toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Cotte, M.; Susini, J.; Dik, J.; Janssens, K. doi  openurl
  Title Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward Type A1 Journal article
  Year (down) 2010 Publication Accounts of chemical research Abbreviated Journal Accounts Chem Res  
  Volume 43 Issue 6 Pages 705-714  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A variety of analytical techniques augmented by the use of synchrotron radiation (SR), such as X-ray fluorescence (SR-XRF) and X-ray diffraction (SR-XRD), are now readily available, and they differ little, conceptually, from their common laboratory counterparts. Because of numerous advantages afforded by SR-based techniques over benchtop versions, however, SR methods have become popular with archaeologists, art historians, curators, and other researchers in the field of cultural heritage (CH). Although the CH community now commonly uses both SR-XRF and SR-XRD, the use of synchrotron-based X-ray absorption spectroscopy (SR-XAS) techniques remains marginal, mostly because CH specialists rarely interact with SR physicists. In this Account, we examine the basic principles and capabilities of XAS techniques in art preservation. XAS techniques offer a combination of features particularly well-suited for the chemical analysis of works of art. The methods are noninvasive, have low detection limits, afford high lateral resolution, and provide exceptional chemical sensitivity. These characteristics are highly desirable for the chemical characterization of precious, heterogeneous, and complex materials. In particular, the chemical mapping capability, with high spatial resolution that provides information about local composition and chemical states, even for trace elements, is a unique asset. The chemistry involved in both the objects history (that is, during fabrication) and future (that is, during preservation and restoration treatments) can be addressed by XAS. On the one hand, many studies seek to explain optical effects occurring in historical glasses or ceramics by probing the molecular environment of relevant chromophores. Hence, XAS can provide insight into craft skills that were mastered years, decades, or centuries ago but were lost over the course of time. On the other hand, XAS can also be used to characterize unwanted reactions, which are then considered alteration phenomena and can dramatically alter the objects original visual properties. In such cases, the bulk elemental composition is usually unchanged. Hence, monitoring oxidation state (or, more generally, other chemical modifications) can be of great importance. Recent applications of XAS in art conservation are reviewed and new trends are discussed, highlighting the value (and future possibilities) of XAS, which remains, given its potential, underutilized in the CH community.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000278842500003 Publication Date 2010-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 20.268 Times cited 74 Open Access  
  Notes ; ; Approved Most recent IF: 20.268; 2010 IF: 21.852  
  Call Number UA @ admin @ c:irua:83982 Serial 5861  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: