 2020 Publication National Science Review Abbreviated Journal Natl Sci Rev  
  Volume 7 Issue 6 Pages 1046-1058  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Active crystal facets can generate special properties for various applications. Herein, we report a (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture with unprecedented and highly stable lithium storage performance. Density functional theory calculations show that the (001) faceted TiO2 nanosheets enable enhanced reaction kinetics by reinforcing their contact with the electrolyte and shortening the path length of Li+ diffusion and insertion-extraction. The reduced graphene oxide (rGO) nanosheets in this TiO2/rGO hybrid largely improve charge transport, while the porous hierarchy at different length scales favors continuous electrolyte permeation and accommodates volume change. This hierarchically porous TiO2/rGO hybrid anode material demonstrates an excellent reversible capacity of 250 mAh g(-1) at 1 C (1 C = 335 mA g(-1)) at a voltage window of 1.0-3.0 V. Even after 1000 cycles at 5 C and 500 cycles at 10 C, the anode retains exceptional and stable capacities of 176 and 160 mAh g(-1), respectively. Moreover, the formed Li2Ti2O4 nanodots facilitate reversed Li+ insertion-extraction during the cycling process. The above results indicate the best performance of TiO2-based materials as anodes for lithium-ion batteries reported in the literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000544175300013 Publication Date 2020-02-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-5138 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 20.6 Times cited 3 Open Access OpenAccess  
  Notes ; This work was supported by the National Key R&D Program of China (2016YFA0202602 and 2016YFA0202603), the National Natural Science Foundation of China (U1663225) and Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52). ; Approved (up) Most recent IF: 20.6; 2020 IF: 8.843  
  Call Number UA @ admin @ c:irua:170776 Serial 6648  
Permanent link to this record
 

 
Author Ostrikov, K.; Neyts, E.C.; Meyyappan, M. pdf  doi
openurl 
  Title Plasma nanoscience : from nano-solids in plasmas to nano-plasmas in solids Type A1 Journal article
  Year 2013 Publication Advances in physics Abbreviated Journal Adv Phys  
  Volume 62 Issue 2 Pages 113-224  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The unique plasma-specific features and physical phenomena in the organization of nanoscale soild-state systems in a broad range of elemental composition, structure, and dimensionality are critically reviewed. These effects lead to the possibility to localize and control energy and matter at nanoscales and to produce self-organized nano-solids with highly unusual and superior properties. A unifying conceptual framework based on the control of production, transport, and self-organization of precursor species is introduced and a variety of plasma-specific non-equilibrium and kinetics-driven phenomena across the many temporal and spatial scales is explained. When the plasma is localized to micrometer and nanometer dimensions, new emergent phenomena arise. The examples range from semiconducting quantum dots and nanowires, chirality control of single-walled carbon nanotubes, ultra-fine manipulation of graphenes, nano-diamond, and organic matter to nano-plasma effects and nano-plasmas of different states of matter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000320913600001 Publication Date 2013-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-8732;1460-6976; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 21.818 Times cited 380 Open Access  
  Notes Approved (up) Most recent IF: 21.818; 2013 IF: 18.062  
  Call Number UA @ lucian @ c:irua:108723 Serial 2639  
Permanent link to this record
 

 
Author Peeters, H.; Keulemans, M.; Nuyts, G.; Vanmeert, F.; Li, C.; Minjauw, M.; Detavernier, C.; Bals, S.; Lenaerts, S.; Verbruggen, S.W. url  doi
openurl 
  Title Plasmonic gold-embedded TiO2 thin films as photocatalytic self-cleaning coatings Type A1 Journal article
  Year 2020 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 267 Issue 267 Pages 118654  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Transparent photocatalytic TiO2 thin films hold great potential in the development of self-cleaning glass sur-

faces, but suffer from a poor visible light response that hinders the application under actual sunlight. To alleviate this problem, the photocatalytic film can be modified with plasmonic nanoparticles that interact very effectively with visible light. Since the plasmonic effect is strongly concentrated in the near surroundings of the nano- particle surface, an approach is presented to embed the plasmonic nanostructures in the TiO2 matrix itself, rather than deposit them loosely on the surface. This way the interaction interface is maximised and the plasmonic effect can be fully exploited. In this study, pre-fabricated gold nanoparticles are made compatible with the organic medium of a TiO2 sol-gel coating suspension, resulting in a one-pot coating suspension. After spin coating, homogeneous, smooth, highly transparent and photoactive gold-embedded anatase thin films are ob- tained.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518865300002 Publication Date 2020-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.1 Times cited 57 Open Access OpenAccess  
  Notes H.P. is grateful to the Research Foundation Flanders (FWO) for an aspirant PhD scholarship. Approved (up) Most recent IF: 22.1; 2020 IF: 9.446  
  Call Number EMAT @ emat @c:irua:165616 Serial 5446  
Permanent link to this record
 

 
Author Mahadi, A.H.; Ye, L.; Fairclough, S.M.; Qu, J.; Wu, S.; Chen, W.; Papaioannou, E.; Ray, B.; Pennycook, T.J.; Haigh, S.J.; Young, N.P.; Tedsree, K.; Metcalfe, I.S.; Tsang, S.C.E. doi  openurl
  Title Beyond surface redox and oxygen mobility at pd-polar ceria (100) interface : underlying principle for strong metal-support interactions in green catalysis Type A1 Journal article
  Year 2020 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 270 Issue Pages 118843  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract When ceria is used as a support for many redox catalysis involved in green catalysis, it is well-known that the overlying noble metal can gain access to a significant quantity of oxygen atoms with high mobility and fast reduction and oxidation properties under mild conditions. However, it is as yet unclear what the underlying principle and the nature of the ceria surface involved are. By using two tailored morphologies of ceria nanocrystals, namely cubes and rods, it is demonstrated from Scanning Transmission Electron Microscopy with Electron Energy Loss Spectroscopy (STEM-EELS) mapping and Pulse Isotopic Exchange (PIE) that ceria nano-cubes terminated with a polar surface (100) can give access to more than the top most layer of surface oxygen atoms. Also, they give higher oxygen mobility than ceria nanorods with a non-polar facet of (110). A new insight for the possible additional role of polar ceria surface plays in the oxygen mobility is obtained from Density Functional Theory (DFT) calculations which suggest that the (100) surface sites that has more than half-filled O on same plane can drive oxygen atoms to oxidise adsorbate(s) on Pd due to the strong electrostatic repulsion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526110500007 Publication Date 2020-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.1 Times cited Open Access  
  Notes Approved (up) Most recent IF: 22.1; 2020 IF: 9.446  
  Call Number UA @ admin @ c:irua:183959 Serial 6856  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Mertens, M.; Bogaerts, A.; Meynen, V. pdf  url
doi  openurl
  Title Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub)micron packings/catalysts to enhance the performance Type A1 Journal Article
  Year 2023 Publication APPLIED CATALYSIS B-ENVIRONMENTAL Abbreviated Journal  
  Volume 337 Issue Pages 122977  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This study presents new insights on the effect of (sub)micrometer particle sized materials in plasma-based CO2-

CH4 reforming by investigating the performance of SiO2 spheres (with/without supported metal) of varying

particle sizes. (Sub)micron particles synthesized through the St¨ober method were used instead of (sub)millimeter

particles employed in previous studies. Increasing particle size (from 120 nm to 2390 nm) was found to first

increase and then decrease conversion and energy yield, with optimal performance achieved using 740 nm 5 wt%

Ni loaded SiO2, which improved CO2 and CH4 conversion, and energy yield to 44%, 55%, and 0.271 mmol/kJ,

respectively, compared to 20%, 27%, and 0.116 mmol/kJ in an empty reactor at the same flow rate. This is the

first to achieve significant performance improvement in a fully packed reactor, highlighting the importance of

selecting a suitable particle size. The findings can offer guidance towards rational design of catalysts for plasmabased

reactions.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001056527600001 Publication Date 2023-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 22.1 Times cited Open Access Not_Open_Access  
  Notes This work is supported by the China Scholarship Council (No. 201806060123); and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). Approved (up) Most recent IF: 22.1; 2023 IF: 9.446  
  Call Number PLASMANT @ plasmant @c:irua:196955 Serial 8797  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Mertens, M.; Bogaerts, A.; Meynen, V. pdf  url
doi  openurl
  Title Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub)micron packings/catalysts to enhance the performance Type A1 Journal Article
  Year 2023 Publication APPLIED CATALYSIS B-ENVIRONMENTAL Abbreviated Journal  
  Volume 337 Issue Pages 122977  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This study presents new insights on the effect of (sub)micrometer particle sized materials in plasma-based CO2-

CH4 reforming by investigating the performance of SiO2 spheres (with/without supported metal) of varying

particle sizes. (Sub)micron particles synthesized through the St¨ober method were used instead of (sub)millimeter

particles employed in previous studies. Increasing particle size (from 120 nm to 2390 nm) was found to first

increase and then decrease conversion and energy yield, with optimal performance achieved using 740 nm 5 wt%

Ni loaded SiO2, which improved CO2 and CH4 conversion, and energy yield to 44%, 55%, and 0.271 mmol/kJ,

respectively, compared to 20%, 27%, and 0.116 mmol/kJ in an empty reactor at the same flow rate. This is the

first to achieve significant performance improvement in a fully packed reactor, highlighting the importance of

selecting a suitable particle size. The findings can offer guidance towards rational design of catalysts for plasmabased

reactions.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001056527600001 Publication Date 2023-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 22.1 Times cited Open Access Not_Open_Access  
  Notes This work is supported by the China Scholarship Council (No. 201806060123); and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). Approved (up) Most recent IF: 22.1; 2023 IF: 9.446  
  Call Number PLASMANT @ plasmant @c:irua:196955 Serial 8798  
Permanent link to this record
 

 
Author Van Daele, S.; Hintjens, L.; Hoekx, S.; Bohlen, B.; Neukermans, S.; Daems, N.; Hereijgers, J.; Breugelmans, T. pdf  url
doi  openurl
  Title How flue gas impurities affect the electrochemical reduction of CO₂ to CO and formate Type A1 Journal article
  Year 2024 Publication Applied catalysis : B : environmental Abbreviated Journal  
  Volume 341 Issue Pages 123345-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Applied Electrochemistry & Catalysis (ELCAT); Electron microscopy for materials research (EMAT)  
  Abstract The electrochemical CO2 reduction offers a promising solution to convert waste CO2 into valuable products like CO and formate. However, CO2 capture and purification remains an energy intensive process and therefore the direct usage of industrially available waste CO2 streams containing SO2, NO and O2 impurities becomes more interesting. This work demonstrates an efficient (Faradaic efficiency > 90 %) and stable performance over 20 h with 200 ppm SO2 or NO in the feed gas stream. However, the addition of 1 % O2 to the CO2 feed causes a significant drop in Faradaic efficiency to C-products due to the competitive oxygen reduction reaction. A potential mitigation strategy is to operate at higher total current density to firstly reduce most O2 and achieve sufficient product output from CO2 reduction. These results aid in understanding the impact of flue gas impurities during CO2 electrolysis which is crucial for potentially bypassing the CO2 purification step.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001102999000001 Publication Date 2023-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.1 Times cited Open Access Not_Open_Access  
  Notes Approved (up) Most recent IF: 22.1; 2024 IF: 9.446  
  Call Number UA @ admin @ c:irua:199490 Serial 9044  
Permanent link to this record
 

 
Author Mao, J.; Jiang, Y.; Moldovan, D.; Li, G.; Watanabe, K.; Taniguchi, T.; Masir, M.R.; Peeters, F.M.; Andrei, E.Y. doi  openurl
  Title Realization of a tunable artificial atom at a supercritically charged vacancy in graphene Type A1 Journal article
  Year 2016 Publication Nature physics Abbreviated Journal Nat Phys  
  Volume 12 Issue 12 Pages 545-549  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Graphene’s remarkable electronic properties have fuelled the vision of a graphene-based platform for lighter, faster and smarter electronics and computing applications. One of the challenges is to devise ways to tailor graphene’s electronic properties and to control its charge carriers. Here we show that a single-atom vacancy in graphene can stably host a local charge and that this charge can be gradually built up by applying voltage pulses with the tip of a scanning tunnelling microscope. The response of the conduction electrons in graphene to the local charge is monitored with scanning tunnelling and Landau level spectroscopy, and compared to numerical simulations. As the charge is increased, its interaction with the conduction electrons undergoes a transition into a supercritical regime where itinerant electrons are trapped in a sequence of quasi-bound states which resemble an artificial atom. The quasi-bound electron states are detected by a strong enhancement of the density of states within a disc centred on the vacancy site which is surrounded by halo of hole states. We further show that the quasi-bound states at the vacancy site are gate tunable and that the trapping mechanism can be turned on and off, providing a mechanism to control and guide electrons in graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000377475700011 Publication Date 2016-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.806 Times cited 93 Open Access  
  Notes ; Funding was provided by DOE-FG02-99ER45742 (STM/STS), NSF DMR 1207108 (fabrication and characterization). Theoretical work supported by ESF-EUROCORES-EuroGRAPHENE, FWO-VI and Methusalem programme of the Flemish government. We thank V. F. Libisch, M. Pereira and E. Rossi for useful discussions. ; Approved (up) Most recent IF: 22.806  
  Call Number c:irua:134210 Serial 4011  
Permanent link to this record
 

 
Author Béché, A.; Van Boxem, R.; Van Tendeloo, G.; Verbeeck, J. url  doi
openurl 
  Title Magnetic monopole field exposed by electrons Type A1 Journal article
  Year 2014 Publication Nature physics Abbreviated Journal Nat Phys  
  Volume 10 Issue 1 Pages 26-29  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The experimental search for magnetic monopole particles(1-3) has, so far, been in vain. Nevertheless, these elusive particles of magnetic charge have fuelled a rich field of theoretical study(4-10). Here, we created an approximation of a magnetic monopole in free space at the end of a long, nanoscopically thin magnetic needle(11). We experimentally demonstrate that the interaction of this approximate magnetic monopole field with a beam of electrons produces an electron vortex state, as theoretically predicted for a true magnetic monopole(3,11-18). This fundamental quantum mechanical scattering experiment is independent of the speed of the electrons and has consequences for all situations where electrons meet such monopole magnetic fields, as, for example, in solids. The set-up not only shows an attractive way to produce electron vortex states but also provides a unique insight into monopole fields and shows that electron vortices might well occur in unexplored solid-state physics situations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000328940100012 Publication Date 2013-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473;1745-2481; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.806 Times cited 131 Open Access  
  Notes Vortex; Countatoms; Fwo ECASJO_; Approved (up) Most recent IF: 22.806; 2014 IF: 20.147  
  Call Number UA @ lucian @ c:irua:113740UA @ admin @ c:irua:113740 Serial 1885  
Permanent link to this record
 

 
Author Partoens, B. doi  openurl
  Title Spinorbit interactions : hide and seek Type A1 Journal article
  Year 2014 Publication Nature physics Abbreviated Journal Nat Phys  
  Volume 10 Issue Pages 333-334  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract It is commonly believed that solids with spatial inversion symmetry do not display spinorbit effects. However, first-principles calculations now reveal unexpected spin structure for centrosymmetric crystals  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000335371200003 Publication Date 2014-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473; 1745-2481 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.806 Times cited 8 Open Access  
  Notes Approved (up) Most recent IF: 22.806; 2014 IF: 20.147  
  Call Number UA @ lucian @ c:irua:141068 Serial 4608  
Permanent link to this record
 

 
Author Lukyanchuk, I.; Vinokur, V.M.; Rydh, A.; Xie, R.; Milošević, M.V.; Welp, U.; Zach, M.; Xiao, Z.L.; Crabtree, G.W.; Bending, S.J.; Peeters, F.M.; Kwok, W.K. doi  openurl
  Title Rayleigh instability of confined vortex droplets in critical superconductors Type A1 Journal article
  Year 2015 Publication Nature physics Abbreviated Journal Nat Phys  
  Volume 11 Issue 11 Pages 21-25  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Depending on the Ginzburg-Landau parameter kappa, superconductors can either be fully diamagnetic if kappa < 1/root 2 (type I superconductors) or allow magnetic flux to penetrate through Abrikosov vortices if kappa > 1/root 2 (type II superconductors; refs 1,2). At the Bogomolny critical point, kappa = kappa(c) = 1/root 2, a state that is infinitely degenerate with respect to vortex spatial configurations arises(3,4). Despite in-depth investigations of conventional type I and type II superconductors, a thorough understanding of the magnetic behaviour in the near-Bogomolny critical regime at kappa similar to kappa(c) remains lacking. Here we report that in confined systems the critical regime expands over a finite interval of kappa forming a critical superconducting state. We show that in this state, in a sample with dimensions comparable to the vortex core size, vortices merge into a multi-quanta droplet, which undergoes Rayleigh instability(5) on increasing kappa and decays by emitting single vortices. Superconducting vortices realize Nielsen-Olesen singular solutions of the Abelian Higgs model, which is pervasive in phenomena ranging from quantum electrodynamics to cosmology(6-9). Our study of the transient dynamics of Abrikosov-Nielsen-Olesen vortices in systems with boundaries promises access to non-trivial effects in quantum field theory by means of bench-top laboratory experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000346831100018 Publication Date 2014-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473;1745-2481; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.806 Times cited 20 Open Access  
  Notes ; We would like to thank N. Nekrasov for illuminating discussions. The work was supported by the US Department of Energy, Office of Science Materials Sciences and Engineering Division (V.M.V., W.K.K., U.W., R.X., M.Z., Z.L.X., G.W.C. and partially I.L. through the Materials Theory Institute), by FP7-IRSES-SIMTECH and ITN-NOTEDEV programs (I.L.), and by the Flemish Science Foundation (FWO-Vlaanderen) (M.V.M. and F.M.P.). ; Approved (up) Most recent IF: 22.806; 2015 IF: 20.147  
  Call Number c:irua:122791 c:irua:122791 Serial 2815  
Permanent link to this record
 

 
Author Roditchev, D.; Brun, C.; Serrier-Garcia, L.; Cuevas, J.C.; Bessa, V.H.L.; Milošević, M.V.; Debontridder, F.; Stolyarov, V.; Cren, T. doi  openurl
  Title Direct observation of Josephson vortex cores Type A1 Journal article
  Year 2015 Publication Nature physics Abbreviated Journal Nat Phys  
  Volume 11 Issue 11 Pages 332-337  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Superconducting correlations may propagate between two superconductors separated by a tiny insulating or metallic barrier, allowing a dissipationless electric current to flow(1,2). In the presence of a magnetic field, the maximum supercurrent oscillates(3) and each oscillation corresponding to the entry of one Josephson vortex into the barrier(4). Josephson vortices are conceptual blocks of advanced quantum devices such as coherent terahertz generators(5) or qubits for quantum computing(6), in which on-demand generation and control is crucial. Here, we map superconducting correlations inside proximity Josephson junctions(7) using scanning tunnelling microscopy. Unexpectedly, we find that such Josephson vortices have real cores, in which the proximity gap is locally suppressed and the normal state recovered. By following the Josephson vortex formation and evolution we demonstrate that they originate from quantum interference of Andreev quasiparticles(8), and that the phase portraits of the two superconducting quantum condensates at edges of the junction decide their generation, shape, spatial extent and arrangement. Our observation opens a pathway towards the generation and control of Josephson vortices by applying supercurrents through the superconducting leads of the junctions, that is, by purely electrical means without any need for a magnetic field, which is a crucial step towards high-density on-chip integration of superconducting quantum devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000352163100016 Publication Date 2015-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473;1745-2481; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.806 Times cited 102 Open Access  
  Notes T.C., C.B., F.D., V.S. and D.R. acknowledge financial support from the French ANR project and the French-Russian program PICS-CNRS/RAS. The authors also thank V. Cherkez for assistance during experiments and V. Vinokur (Argonne National Laboratory, Illinois USA) and A. Buzdin (University of Bordeaux 1, France) for stimulating discussions. J.C.C. acknowledges financial support from the Spanish MICINN (Contract No. FIS2011-28851-C1). V.H.L.B. acknowledges support from CNPq Brazil and productive discussions with Prof. A. Chaves (UFC, Brazil). M.V.M. acknowledges support from Research Foundation Flanders (FWO-Vlaanderen) and CAPES Brazil (PVE project BEX1392/11-5). Approved (up) Most recent IF: 22.806; 2015 IF: 20.147  
  Call Number c:irua:132524 c:irua:132524 Serial 3943  
Permanent link to this record
 

 
Author Kelly, S.; Verheyen, C.; Cowley, A.; Bogaerts, A. pdf  url
doi  openurl
  Title Producing oxygen and fertilizer with the Martian atmosphere by using microwave plasma Type A1 Journal article
  Year 2022 Publication Chem Abbreviated Journal Chem  
  Volume 8 Issue 10 Pages 2797-2816  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We explorethepotentialofmicrowave(MW)-plasma-based in situ

utilizationoftheMartianatmospherewithafocusonthenovelpos-

sibilityoffixingN2 forfertilizerproduction. Conversioninasimulant

plasma (i.e., 96% CO2, 2% N2, and 2% Ar),performedunderen-

ergyconditionssimilartothoseoftheMarsOxygen In Situ Resource

UtilizationExperiment(MOXIE),currentlyonboardNASA’sPerse-

verancerover,demonstratesthatO/O2 formedthroughCO2 dissociation

facilitatesthefixationoftheN2 fractionviaoxidationtoNOx.

PromisingproductionratesforO2, CO,andNOx of 47.0,76.1,and

1.25g/h,respectively,arerecordedwithcorrespondingenergy

costs of0.021,0.013,and0.79kWh/g,respectively.Notably,O2

productionratesare 30 timeshigherthanthosedemonstrated

by MOXIE,whiletheNOx production raterepresentsan 7% fixa-

tionoftheN2 fraction presentintheMartian atmosphere.MW-

plasma-basedconversionthereforeshowsgreatpotentialasan in

situ resourceutilization(ISRU)technologyonMarsinthatitsimulta-

neouslyfixesN2 and producesO2.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000875346600005 Publication Date 2022-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2451-9294 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 23.5 Times cited Open Access OpenAccess  
  Notes the Euro- pean Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant no. 810182; SCOPE ERC Synergy project), and the Excellence of Science FWO-FNRS project (FWO grant no. GoF9618n and EOS no. 30505023). C.V. was supported by a FWO aspirant PhD fellowship (grant no. 1184820N). The calculations were per- formed with the Turing HPC infrastructure at the CalcUA core facility of the Univer- siteit Antwerpen (Uantwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish government (department EWI), and Uantwerpen. Approved (up) Most recent IF: 23.5  
  Call Number PLASMANT @ plasmant @c:irua:192174 Serial 7243  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: